Programming Abstractions
CS1068B

Cynthia Lee

Stanford University

Topics:

= Priority Queue
» Linked List implementation
« Sorted
« Unsorted
> Heap data structure implementation

= TODAY’S TOPICS NOT ON THE MIDTERM

Stanford University

Some priority queue implementation options

data | next
75

head—

Unsorted linked list
= Insert new element in front: O(1)
= Remove by searching list: O(N)

data | next
8

data

20

‘ next \

head— data | next
Sorted linked list :HS

= Always insert in sorted order: O(N)
= Remove from front: O(1)

data | next

20

data

‘ next \

Stanford University

Priority queue implementations

We want the best of both

Fast add AND fast remove/peek
We will investigate trees as a way to get the best of both worlds

i ‘(4 AN
\ 1 PRt
, B

Ifaét add Fast remove/peek

Stanford University

Binary Heaps

Stanford University

Heap: not to be confused with the Heap!

= The Stack section of memory is a Stack like the ADT
= The Heap section of memory has nothing to do with the Heap structure.

Stack ADT

Stack

6
~ \10 Heap data structure

Heap * OT\ /" \
18 14

11 21

Ox0

27

= Probably just happened to reuse the same word Stanford University

ce: http://www.flickr.com/photos/35237093334@N01/409465578/

Author: http://www.flickr.com/people/35237093334@NO01 Peter Kazanjy]

Sour

Binary trees

Stanford University

A binary tree

“In computer science, a binary tree is a tree data
structure in which each node has at most two
child nodes, usually distinguished as "left"
and "right".” (Thanks, Wikipedia!)

Stanford University

“In computer science, a binary
tree is a tree data structure in
which each node has at most

i I two child nodes, usually
How many of these are valid binary Histinquishod o "loft- and
trees? > % "right".” (Thanks, Wikipedia!)

Stanford University

A node struct for binary trees

oot
Similar to a linked list node, datas Ij_‘

It contains data, and a
pointer to the nearby
elements

A binary node tree has two
child pointers, 1eft and
right
struct TreeNode {

int data;
TreeNode* left;

TreeNode* right;

}s

Heaps!

Stanford University

Binary Heaps*

Binary heaps are one kind of binary tree
They have a few special restrictions, in addition to the usual binary tree:
= Must be complete
» No “gaps”—nodes are filled in left-to-right on each level (row) of the tree
= Qrdering of data must obey heap property
» Min-heap version: a parent’s data is always < both its children’s data
» Max-heap version: a parent’s data is always 2 both its children’s data

* There are other kinds of heaps as well. For example,

binomial heap is extra credit on your assignment. Stanford University

How many of these could be valid binary heaps?

O >
wWw N O

Stanford University

How many of these are valid min-binary-heaps?

Stanford University

Binary heap in an array

Stanford University

Binary heap in an array

Binary heap is one special kind of
binary tree, so we could use a node
struct to represent it

However, ... we actually do NOT
typically use a node object to
Implement heaps

Because they have the special added
constraint that they must be
complete, they fit nicely into an

aray .~ o~
ep \i (31 (E: 83 184|085 | 8g
0 2 /3 4 5 6

Stanford University

Two approaches:
Binary heap in an array

Wait, but the homework handout starts storing the
elements at array index 1!

» Either way is ok for the assignment.

» You should understand both ways, so we're teaching
both ways

0-based o0 g., [ez[@3] es|es [eg

€Y
/ 2/ 4 4 2 6 1-based /\

OR & © © ¢©7

/\ o | &2 @.4 S P pe

0o 1 2 4 5 6 7

ED

Heap in an array

0O 1 2 4| 5
\‘:’%—Ju‘ - ?\/b /\’\ W\’\{V\

For a node in array index@ %&i’lﬂ , wWse
» Q: The parent of that node is found where? Lot Tle$r Avd
= A atindex: ,) hy \n \A

A -2 (\LO\\’\WW &gﬁﬂf
Coses)

D2

Stanford University

Fact summary:
Binary heap in an array

A A
/\ /\ N/

0-based: 1-based: ©4 © % &

For tree of height h, array length is 2"-1 For tree of height h, array length i
For a node in array index i: For a node in array inde
» Parentis at array index: (i—1)/2 = Parentis at array inde

= Left child is at array index: 2i + 1 = Left child is at array inde
= Right child is at array index: 2i + 2 = Right child is at array index

Stanford University

Binary heap enqueue and degueue

Stanford University

Binary heap enqueue (insert + “bubble up”)

Size=8, Capacity=15

"/5\/1:.\ o 12 5 .. 14
§ 14 11 21 "5\ 7 (10|18 | 14 |11 |21 27| (»
< v —
=) S
o2 3 T
Efﬁkhﬁu Size=9, Capacity=15
/N /N © 1 2 3 4 5 6 7 8 9 . 14

7 14 11 21

27 1 5| 6|10 7 |14]11 |21 27|18

Stanford University

[Binary heap insert reference page]

/5\\
7 10
NN

18 14 11 21

27

(a) A minheap prior to adding an
element. The circle is where the new

element will be put initially.

/5\
7 10
AN N

B 14 11 21
N

27 18

/5\\
7 10
/N /N
18 14 11 21
27 8

(b) Add the element. 6. as the new rightmost
leaf. This maintains a complete binary tree.
but may violate the minheap ordering

property.

/5\\

6 10
O\ /\
11 21

7 14

_7 18

(c) “Bubble up” the new element.
Starting with the new element. if the
child is less than the parent, swap them.

This moves the new element up the tree.

(d) Repeat the step described in (c¢) until the
parent of the new element is less than or equal to
the new element. The minheap invariants have
been restored.

swamund University

Binary heap dequeue (delete + “trickle down”)

Stanford University

Binary heap dequeue (delete + “trickle down”)

/”5\“&.
6 10
NG N

14 11 21

Size=9, Capacity=15

27 18

..-ﬂ""n“""-..

T 10
/N N\
27 14 11 21
18

e 1 2 3 4 5 6 7 8 14
516 |10 7 (14|11 |21 |27 (18| ? | .. | ?
Size=8, Capacity=15

(%] 1 2 3 4 5 6 7 8 9 14
6 7 (1027|114 |11 |21 | 18 ?

Stanford University

(a) Moving the rightmost leaf to the top of
the heap to fill the gap created when the top
element (5) was removed. This 1s a complete
binary tree, but the minheap ordering
property has been violated.

(b) “Trickle down” the element. Swapping
top with the smaller of its two children leaves
top’s right subtree a valid heap. The subtree
rooted at 18 still needs fixing.

(c) Last swap. The heap 1s fixed when 18 is
less than or equal to both of its children. The
minheap invariants have been restored

[Binary heap delete + “trickle-down” reference page]

top is removed
¢~ from the heap

[4 10
(/N /N
18 14 11 21
27 ford University

Summary analysis

Comparing our priority queue options

Stanford University

Some priority queue implementation options

data | next
75

head—

Unsorted linked list
= Insert new element in front: O(1)
= Remove by searching list: O(N)

data | next
8

data

20

‘ next \

head— data | next
Sorted linked list :HS

= Always insert in sorted order: O(N)
= Remove from front: O(1)

data | next

20

data

‘ next \

Stanford University

Priority queue implementations

We want the best of both

Fast add AND fast remove/peek
We will investigate trees as a way to get the best of both worlds

i ‘(4 AN
\ 1 PRt
, B

Ifaét add Fast remove/peek

Stanford University

Review: priority queue implementation options

Unsorted linked list head—} .92t ‘”e"t ‘ | data ‘”eXt ‘ data ‘next l
i /> 8 20
= Insert new element in fron@

= Remove by searching list: O(N)

_ _ data | next data | next data | next
Sorted linked list head"ZH/ - -~ M

= Always insert in sorted\ order: O(N)

= Remove from front: O(1)
€p

Binary heap / \ eo|e|ex]|es]|es|es |eg

= |nsert + “bubble up”: O() e, e

01 2 3 4 5 6
= Delete + “trickle down”: O() /\ /\

e; e, 6 &g Stanford University

Fact summary:
Binary heap in an array

A A
/\ /\ /N

0-based: 1-based: ©4 © % &

For tree of height h, array length is 2"-1 For tree of height h, array length is 2"
For a node in array index I: For a node in array index I.

» Parentis at array index: (i—1)/2 = Parentis at array index: i /2

= Left child is at array index: 2i + 1 = Left child is at array index: 2i

= Right child is at array index: 2i + 2 = Right child is at array index: 2i + 1

Stanford University

