Programming Abstractions

CS106B

Cynthia Lee

Upcoming Topics

Graphs!

- 1. Basics
 - What are they? How do we represent them?
- 2. Theorems
 - What are some things we can prove about graphs?
- 3. Breadth-first search on a graph
 - Spoiler: just a very, very small change to tree version
- 4. Dijkstra's shortest paths algorithm
 - Spoiler: just a very, very small change to BFS
- 5. A* shortest pathsalgorithm
 - Spoiler: just a very, very small change to Dijkstra's
- 6. Minimum Spanning Tree
 - Kruskal's algorithm

Graphs

What are graphs? What are they good for?

Graphs in Computer Science

A graph is a mathematical structure for representing relationships

- A set V of vertices (or nodes)
- A set E of edges (or arcs)
 connecting a pair of vertices

A Social Network

Internet

A graph is a mathematical structure for representing relationships

- A set V of vertices (or nodes)
 - Often have an associated label
- A set E of edges (or arcs) connecting a pair of vertices
 - Often have an associated cost or weight
- A graph may be directed (an edge from A to B only allow you to go from A to B, not B to A)
- or undirected (an edge between A and B allows travel in both directions)
- We talk about the number of vertices or edges as the size of the set, using the set theory notation for size: |V| and |E|

Boggle as a graph

Vertex = letter cube; Edge = connection to neighboring cube

Maze as graph

If a maze is a graph, what is a vertex and what is an edge?

Graphs

How many of the following are valid graphs? A) 0

Graph Terminology

Graph terminology: Paths

path: A path from vertex *a* to *b* is a sequence of edges that can be followed starting from *a* to reach *b*.

- can be represented as vertices visited, or edges taken
- Example: one path from V to Z: {b, h} or {V, X, Z}

path length: Number of vertices or edges contained in the path.

neighbor or **adjacent**: Two vertices connected directly by an edge.

example: V and X

Graph terminology: Reachability, connectedness

reachable: Vertex *a* is *reachable* from *b* if a path exists from *a* to *b*.

connected: A graph is *connected* if every vertex is reachable from every other.

complete: If every vertex has a direct edge to every other.

Graph terminology: Loops and cycles

cycle: A path that begins and ends at the same node.

- example: {V, X, Y, W, U, V}.
- example: {U, W, V, U}.
- acyclic graph: One that does not contain any cycles.

loop: An edge directly from a node to itself.

Many graphs don't allow loops.

Graph terminology: Weighted graphs

weight: Cost associated with a given edge.

- Some graphs have weighted edges, and some are unweighted.
- Edges in an unweighted graph can be thought of as having equal weight (e.g. all 0, or all 1, etc.)
- Most graphs do not allow negative weights.

example: graph of airline flights, weighted by miles between cities:

Stanford University

Representing Graphs

Ways we could implement a Graph class

Representing Graphs: Adjacency matrix

We can represent a graph as a Grid<bool> (unweighted) or Grid<int> (weighted)

Representing Graphs: Adjacency list

We can represent a graph as a map from nodes to the set of nodes each node is connected to.

Stanford University

Common ways of representing graphs

Adjacency list:

Map<Node*, Set<Node*>>

Adjacency matrix:

- Grid<bool> unweighted
- Grid<int> weighted

How many of the following are true?

- Adjacency <u>list</u> can be used for <u>directed</u> graphs
- Adjacency <u>list</u> can be used for <u>undirected</u> graphs
- Adjacency <u>matrix</u> can be used for <u>directed</u> graphs
- Adjacency <u>matrix</u> can be used for <u>undirected</u> graphs
 (A) 0 (B) 1 (C) 2 (D) 3 (E) 4

Graph Theory

Just a little taste of theorems about graphs

Graphs lend themselves to fun theorems and proofs of said theorems!

Any graph with 6 vertices contains either a triangle (3 vertices with all pairs having an edge) or an empty triangle (3 vertices no two pairs having an edge)

Eulerian graphs

Let G be an undirected graph

A graph is **Eulerian** if it can drawn without lifting the pen and without repeating edges

Is this graph Eulerian?

Eulerian graphs

Let G be an undirected graph

A graph is **Eulerian** if it can drawn without lifting the pen and without repeating edges

What about this graph?

Our second graph theorem

Definition: Degree of a vertex: number of edges adjacent to it

Euler's theorem: a connected graph is Eulerian iff the number of vertices with odd degrees is either 0 or 2 (eg all vertices or all but two have even degrees)

