
Programming Abstractions

Cynthia Lee

C S 1 0 6 B

Topics:

 Priority Queue

› Linked List implementation

• Sorted

• Unsorted

› Heap data structure implementation

 TODAY’S TOPICS NOT ON THE MIDTERM

2

Some priority queue implementation options

Unsorted linked list

 Insert new element in front: O(1)

 Remove by searching list: O(N)

Sorted linked list

 Always insert in sorted order: O(N)

 Remove from front: O(1)

data next

75

data next

8
head

data next

20 NULL

data next

8

data next

20
head

data next

75 NULL

We want the best of both

Fast add AND fast remove/peek

We will investigate trees as a way to get the best of both worlds

Priority queue implementations

+ =

Fast add Fast remove/peek

Binary Heaps

 The Stack section of memory is a Stack like the ADT

 The Heap section of memory has nothing to do with the Heap structure.

 Probably just happened to reuse the same word

Heap: not to be confused with the Heap!

Heap

Stack

0x0

S
o

u
rc

e
:
h

tt
p

:/
/w

w
w

.f
li
c
k
r.

c
o

m
/p

h
o

to
s
/3

5
2

3
7

0
9

3
3

3
4

@
N

0
1

/4
0

9
4

6
5

5
7

8
/

A
u

th
o

r:
 h

tt
p

:/
/w

w
w

.f
li
c
k
r.

c
o

m
/p

e
o

p
le

/3
5

2
3

7
0

9
3

3
3

4
@

N
0
1

 P
e

te
r

K
a

z
a

n
jy

]

=

≠

Stack ADT

Heap data structure

Binary trees

A binary tree

“In computer science, a binary tree is a tree data

structure in which each node has at most two

child nodes, usually distinguished as "left"

and "right".” (Thanks, Wikipedia!)

How many of these are valid binary
trees?

“In computer science, a binary
tree is a tree data structure in
which each node has at most
two child nodes, usually
distinguished as "left" and
"right".” (Thanks, Wikipedia!)

A node struct for binary trees

Similar to a linked list node,
it contains data, and a
pointer to the nearby
elements

A binary node tree has two
child pointers, left and
right

struct TreeNode {

int data;

TreeNode* left;

TreeNode* right;

};

Heaps!

Binary Heaps*

Binary heaps are one kind of binary tree

They have a few special restrictions, in addition to the usual binary tree:

 Must be complete

› No “gaps”—nodes are filled in left-to-right on each level (row) of the tree

 Ordering of data must obey heap property

› Min-heap version: a parent’s data is always ≤ both its children’s data

› Max-heap version: a parent’s data is always ≥ both its children’s data

* There are other kinds of heaps as well. For example,

binomial heap is extra credit on your assignment.

How many of these could be valid binary heaps?

A. 0-1

B. 2

C. 3

D. 4

E. 5-8

How many of these are valid min-binary-heaps?

Binary heap in an array

Binary heap in an array

Binary heap is one special kind of

binary tree, so we could use a node

struct to represent it

However, … we actually do NOT

typically use a node object to

implement heaps

Because they have the special added

constraint that they must be

complete, they fit nicely into an

array

Two approaches:
Binary heap in an array

Wait, but the homework handout starts storing the

elements at array index 1!

› Either way is ok for the assignment.

› You should understand both ways, so we’re teaching

both ways

OR

0-based

1-based

Heap in an array

For a node in array index i:

 Q: The parent of that node is found where?

 A: at index:

A. i – 2

B. i / 2

C. (i – 1)/2

D. 2i

Fact summary:
Binary heap in an array

For tree of height h, array length is 2h-1

For a node in array index i:

 Parent is at array index: (i – 1)/2

 Left child is at array index: 2i + 1

 Right child is at array index: 2i + 2

For tree of height h, array length is 2h

For a node in array index i:

 Parent is at array index: i /2

 Left child is at array index: 2i

 Right child is at array index: 2i + 1

0-based: 1-based:

Binary heap enqueue and dequeue

Binary heap enqueue (insert + “bubble up”)

Size=8, Capacity=15

0 1 2 3 4 5 6 7 8 9 … 14

5 7 10 18 14 11 21 27 ? ? … ?

Size=9, Capacity=15

0 1 2 3 4 5 6 7 8 9 … 14

5 6 10 7 14 11 21 27 18 ? … ?

[Binary heap insert reference page]

Binary heap dequeue (delete + “trickle down”)

Size=9, Capacity=15

0 1 2 3 4 5 6 7 8 9 … 14

5 6 10 7 14 11 21 27 18 ? … ?

?

Binary heap dequeue (delete + “trickle down”)

Size=8, Capacity=15

0 1 2 3 4 5 6 7 8 9 … 14

6 7 10 27 14 11 21 18 ? ? … ?

Size=9, Capacity=15

0 1 2 3 4 5 6 7 8 9 … 14

5 6 10 7 14 11 21 27 18 ? … ?

[Binary heap delete + “trickle-down” reference page]

Summary analysis
Comparing our priority queue options

Some priority queue implementation options

Unsorted linked list

 Insert new element in front: O(1)

 Remove by searching list: O(N)

Sorted linked list

 Always insert in sorted order: O(N)

 Remove from front: O(1)

data next

75

data next

8
head

data next

20 NULL

data next

8

data next

20
head

data next

75 NULL

We want the best of both

Fast add AND fast remove/peek

We will investigate trees as a way to get the best of both worlds

Priority queue implementations

+ =

Fast add Fast remove/peek

Review: priority queue implementation options

Unsorted linked list

 Insert new element in front: O(1)

 Remove by searching list: O(N)

Sorted linked list

 Always insert in sorted order: O(N)

 Remove from front: O(1)

Binary heap

 Insert + “bubble up”: O()

 Delete + “trickle down”: O()

data next

75

data next

8
head

data next

20 NULL

data next

8

data next

20
head

data next

75 NULL

Fact summary:
Binary heap in an array

For tree of height h, array length is 2h-1

For a node in array index i:

 Parent is at array index: (i – 1)/2

 Left child is at array index: 2i + 1

 Right child is at array index: 2i + 2

For tree of height h, array length is 2h

For a node in array index i:

 Parent is at array index: i /2

 Left child is at array index: 2i

 Right child is at array index: 2i + 1

0-based: 1-based:

