Programming Abstractions
CS1068B

Cynthia Lee

Stanford University

Topics:

= This week: Memory and Pointers

> Monday: revisit some topics from last week in more detail:
» Deeper look at new/delete dynamic memory allocation
» Deeper look at what a pointer is

> Today:
 Finish up the music album example
» Linked nodes

» Friday:
 Linked List data structure
» (if we have time) priority queues and binary trees

Hat tip to Victoria Kirst of Google for some of today’s slides!

Stanford University

Pointers recap

Stanford University

Pointers recap so far (bookmark this slide)

>

The first pointer we saw was a dynamically allocated array
* type* name = new type[length];
¢ int* data = new int[10];

A pointer is a variable that stores a memory address

* A memory address is just a number, like an array index but where the array is the
entire memory of the computer

You can use the address-of operator & to ask for the address of any named variable
in your program

* int x = 3;

e int* ptr = &x;
Many common types of variables (like ints) consume 4 bytes of memory, so addresses

increment by 4 between adjacent variables. Other types (like doubles and pointers)
might take 8 or more bytes to store because they are more complex.

* In general, you don'’t really need to worry about this detail for this course, but it’s
good to be aware of it.

Sharing information between several objects is a common use case for a pointer

 Each album object contains a pointer to the artist object, so they can all share the
artist information instead of many copies

Stanford University

Next steps with pointers and
structs/classes/objects

Stanford University

Pointers replace redudant copies with a
“‘please see,” like a book/paper citation

Redundancy:
®

Sharing/
efficiency:
©

"Britney Spears",
34,

"Snickers",

163

britney

256

{ {
"Blackout", "Circus",
2007, 2008,
{ i {
"Britney Spears", "Britney Spears",
34, 34,
"Snickers", "Snickers",
163 163
i Ji
¥ ¥
blackout circus
512 1024

"Britney Spears",
age: 34,

food: "Snickers",
height: 163

britney | 256

title: "Blackout",

title: "Blackout",

year: 2007, year: 2060
artist: 256 artist: 256
blackout circus

Stanford University

Fixing the Alboum/Artist example with pointers 5007

struct Album {

struct Artist {
string title;

string name;

int age; int year;
string favorite food; &éftist* artist;

int height; // in cm }s

}s \L
Artist*—ghitney =<5%£;££££;£;>
: now we need to set the fields of britney

Album blackout = { "Blackout", 2007, britney };
Album circus = { "Circus", 2008, britney };

"Circus"

cirfusf——c '/

"Blackout:-

blagkout 2007

ney
stack

P

256

512/

O

Stanford University

O

O

Fixing the Album/Artist example with pointers

struct Artist { struct Album {
string name; string title;
int age; int year;
string favorite food; Artist* artist;
int height; // in cm }s

}s

Artist* britney = new Artist;

// TODO: now we need to set the fields of britney

britney.name = "Britney Spears"; // no! type is Artist* not Artist
// we need a new tool that says
// “follow the pointer”

Album blackout = { "Blackout", 2007, britney };

Album circus = { "Circus", 2008, britney };

Stanford University

"Dereferencing" a pointer

You can follow ("dereference") a pointer by writing
*variable_name

int x = 10 X 10 40

Ziﬁi? ptr_to x = &x;

cout << *ptr_to x << endl; // 10 36
32
28

Stanford University

Fixing the Album/Artist example with pointers

struct Artist { struct Album {
string name; string title;
int age; int year;
string favorite food; Artist* artist;
int height; // in cm }s

}s JWL*- +

Artist* britney = new Artist;
// TODO: now we need to set the fields of britney
(*britney).name = "Britney Spears"; // this works but really clunky

Album blackout = { "Blackout", 2007, britney };
Album circus = { "Circus", 2008, britney };

Stanford University

-> operator: Dereferencing and accessing a member

struct Artist { struct Album {
string name; string title;
int age; int year;
string favorite food; Artist* artist;
int height; // in cm }s

}s

Artist* britney = new Artist;
// TODO: now we need to set the fields of britney
britney->name = "Britney Spears"; // ptr->member is the exact same as/(*ptr).member

Album blackout = { "Blackout", 2007, britney };
Album circus = { "Circus", 2008, britney };

Stanford University

Linked Nodes

Another important application of pointers

We'll start by looking at a limitation of the array

Stanford University

Arrays

What are arrays good at? What are arrays bad at?

list | 3 10| 7 | 8

index: © 1 2 3 4 5 6 7 8 9

Stanford University

- A RULRRN ™ LY |
7 - | - m&ﬁﬁ -

4!‘ 4.< -

Y 1 F N Y SESRPRRATIRY 1y || [[[:.
i a8 Pl _E.E,%.E .
! Fw? i E EP o FUOREEIEYCTITTTRY
: . 4._ \. F [E x .D.<<& :... -““”‘— _-“vr-.v
z: »:Q—:‘ = 4 LBBE[E
| il | e _ ErIL El |
& 4 O s o EEEEF

stoallh e B (g LA gl

)))))

m..E s) L A e r 4 E.E._—'w.h.rrv-_E

_E_E P e e sy,

ol) s 4 ——

Yy

A..w 6 B 5 ELLE@;.FI
S TT====NTAT" I

BE.: I BEEE . TN :.QQ. ..:‘

»LE.. (8 ik B 4 4 Lo (il axsss =) (b) gy
Rl Ty —————
E_?” ﬁE:E:'&& ..!.,“ﬁ.:'u..:.“’- -
E.E :F_: te Ll o L |

3 .-&_ L 3 — - |

" ..Eﬁvv_.f 6) el (o

e e unae

e X QUL 0T

Eg : TN e e _ .___. s
bl G0 ol G b ..Eibﬁ@, b
= - LTI |
o Gl | i 8 === & (=il
o W B e bl PrYTFRARTTY

:@ ; ,, o b () L0y (o O
Gl VAR) e

EEE:@I

Sl fh W= ;

Memory Is a giant
array...

list | 3 [10| 7 | 8

index: ©© 1 2 3 4 5 6 7 8 9

What are the most annoying operations on a tightly packed book
shelf, liquor cabinet, shoe closet, etc?

Insertion - O(n)
Deletion - O(n)
Lookup - O(1)

Let's brainstorm ways to improve insertion and deletion....

Stanford University

Add to front

What if we were trying to add an element "20" at index 07?

Before: 3 110 7 | 8

index: © 1 2 3 4 5 6 7 8 9

After: 20 3 10 7 8

index: ©© 1 2 3 4 5 6 7 8 9

Stanford University

Add to front

Wouldn't it be nice if we could just do something like:

3 110] 7 8

inde o 1 2 3 4 5 6 7 8 9

2. "Then the next elements are here!"

20

1. "Start here instead!"

Stanford University

Now we add to the front again:
Arrows everywhere!

=

20

Stanford University

Another visualization...

20

Stanford University

Another visualization...

15

20

Stanford University

This is a list of linked nodes!

20

15

10

A list of linked nodes (or a linked list) is composed of interchangeable nodes

Each element is stored separately from the others (vs contiguously in arrays)

Elements are chained together to form a one-way sequence using pointers

Stanford University

Linked Nodes

A great way to exercise your pointer understanding

Stanford University

Linked Node

struct LinkNode {
int data;

LinkNode *next;
}
Vivo Ag D

= We can chain these together in memg
LAV\chc;wiyﬂ
. data | next data | next
node 10 75

LinkNode *nodel = new LinkNode; // complete the code to make picture
nodel->data = 10;
nodel->next = NULL;

LinkNode *node = new LinkNode; —3$7C;.0\)kéa\::/x]<5i
i . v\ 0 Ao A)
node->data ﬁgdel; \¥V\C) ! QV\G?)Q ‘ C{] o _7g;m>
\)

node->next
Stanford University

#zc

FIRST RULE OF LINKED NODE/LISTS
CLUB:

DRAW A PICTURE OF
LINKED LISTS

Do no attempt to code linked nodes/lists without
pictures!

Stanford University

List code example: Draw a picture!
7 struct LinkNode {

/data next data | next int data;
Before: front™ | g 20 LinkNode *next;

}

front->next->next = new LinkNode;
front->next->next->data = 40;

. data | next data | next | 7
A. After: front—s | data | next
10 40 20
B. After: data | next 7 data | next 7 | 7
front— data | next
10 20 40

C. Using “next” that is NULL gives error
D. Other/none/more than one Stanford University

List code example: Draw a picture!

struct LinkNode {

Bef front—> data | next data | next data | next | int data;
etore. LinkNode *next;

}

Write code that will put these in the reverse
order.

Stanford University

