Programming Abstractions
 CS106B

Cynthia Lee

Stanford University

Upcoming Topics

Graphs!

1. Basics

- What are they? How do we represent them?

2. Theorems

- What are some things we can prove about graphs?

3. Breadth-first search on a graph

- Spoiler: just a very, very small change to tree version

4. Dijkstra's shortest paths algorithm

- Spoiler: just a very, very small change to BFS

5. A^{*} shortest pathsalgorithm

- Spoiler: just a very, very small change to Dijkstra's

6. Minimum Spanning Tree

- Kruskal's algorithm

Graphs

What are graphs? What are they good for?

Graph

Ryan ten Doeschate - ODI batting graph

Graphs in Computer Science

A graph is a mathematical structure for representing relationships

- A set V of vertices (or nodes)
- A set E of edges (or arcs) connecting a pair of vertices

A Social Network

How You're Connected

Linkedin.

Estefania Ortiz

Ask Estefania for an introduction
tristan walker

Chemical Bonds

Internet
\qquad

A graph is a mathematical structure for representing relationships

- A set V of vertices (or nodes)
, Often have an associated label
- A set E of edges (or arcs) connecting a pair of vertices
, Often have an associated cost or weight
- A graph may be directed (an edge from A to B only allow you to go from A to B, not B to A)
- or undirected (an edge between A and B allows travel in both directions)
- We talk about the number of vertices or edges as the size of the set, using the set theory notation for size: $|\mathbf{V}|$ and $|\mathrm{E}|$

Boggle as a graph

Vertex $=$ letter cube; Edge $=$ connection to neighboring cube

Maze as graph

If a maze is a graph, what is a vertex and what is an edge?

Graphs

How many of the following are valid graphs?

A) 0
B) 1
C) 2
D) 3

Graph Terminology

Graph terminology: Paths

path: A path from vertex a to b is a sequence of edges that can be followed starting from a to reach b.

- can be represented as vertices visited, or edges taken
- Example: one path from V to $Z:\{b, h\}$ or $\{V, X, Z\}$
path length: Number of vertices or edges contained in the path.
neighbor or adjacent: Two vertices connected directly by an edge.
- example: V and X

Graph terminology: Reachability, connectedness

reachable: Vertex a is reachable from b if a path exists from a to b.
connected: A graph is connected if every vertex is reachable from every other.

complete: If every vertex has a direct edge to every other.

Graph terminology: Loops and cycles

cycle: A path that begins and ends at the same node.

- example: $\{\mathrm{V}, \mathrm{X}, \mathrm{Y}, \mathrm{W}, \mathrm{U}, \mathrm{V}\}$.
- example: $\{\mathrm{U}, \mathrm{W}, \mathrm{V}, \mathrm{U}\}$.
- acyclic graph: One that does not contain any cycles.
loop: An edge directly from a node to itself.
- Many graphs don't allow loops.

Graph terminology: Weighted graphs

weight: Cost associated with a given edge.

- Some graphs have weighted edges, and some are unweighted.
- Edges in an unweighted graph can be thought of as having equal weight (e.g. all 0, or all 1, etc.)
- Most graphs do not allow negative weights.
example: graph of airline flights, weighted by miles between cities:

Stanford University

Representing Graphs

Ways we could implement a Graph class

Representing Graphs: Adjacency matrix

Representing Graphs: Adjacency list

Stanford University

Common ways of representing graphs

Adjacency list:

- Map<Node*, Set<Node*>>

Adjacency matrix:

- Grid<bool> unweighted
- Grid<int> weighted

How many of the following are true?

- Adjacency list can be used for directed graphs
- Adjacency list can be used for undirected graphs
- Adjacency matrix can be used for directed graphs
- Adjacency matrix can be used for undirected graphs
(A) 0
(B) 1
(C) 2
(D) 3

Graph Theory

Just a little taste of theorems about graphs

Graphs lend themselves to fun theorems and proofs of said theorems!

Any graph with 6 vertices contains either a triangle (3 vertices with all pairs having an edge) or an empty triangle (3 vertices no two pairs $\left(\begin{array}{l}\text { having an edge) } \\ \\ \\ \\ \\ \text { also } \\ \text { called } \\ \text { "indecent }\end{array}\right.$

Eulerian graphs

Let G be an undirected graph

A graph is Eulerian if it can drawn without lifting the pen and without repeating edges

Is this graph Eulerian?

Eulerian graphs

Let G be an undirected graph

A graph is Eulerian if it can
drawn without lifting the pen and without repeating edges

What about this graph?

Our second graph theorem

Definition: Degree of a vertex: number of edges adjacent to it
Euler's theorem: a connected graph is Eulerian iff the number of vertices with odd degrees is either 0 or 2 (eg all vertices or all but two have even degrees)

Does it work for

