
Programming Abstractions

Cynthia Lee

C S 1 0 6 B

Topics:

 This week: Memory and Pointers

› Monday: revisit some topics from last week in more detail:

• Deeper look at new/delete dynamic memory allocation

• Deeper look at what a pointer is

› Today:

• Finish up the music album example

• Linked nodes

› Friday:

• Linked List data structure

• (if we have time) priority queues and binary trees

Hat tip to Victoria Kirst of Google for some of today’s slides!

2

Pointers recap

Pointers recap so far (bookmark this slide)

› The first pointer we saw was a dynamically allocated array

• type* name = new type[length];
• int* data = new int[10];

› A pointer is a variable that stores a memory address

• A memory address is just a number, like an array index but where the array is the
entire memory of the computer

› You can use the address-of operator & to ask for the address of any named variable
in your program

• int x = 3;
• int* ptr = &x;

› Many common types of variables (like ints) consume 4 bytes of memory, so addresses
increment by 4 between adjacent variables. Other types (like doubles and pointers)
might take 8 or more bytes to store because they are more complex.

• In general, you don’t really need to worry about this detail for this course, but it’s
good to be aware of it.

› Sharing information between several objects is a common use case for a pointer

• Each album object contains a pointer to the artist object, so they can all share the
artist information instead of many copies

Next steps with pointers and
structs/classes/objects

Pointers replace redudant copies with a
“please see,” like a book/paper citation

blackout

{
"Blackout",
2007,
{

"Britney Spears",
34,
"Snickers",
163

}
}

circus

{
"Circus",
2008,
{

"Britney Spears",
34,
"Snickers",
163

}
}

britney

"Britney Spears",
34,
"Snickers",
163

blackout

title: "Blackout",
year: 2007,
artist: Please see the

"britney" object

circus

"Britney Spears",
age: 34,
food: "Snickers",
height: 163

title: "Circus",
year: 2008,
artist: Please see the

"britney" object

Redundancy:

Sharing/

efficiency:

title: "Blackout",
year: 2007,
artist: 256

title: "Blackout",
year: 2007,
artist: 256

britney

256 512 1024

256

Fixing the Album/Artist example with pointers

struct Artist {
string name;
int age;
string favorite_food;
int height; // in cm

};

struct Album {
string title;
int year;
Artist* artist;

};

Artist* britney = new Artist;
// TODO: now we need to set the fields of britney

Album blackout = { "Blackout", 2007, britney };
Album circus = { "Circus", 2008, britney };

britney
256

512

256

234123523

3567

stack

heap

-10044

-10044

"Circus"
2007

"Blackout"
2007blackout

circus
1024

Fixing the Album/Artist example with pointers

struct Artist {
string name;
int age;
string favorite_food;
int height; // in cm

};

struct Album {
string title;
int year;
Artist* artist;

};

Artist* britney = new Artist;
// TODO: now we need to set the fields of britney
britney.name = "Britney Spears"; // no! type is Artist* not Artist

// we need a new tool that says
// “follow the pointer”

Album blackout = { "Blackout", 2007, britney };
Album circus = { "Circus", 2008, britney };

"Dereferencing" a pointer

You can follow ("dereference") a pointer by writing

*variable_name

xint x = 10
int* ptr_to_x = &x;
cout << *ptr_to_x << endl; // 10

40

36

32

28

10

82391

23532

93042

Fixing the Album/Artist example with pointers

struct Artist {
string name;
int age;
string favorite_food;
int height; // in cm

};

struct Album {
string title;
int year;
Artist* artist;

};

Artist* britney = new Artist;
// TODO: now we need to set the fields of britney
(*britney).name = "Britney Spears"; // this works but really clunky

Album blackout = { "Blackout", 2007, britney };
Album circus = { "Circus", 2008, britney };

-> operator: Dereferencing and accessing a member

struct Artist {
string name;
int age;
string favorite_food;
int height; // in cm

};

struct Album {
string title;
int year;
Artist* artist;

};

Artist* britney = new Artist;
// TODO: now we need to set the fields of britney
britney->name = "Britney Spears"; // ptr->member is the exact same as (*ptr).member

Album blackout = { "Blackout", 2007, britney };
Album circus = { "Circus", 2008, britney };

Linked Nodes
Another important application of pointers

We’ll start by looking at a limitation of the array

Arrays

3

What are arrays good at? What are arrays bad at?

10 7 8
132
121

124
112

834
252

926
073

234
132

645
453

0 1 2 3 4 5 76 8 9index:

list

Memory is a giant
array...

3 10 7 8

0 1 2 3 4 5 76 8 9index:

list

What are the most annoying operations on a tightly packed book

shelf, liquor cabinet, shoe closet, etc?

Insertion - O(n)

Deletion - O(n)

Lookup - O(1)

Let's brainstorm ways to improve insertion and deletion....

0 0 0 0 0 0

Add to front

3 10 7 8 0 0 0 0 0 0

0 1 2 3 4 5 76 8 9index:

Before:

What if we were trying to add an element "20" at index 0?

3 10 7 8

0 1 2 3 4 5 76 8 9index:

After: 720 8 0 0 0 0 0 03 10 7 8

Add to front

10 7 8 0 0 0 0 0 0

0 1 2 3 4 5 76 8 9inde
x:

Wouldn't it be nice if we could just do something like:

1. "Start here instead!"

20

3

2. "Then the next elements are here!"

Now we add to the front again:
Arrows everywhere!

10 7 8 0 0 0 0 0 0

0 1 2 3 4 5 76 8 9inde
x:

20

3

15

Another visualization...

10 7 8 0 0 0 0 0 0

0 1 2 3 4 5 76 8 9inde
x:

20

3

15

Another visualization...

10 7 8 0 0 0 0 0 0

0 1 2 3 4 5 76 8 9inde
x:

20

15

3

This is a list of linked nodes!

10 820 3 15

• A list of linked nodes (or a linked list) is composed of interchangeable nodes

• Each element is stored separately from the others (vs contiguously in arrays)

• Elements are chained together to form a one-way sequence using pointers

Linked Nodes
A great way to exercise your pointer understanding

Linked Node

struct LinkNode {
int data;
LinkNode *next;

}

 We can chain these together in memory:

LinkNode *node1 = new LinkNode; // complete the code to make picture
node1->data = 10;
node1->next = NULL;
LinkNode *node = new LinkNode;
node->data = 10;
node->next = node1;

data next

10

data next

75 NULLnode

FIRST RULE OF LINKED NODE/LISTS
CLUB:

DRAW A PICTURE OF
LINKED LISTS

Do no attempt to code linked nodes/lists without
pictures!

List code example: Draw a picture!

Before:

front->next->next = new LinkNode;

front->next->next->data = 40;

A. After:

B. After:

C. Using “next” that is NULL gives error

D. Other/none/more than one

data next

10

data next

20 NULLfront

data next

10

data next

40
front

data next

20 NULL

data next

10

data next

20
front

data next

40 NULL

struct LinkNode {
int data;
LinkNode *next;

}

List code example: Draw a picture!

Before:

Write code that will put these in the reverse
order.

struct LinkNode {

int data;

LinkNode *next;

}

data next

10

data next

20
front

data next

40 NULL

