
Programming Abstractions

Cynthia Lee

C S 106B

Topics:

Wednesday:

 Binary Search Tree (BST)

› Starting with a dream: binary search in a linked list?

› How our dream provided the inspiration for the BST

• Note: we do NOT actually construct BSTs using this method

› BST insert

› Big-O analysis of BST

Today:

 Binary Search Tree (BST)

› BST balance issues

 Traversals

› Pre-order

› In-order

› Post-order

› Breadth-first

 Applications of Traversals

2

BST Balance Strategies
We need to balance the tree (keep O(logN) instead of O(N)), how can we do

that if the tree structure is decided by key insert order?

Red-Black trees

One of the most famous (and most tricky) strategies for

keeping a BST balanced

Not guaranteed to be perfectly balanced, but “close

enough” to keep O(log n) guarantee on operations

Red-Black trees

Every simple path from a given node to any of its
descendant leaves contains the same number
of black nodes.

 (This is what guarantees “close” to balance)

This file is licensed under the Creative Commons Attribution-Share Alike 3.0 Unported license. http://commons.wikimedia.org/wiki/File:Red-black_tree_example.svg

Video: http://www.youtube.com/watch?v=vDHFF4wjWYU

http://en.wikipedia.org/wiki/en:Creative_Commons
http://creativecommons.org/licenses/by-sa/3.0/deed.en
http://commons.wikimedia.org/wiki/File:Red-black_tree_example.svg
http://www.youtube.com/watch?v=vDHFF4wjWYU

Red-Black trees insert

A few BST balance strategies

• AVL tree

• Red-Black tree

• Treap (BST + heap in one tree! What could be cooler

than that, amirite? ♥ ♥)

Other fun types of BST

Splay tree

 Rather than only worrying about balance, Splay Tree

dynamically readjusts based on how often users search for

an item. Most commonly-searched items move to the top,

saving time

› Example: if Google did this, “Bieber” would be near the

root, and “splay tree” would be further down by the leaves

B-Tree

 Like BST, but a node can have many children, not just two

 More branching means an even “flatter” (smaller height) tree

 Used for huge databases

BST and Heap quick recap/cheat
sheet

10

BST and Heap Facts (cheat sheet)

Heap (Priority Queue)

 Structure: must be “complete”

 Order: parent priority must be <=
both children

› This is for min-heap, opposite
is true for max-heap

› No rule about whether left child
is > or < the right child

 Big-O: guaranteed log(n) enqueue
and dequeue

 Operations: always add to end of
array and then “bubble up”; for
dequeue do “trickle down”

BST (Map)

 Structure: any valid binary tree

 Order: leftchild.key < self.key <

rightchild.key

› No duplicate keys

› Because it’s a Map, values go

along for the ride w/keys

 Big-O: log(n) if balanced, but

might not be balanced, then O(n)

 Operations: recursively repeat:

start at root and go left if key <

root, go right if key > root

Tree Traversals!
These are for any binary trees, but we often do them on BSTs

What does this print?
(assume we call traverse on the root node to start)

void traverse(Node *node) {
if (node != NULL) {

cout << node->key << " ";
traverse(node->left);
traverse(node->right);

}
}

A. A B C D E F

B. A B D E C F

C. D B E F C A

D. D E B F C A

E. Other/none/more

A

B C

D E F

What does this print?
(assume we call traverse on the root node to start)

void traverse(Node *node) {
if (node != NULL) {

traverse(node->left);
traverse(node->right);
cout << node->key << " ";

}
}

A. A B C D E F

B. A B D E C F

C. D B E F C A

D. D E B F C A

E. Other/none/more

A

B C

D E F

What does this print?
(assume we call traverse on the root node to start)

void traverse(Node *node) {
if (node != NULL) {

traverse(node->left);
cout << node->key << " ";
traverse(node->right);

}
}

A. 1 2 4 5 8 9
B. 1 4 2 9 8 5
C. 5 2 1 4 8 9
D. 5 2 8 1 4 9
E. Other/none/more

5

2 8

1 4 9

How can we get code to print our ABCs in order
as shown? (note: not BST order)

void traverse(Node *node) {
if (node != NULL) {

?? cout << node->key << " ";
traverse(node->left);
traverse(node->right);

}
}

You can’t do it by using this code and moving around the cout—we already
tried moving the cout to all 3 possible places and it didn’t print in order

 You can but you use a queue instead of recursion

 “Breadth-first” search

 Again we see this key theme of BFS vs DFS!

A

B C

D E F

Applications of Tree Traversals
Beautiful little things from an algorithms/theory standpoint, but they have a

practical side too!

Traversals a very commonly-used tool in your CS toolkit

void traverse(Node *node) {
if (node != NULL) {

traverse(node->left);
// "do something”
traverse(node->right);

}
}

 Customize and move the “do something,” and that’s the
basis for dozens of algorithms and applications

Map interface implemented with BST

 Remember how when you iterate over the Stanford library Map you get

the keys in sorted order?

› (we used this for the word occurrence counting code example in class)

void printMap(const Map<string, int>& theMap) {

for (string s : theMap) {

cout << s << endl; // printed in sorted order

}

}

 Now you know why it can do that in O(N) time!

› “In-order” traversal

Applications of the traversals

 You have a tree that represents evaluation of an

arithmetic expression. Which traversal would form the

foundation of your evaluation algorithm?

A. Pre-order

B. In-order

C. Post-order

D. Breadth-first

*

+ /

3 4 28

Applications of the traversals

 You are writing the destructor for a BST class. Given a

pointer to the root, it needs to free each node. Which

traversal would form the foundation of your destructor

algorithm?

A. Pre-order

B. In-order

C. Post-order

D. Breadth-first
5

2 8

1 4 9

size:

root:

BST

