
Programming Abstractions

Cynthia Lee

C S 106B

Topics Overview

Recently:

 Priority Queue implementations:

› Linked list (sorted, unsorted)

› Heap

 Map interface implementation:

› Binary Search Tree (BST)

 Another kind of tree:

› Huffman coding trees (used for compression of files)

Today: Hashing

 An alternative Map implementation

 Has pros and cons relative to our other Map implementation, BST

Hashing
Implementing the Map interface (or Stanford HashMap class)

with Hashing/Hash Tables

PART 1: Intuition behind the invention of the hash table

Imagine you want to look up your
neighbors’ names, based on their
house number

House numbers: 10565 through 90600

 (roughly 1000 houses—there are varying

gaps in house numbers between houses)

 All the houses are on the same street, so we

only need to lookup by house number

Names: string containing the name(s) living

there

We will consider two data structure options:

linked list, and array of strings

Image dedicated to public domain under Creative Commons license:

http://commons.wikimedia.org/wiki/File:Salsbury_Row_House.jpg

Option #1: Linked list

 Linked list:

 Struct has 3 fields: next pointer, int house number, and string name(s)

 Sort them by house number? (compared sorted/unsorted)

 Add/remove: O(n)

 Find: O(n)

10565,

“Kyung Suk and
Yong Han Lee”

head
10567,

“Isaiah White”

90600,

“Josie Spencer
and Solange

Clark”
…

Option #2: Array of strings

 Array of strings:

 string* addressBook = new string[90601];

 Index is house number, string is name

 The first part of the array will be empty since

addresses start at 10565

 Empty string for any number that is not currently a
valid address

Index

(house

number)

String value

(name)

0 “”

1 “”

… …

10565 “Yong Han and

Kyung Suk Lee”

10566 “”

10567 “Isaiah White”

… …

90598 “”

90599 “”

90600 “Josie Spencer and

Solange Clark”

Array of Strings

 Array of strings:

Index

(house

number)

String value

(name)

0 “”

1 “”

… …

10565 “Yong Han and

Kyung Suk Lee”

10566 “”

10567 “Isaiah White”

… …

90598 “”

90599 “”

90600 “Josie Spencer and

Solange Clark”

Array of strings:

Array of Strings

 Array of strings:

 Add/remove: ____

o Ex.: if somebody moves into the vacant
house at 90598, how long would it take to
update?

 Find: ____
o Ex.: you want to find the name of the resident

at 12475, if any

A. O(1), O(1)

B. O(logn), O(logn)

C. O(n), O(n)

D. Other/none/combination

Index

(house

number)

String value

(name)

0 “”

1 “”

… …

10565 “Yong Han and

Kyung Suk Lee”

10566 “”

10567 “Isaiah White”

… …

90598 “”

90599 “”

90600 “Josie Spencer and

Solange Clark”

Array of strings:

Array of Strings

 Wow, excellent performance on both!!

 Only way to do better than O(1) is a time

machine that can go back in time and

make it take zero/negative time!

 Everything is awesome (?)

 Discuss: Can you identify 1-2 specific

areas of waste in this approach?
o Bonus: can you think of a simple fix for at least one

of the areas of waste?

Index

(house

number)

String value

(name)

0 “”

1 “”

… …

10565 “Yong Han and

Kyung Suk Lee”

10566 “”

10567 “Isaiah White”

… …

90598 “”

90599 “”

90600 “Josie Spencer and

Solange Clark”

Array of strings:

One quick fix:
/* When accessing the array, use array[hash(houseNum)]

* rather than array[houseNum]. The function hash is

* just a way to adjust houseNum for efficiency. */

int hash(int houseNumber){

return houseNumber-10565;

}

 This solves the problem of the enormous gap from

0 to 10565

o So our array size could be ~80,000 entries instead of

90,600

o Doesn’t solve the problem of gaps between houses

o How could we do that? A tricky problem…

o Also, this approach only works for keys of type int

Index

(house

number)

String value

(name)

0 “”

1 “”

… …

10565 “Yong Han and

Kyung Suk Lee”

10566 “”

10567 “Isaiah White”

… …

90598 “”

90599 “”

90600 “Josie Spencer and

Solange Clark”

Array of strings:

Hashing
Implementing the Map interface (Stanford HashMap class) with Hashing/Hash
Tables

PART 2: Getting the MAGICAL performance of our simple house numbers
example on any key type, and with less waste

Hash Table is just a modified, more flexible array

 Keys don’t have to be integers in the range [0-(size-1)]

› They don’t even have to be integers at all!

 (Ideally) avoids big gaps like we had with house numbers array

Not

necessarily

int int in range [0-(size-1)]

THANK YOU, HASH

FUNCTION!! ♥ ♥ ♥

 Replicates the MAGICAL performance of our array of strings

on ANY key/value!!

hash() function

 This is where the MAGIC happens!

› These are typically mathematically sophisticated functions

› They do their best to ensure a nice uniform distribution of elements

across the available array (hash table)

› They use tricks like modulus (remainder) and prime numbers to do

this

› A lot of art & science, beyond the scope of this class

› Fun times!

Hashing
Implementing the Map interface (Stanford HashMap class) with

Hashing/Hash Tables

Hash table inserts Array

index

Hashed data

0

1

2 (A) "Annie", 3

3 (B) "Annie", 3

4 (C) "Annie", 3

5 (D) "Annie", 3

6

7

8

Let’s pretend we have a profoundly not-

mathematically-sophisticated hash function:

int hash(string key) {

return key.length();

}

 Where does key="Annie" value=3 go?

HashMap<string,int> mymap;

mymap["Annie"] = 3;

See choices in table at right, or:

(E) Some other place

Hash table inserts Array

index

Hashed data

0

1

2

3

4

5 "Annie", 3

6

7

8

Let’s pretend we have a profoundly not-
mathematically-sophisticated hash
function:

int hash(string key) {

return key.length();

}

 Where does key="Michael", value=5
go?
mymap["Michael"] = 5;

Hash table inserts Array

index

Hashed data

0

1

2

3

4

5 "Annie", 3

6

7 "Michael", 5

8

Let’s pretend we have a profoundly not-
mathematically-sophisticated hash
function:

int hash(string key) {

return key.length();

}

 Where does key="Michael", value=5
go?
mymap["Michael"] = 5;

Hash table inserts Array

index

Hashed data

0

1

2

3

4

5 (A) "Annie", 3 7

6

7 (B) "Michael", 5
"Annie", 7

8

Let’s pretend we have a profoundly not-
mathematically-sophisticated hash
function:

int hash(string key) {

return key.length();

}

 Now insert key="Annie", value=7
mymap["Annie"] = 7;

See choices in table at right, or:

(C) Index 5 should store both

"Annie",3 and "Annie",7

Hash table inserts Array

index

Hashed data

0

1

2

3

4

5 (A) "Annie", 7
"Maria", 8

6 (B) "Maria", 8

7 "Michael", 5

8 (C) "Maria", 8

Let’s pretend we have a profoundly not-
mathematically-sophisticated hash
function:

int hash(string key) {

return key.length();

}

 Now insert key="Maria", value=8
mymap["Maria"] = 8;

See choices in table at right, or:

(D) Index 5 should store both

"Annie",7 and "Maria",8

Uh-oh! Hash collisions

We can NOT overwrite the value the way we would if it really were

the same key

Can you imagine how you would feel if you used Stanford library

HashMap like this and it printed 8?!

mymap["Annie"] = 3;

mymap["Annie"] = 7;

cout << mymap["Annie"] << endl; //expect 7, not 3

mymap["Maria"] = 8;

cout << mymap["Annie"] << endl; //expect 7, not 8!!!

Uh-oh! Hash collisions

We may need to worry about hash collisions

Hash collision:

 Two keys a, b, a≠b, have the same hash code index (i.e.

hash(a) == hash(b))

Need a way of storing multiple values in a given “place” in the

hash table, so all user’s data is preserved

Uh-oh! Hash collisions

There are two main strategies for resolving

this:

1. Put the item in the next bin (as in the

(B) choice from our previous slide)—

this is called “open addressing”

2. Make each bin be the head of a linked

list, and elements can chain off each

other as long as needed—this is called

“closed addressing”

Array

index

Hashed data

0

1

2

3

4

5 (A) "Annie", 7
"Maria", 8

6 (B) "Maria", 8

7 "Michael", 5

8 (C) "Maria", 8

Map Interface: hash-map.h

…
private:

struct Cell {
KeyType key;
ValueType value;
Cell* next;

};

/* Instance variables */
Vector<Cell*> buckets;
int nBuckets;
int numEntries;
int hash(const Key& key) const;

};

HashMap NULL

NULL

NULL

NULL

NULL

0

1

2

3

4

5

6

7

…
private:

struct Cell {
KeyType key;
ValueType value;
Cell* next;

};

/* Instance variables */
Vector<Cell*> buckets;
int nBuckets;
int numEntries;
int hash(const Key& key) const;

};

// Q: Can you draw the HashMap
// object in this memory diagram,
// including filling in values for
// all fields?

Hash key collisions & Big-O of HashMap

If there are no collisions, find/add/remove are all O(1)—just compute the

key and go!

Two factors for ruining this magical land of instantaneous lookup:

 Too-small table (worst case = 1)

 Hash function doesn’t produce a good spread

int awfulHashFunction(string input) {

return 4;

}

 Find/add/remove all O(n) worst case

// h/t http://xkcd.com/221/

