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Topics:

= This week: Memory and Pointers

> Monday: revisit some topics from last week in more detail:
» Deeper look at new/delete dynamic memory allocation
» Deeper look at what a pointer is

> Today:
 Finish up the music album example
» Linked nodes

» Friday:
 Linked List data structure
» (if we have time) priority queues and binary trees

Hat tip to Victoria Kirst of Google for some of today’s slides!
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Pointers recap
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**Pointers recap so far** (bookmark this slide)

>

The first pointer we saw was a dynamically allocated array
* type* name = new type[length];
¢ int* data = new int[10];

A pointer is a variable that stores a memory address

* A memory address is just a number, like an array index but where the array is the
entire memory of the computer

You can use the address-of operator & to ask for the address of any named variable
in your program

* int x = 3;

e int* ptr = &x;
Many common types of variables (like ints) consume 4 bytes of memory, so addresses

increment by 4 between adjacent variables. Other types (like doubles and pointers)
might take 8 or more bytes to store because they are more complex.

* In general, you don'’t really need to worry about this detail for this course, but it’s
good to be aware of it.

Sharing information between several objects is a common use case for a pointer

 Each album object contains a pointer to the artist object, so they can all share the
artist information instead of many copies
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Next steps with pointers and
structs/classes/objects
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Pointers replace redudant copies with a
“‘please see,” like a book/paper citation

Redundancy:
®

Sharing/
efficiency:
©

"Britney Spears",
34,

"Snickers",

163

britney

256

{ {
"Blackout", "Circus",
2007, 2008,
{ i {
"Britney Spears", "Britney Spears",
34, 34,
"Snickers", "Snickers",
163 163
i Ji
¥ ¥
blackout circus
512 1024

"Britney Spears",
age: 34,

food: "Snickers",
height: 163

britney | 256

title: "Blackout",

title: "Blackout",

year: 2007, year: 2060
artist: 256 artist: 256
blackout circus
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Fixing the Alboum/Artist example with pointers 5007

struct Album {

struct Artist {
string title;

string name;

int age; int year;
string favorite food; &éftist* artist;

int height; // in cm }s

}s \L
Artist*—ghitney =<5%£;££££;£;>
: now we need to set the fields of britney

Album blackout = { "Blackout", 2007, britney };
Album circus = { "Circus", 2008, britney };

"Circus"

cirfusf——c '/

"Blackout:-

blagkout 2007

ney
stack

P

256

512/

O
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Fixing the Album/Artist example with pointers

struct Artist { struct Album {
string name; string title;
int age; int year;
string favorite food; Artist* artist;
int height; // in cm }s

}s

Artist* britney = new Artist;

// TODO: now we need to set the fields of britney

britney.name = "Britney Spears"; // no! type is Artist* not Artist
// we need a new tool that says
// “follow the pointer”

Album blackout = { "Blackout", 2007, britney };

Album circus = { "Circus", 2008, britney };
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"Dereferencing" a pointer

You can follow ("dereference") a pointer by writing
*variable_name

int x = 10 X 10 40

Ziﬁi? ptr_to x = &x;

cout << *ptr_to x << endl; // 10 36
32
28
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Fixing the Album/Artist example with pointers

struct Artist { struct Album {
string name; string title;
int age; int year;
string favorite food; Artist* artist;
int height; // in cm }s

}s JWL*- +

Artist* britney = new Artist;
// TODO: now we need to set the fields of britney
(*britney).name = "Britney Spears"; // this works but really clunky

Album blackout = { "Blackout", 2007, britney };
Album circus = { "Circus", 2008, britney };
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-> operator: Dereferencing and accessing a member

struct Artist { struct Album {
string name; string title;
int age; int year;
string favorite food; Artist* artist;
int height; // in cm }s

}s

Artist* britney = new Artist;
// TODO: now we need to set the fields of britney
britney->name = "Britney Spears"; // ptr->member is the exact same as/(*ptr).member

Album blackout = { "Blackout", 2007, britney };
Album circus = { "Circus", 2008, britney };
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Linked Nodes

Another important application of pointers

We'll start by looking at a limitation of the array
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Arrays

What are arrays good at? What are arrays bad at?

list | 3 10| 7 | 8

index: © 1 2 3 4 5 6 7 8 9
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Memory Is a giant
array...

list | 3 [10| 7 | 8

index: ©© 1 2 3 4 5 6 7 8 9

What are the most annoying operations on a tightly packed book
shelf, liquor cabinet, shoe closet, etc?

Insertion - O(n)
Deletion - O(n)
Lookup - O(1)

Let's brainstorm ways to improve insertion and deletion....
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Add to front

What if we were trying to add an element "20" at index 07?

Before: 3 110 7 | 8

index: © 1 2 3 4 5 6 7 8 9

After: 20 3 10 7 8

index: ©© 1 2 3 4 5 6 7 8 9
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Add to front

Wouldn't it be nice if we could just do something like:

3 110 ] 7 8

inde o 1 2 3 4 5 6 7 8 9

2. "Then the next elements are here!"

20

1. "Start here instead!"
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Now we add to the front again:
Arrows everywhere!

=

20
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Another visualization...

20
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Another visualization...

15

20
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This is a list of linked nodes!

20

15

10

A list of linked nodes (or a linked list) is composed of interchangeable nodes

Each element is stored separately from the others (vs contiguously in arrays)

Elements are chained together to form a one-way sequence using pointers
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Linked Nodes

A great way to exercise your pointer understanding
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Linked Node

struct LinkNode {
int data;

LinkNode *next;
}
Vivo Ag D

= We can chain these together in memg
LAV\chc;wiyﬂ
. data | next data | next
node 10 75

LinkNode *nodel = new LinkNode; // complete the code to make picture
nodel->data = 10;
nodel->next = NULL;

LinkNode *node = new LinkNode; —3$7C;.0\)kéa\::/x]<5i
i . v\ 0 Ao A )
node->data ﬁgdel; \¥V\C) ! QV\G?)Q ‘ C{ ] o _7g;m>
\ )

node->next
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FIRST RULE OF LINKED NODE/LISTS
CLUB:

DRAW A PICTURE OF
LINKED LISTS

Do no attempt to code linked nodes/lists without
pictures!
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List code example: Draw a picture!
7 struct LinkNode {

/data next data | next int data;
Before:  front™ | g 20 LinkNode *next;

}

front->next->next = new LinkNode;
front->next->next->data = 40;

. data | next data | next | 7
A. After: front—s | data | next
10 40 20
B. After: data | next 7 data | next 7 | 7
front— data | next
10 20 40

C. Using “next” that is NULL gives error
D. Other/none/more than one Stanford University




List code example: Draw a picture!

struct LinkNode {

Bef front—> data | next data | next data | next | int data;
etore. LinkNode *next;

}

Write code that will put these in the reverse
order.
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