Programming Abstractions
CS106B

Cynthia Lee

Stanford University

Topics:

= Last week:
» Making your own class
» Arrays in C++
> new/delete
= This week: Memory and Pointers
» First revisit some topics from last week in more detail:
» Deeper look at new/delete dynamic memory allocation
« Deeper look at what a pointer is
> Then new topics:
» Linked nodes
 Linked List data structure
« (if we have time) Binary tree data structure

Hat tip to Victoria Kirst of Google for some of today’s slides!

Stanford University

new and delete

(revisit from last week)

Stanford University

Arrays

type* name = new type[length];

» Adynamically allocated array.
» The variable that refers to the array is a pointer.

> The memory allocated for the array must be manually released,
or else the program will have a memory leak. (>_<)

delete[] name;

> Manually releases the memory back to the computer.

Stanford University

Ailestoni!

Memory on the stack and heap main()

void myFunction() { |myFunction() X.

int x = 5;

int y = 3; y:
int *heapArr = new int[2]; heapArr:
heapArr[@] = randomInteger(0,3);
// bad -- memory leak coming!

} o

Stanford University

dilileston. !

Memory on the stack and heap main()

void myFunction() { ImyFunction() X

int x = 5;
int y = 3; Y-

int *heapArr = new int[2]; heapArr'

heapArr[@0] = randomInteger(9,3);
// bad -- memory leak coming! randominteger() /1 -

}

\ V2:

void randomInteger(int low, int high) {
int varl = 5;
double var2 = 3.14159;

What happens when myFunction() and
randomInteger() return?

Why do we need to delete heapArr, but not the
other variables (x, y, vi1, v2)?

Stanford University

Ailestoni!

Memory on the stack and heap main()

void myFunction() { ImyFunction() X

int x = 5;

int y = 3; y:
int *heapArr = new int[2]; .
heapArr[0] = randomInteger(0,3); heapArr:
// bad -- memory leak coming!

}

dl 100 (e c
N
void randomInteger(int low, int high) { ame omatica

int varl = 5;
double var2 = 3.14159;

What happens when myFunction() and
randomInteger() return?

Why do we need to delete heapArr, but not the
other variables (x, y, vi1, v2)?

Stanford University

Memory on the stack and heap

void myFunction() {
int x = 5;
inty = 3;
int *heapArr = new int[2];
heapArr[@0] = randomInteger(9,3);
// bad -- memory leak coming!

myFunction’s stack
frame automatically
released

}

void randomInteger(int low, int high) {
int varl = 5;
double var2 = 3.14159;

What happens when myFunction() and
randomInteger() return?

Why do we need to delete heapArr, but not the
other variables (x, y, vi1, v2)?

Stanford University

Always a pair: new and delete

Sample codes from Friday:

[/ a simple main // constructor and destructor
int main() { // in ArraylList.cpp

int* a = new int[3];

a|e] = 42; ArraylList::ArraylList() {

all] = -5; myElements = new int[10]();

deletZ[%7a mysize = 0;

J =
return 0; myCapacity

void ArraylList::~ArrayList() {
delete[] myElements;

Stanford University

What is a pointer?

Stanford University

Anything wrong with this struct?

struct Album {
string title;
int year;

string artist name;

int artist age;

string artist favorite_ food;

int artist_height; // in cm
}s

Stanford University

Anything wrong with this struct?

struct Album {
string title;
int year;

string artist_name;

int artist_age;

string artist_favorite food;

int artist_height; // in cm
}s

Style-wise seems awkward - "artist_" prefix on fields

Anything else? How many times do you construct the artist info?

Stanford University

Album lemonade = {
"Lemonade",
2016,
"Beyonce", Redudant code to declare an
34, initialize these two album

"Red Lobster", variables, lemonade and bday
169

}s

Album bday = {
"B'Day",
2006,
"Beyonce",
34,
"Red Lobster",
169

}s

Stanford University

It's redundantly stored, too

"Lemonade", "B'Day",
2016, 2006,

"Beyonce", "Beyonce",

34, 34,

"Red Lobster", "Red Lobster",
169 169

lemonade bday

—

Storage in memory is also redundant

Stanford University

How do we fix this?

struct Album {
string title;
int year;

string artist_name;
int artist_age;
string artist_favorite_food; Should probably be

int artist_height; // in cm
s ’ another struct?

Stanford University

Does this fix the redundancy?

struct Artist { struct Album {
string name; string title;
int age; int year;
string favorite food; Artist artist;
int height; // in cm }s

}s

Artist britney = { "Britney Spears", 34, "Snickers", 163};
Album blackout = { "Blackout", 2007, britney };

Album circus = { "Circus", 2008, britney };

Album femme_ fatale = { "Femme Fatale", 2011, britney };

What does this look like in memory?

Stanford University

What does it mean when you have a struct

field?

struct Album {
string title;
int year;
Artist artist;

}s

struct Artist {
string name;
int age;
string favorite_ food;
int height; // in cm
}s

This embeds all the
fields of the Artist
struct into the Album
struct.

Stanford University

Still stored redundantly

"Britney Spears", { {
34, "Blackout”, "Circlisss
"Snickers", 2007, 2008,
163 ! {
"Britney Spears", "Britney Spears",
britney 34, 34,
"Snickers", "Snickers",
163 163
} }
} }
blackout circus

Artist britney
Album blackout

{ "Britney Spears", 34, "Snickers", 163};
{ "Blackout", 2007, britney };
Album circus = { "Circus", 2008, britney };

Stanford University

Still stored redundantly

"Britney Spears", { {
34, "Blackout”, "Circlisss
"Snickers", 2007, 2008,
163 ! {
"Britney Spears", "Britney Spears",
britney 34, 34,
"Snickers", "Snickers",
163 163
} }
} }
blackout circus

Artist britney = { "Britney Spears", 34, "Snickers", 163};
Album blackout = { "Blackout", 2007, |britney '};

Album circus = { "Circus", 2008, |britney };

All the fields of britney are
copied in this step!

Stanford University

Still stored redundantly

"Britney Spears", { {
34, "Blackout”, "Circlisms
"Snickers", 2007, 2008,
163 3 {
"Britney Spears", "Britney Spears",
britney 34, 34,
"Snickers", "Snickers",
163 163
} }
} }
blackout circus

Artist britney { "Britney Spears", 34, "Snickers", 163};
Album blackout = { "Blackout", 2007, britney };
Album circus = { "Circus", 2008, britney };

britney.favorite_food = "Twix";

What happens to the data?

(a) All 3 Snickers change to Twix only britney Snickers changes to Twix . .
Stanfofd University

(c) only blackout/circus Snickers changes to Twix

What do we really want?

"Britney Spears"”
age: 34y 2 1 title: "Blackout”, title: "Circus",
3 A i i

food: "Snickers", yean e year: 20085

height: 163 artist: Please see the artist: Please see the
"britney" object "britney" object

britney
blackout circus

The album'’s artist field should point to the "britney" data structure
instead of storing it.

How do we do this in C++7?
...pointers!

Stanford University

new with objects

Example:
Album* album = new Album;
album->title = "Blackout"”;
album->year = 2007;

"Blackout™

2007

Stanfor

iversity

Pointers

Taking a deeper look at the syntax of that array on the heap

Stanford University

Memory Is a giant array

bool kitkat = true;
int candies 19;

Whenever you declare a
variable, you allocate a
bucket (or more) of memory
for the value of that variable

Each bucket of memory has
a unique address

ord University

Memory addresses

Whenever you declare a variable, you
allocate a bucket (or more) of memory
for the value of that variable

Each bucket of memory has a unique
address

You can get the value of a variable's
address using the & operator.

cout << &candies << endl; // 20
cout << &kitkat << endl; // ©

¢ ajaelies

ord University

Memory addresses

You can store memory addresses in a
special type of variable called a

pointer.
*= j.e. Apointer is a variable that holds a
memory address.

You can declare a pointer by writing
(The type of data it points at)*
» e.g. int*, string*

cout << &candies << endl;

14 ()Y\U cout << &kitkat << endl;

-~ int* ptrC = &candies; // 20

/\/T’)V\ M bool* ptrB = &kitkat; // @
0 [y .

m\SO & C « er\dﬂ //2,

// 20
// ©

ord University

