
Programming Abstractions

Cynthia Lee

C S 106B



Topics du Jour:

 Make your own classes!

› Needed for Boggle assignment!

› We are starting to see a little bit in MarbleBoard assignment as well

2



Classes in C++
Making your own kinds of objects!



Class examples

A calendar program might want to store information
about dates, but C++ does not have a Date type.

A student registration system needs to store info

about students, but C++ has no Student type.

A bank app might want to store information about

users' accounts, but C++ has no BankAccount type.

However, C++ does provide a feature for us to add

new data types to the language: classes.

 Writing a class defines a new data type.



Classes and objects (6.1)

• class: A program entity that represents
a template for a new type of objects.

– e.g. class Vector defines a new data type
named Vector and allows you to declare
objects of that type.

• objects: Entities that combines state and behavior.

– object-oriented programming (OOP): Programs that 

perform their behavior as interactions between objects.

– A new kind of abstraction: Separation between 

concepts and details. Objects provide abstraction.



Client, class, object

Class

- what goes into each object
- how to construct new objects

Client program
int main() {

...

- interacts with class and objects

object objectobject

constructs

Object
- member functions (public behavior)

memberFunction1()
memberFunction2()

- member variables (private data)
ivar1 [___]  (encapsulated)
ivar2 [___]

asks class to construct a new object

send/receive messages with object
by calling member functions
(never directly access private data)



Client, class, object: an example you already know!

This was from the 3rd lecture:

int main() {

Grid<bool> board(8,8);

for (int i=0; i<board.numRows(); i++){

for (int j=0; j<board.numCols(); j++){

board[i][j] = false;

}

}

return 0;

}



Elements of a class

member variables: State inside each object.

 Also called "instance variables" or "fields"

 Declared as private

 Each object created has a copy of each field.

member functions: Behavior that executes inside each object.

 Also called "methods"

 Each object created has a copy of each method.

 The method can interact with the data inside that object.

constructor: Initializes new objects as they are created.

 Sets the initial state of each object as it is being created.

 Often accepts parameters for the initial state of the fields.



Interface vs. code

INTERFACE

declarations

in .h file

IMPLEMENTATION

definitions (code)

in .cpp file

Class



Interface vs. code

In C++, when writing classes you must understand separation of:

 interface: Declarations of functions, classes, members, etc.

 implementation: Definitions of how the above are implemented.

C++ implements this separation using two kinds of code files:

 .h: A "header" file containing only interface (declarations).

 .cpp: A "source" file containing definitions.

› When you define a new class Foo, you write Foo.h and Foo.cpp.

The content of .h files is "#included" inside .cpp files.

 Makes them aware of declarations of code implemented elsewhere.

 At compilation, all definitions are linked together into an executable.



Interface: Structure of a .h file

// classname.h

#ifndef _classname_h

#define _classname_h

class declaration;

#endif

This is protection in case
multiple .cpp files include this .h,
so that its contents won't
get declared twice



Interface: A class declaration

class ClassName {                // in ClassName.h
public:

ClassName(parameters);       // constructor

returnType name(parameters); // member functions
returnType name(parameters); // (behavior inside
returnType name(parameters); //  each object)

private:
type name;     // member variables
type name;     // (data inside each object)

};

IMPORTANT: must put a semicolon at end of class declaration (argh)



Class example (v1)

// Initial version of BankAccount.h.
// Uses public member variables and no functions.
// Not good style, but we will improve it.

#ifndef _bankaccount_h
#define _bankaccount_h

class BankAccount {             
public:

string name;      // each BankAccount object
double balance;   // has a name and balance

};

#endif



Using our objects

// v1 with public fields (bad)
BankAccount ba1;
ba1.name = "Cynthia";
ba1.balance = 1.25;

BankAccount ba2;
ba2.name = "Mehran";
ba2.balance = 9999.00;

Think of an object as a way of grouping multiple variables.

 Each object contains a name and balance field inside it.

 We can get/set them individually.

 Code that uses your objects is called client code.

name    = "Cynthia"
balance = 1.25

name    = "Mehran"
balance = 9999.00

ba1

ba2



Member func. bodies

In ClassName.cpp, we write bodies (definitions) for the member 

functions that were declared in the .h file:

// ClassName.cpp
#include "ClassName.h"

// member function
returnType ClassName::methodName(parameters) {

statements;
}

 Member functions/constructors can refer to the object's fields.

Exercise: Write a withdraw member function to deduct money from a 

bank account's balance.



The implicit parameter

implicit parameter:

The object on which a member function is called.

 During the call cynthia.withdraw(...),

the object named cynthia is the implicit parameter.

 During the call mehran.withdraw(...),

the object named mehran is the implicit parameter.

 The member function can refer to that object's member variables.

› We say that it executes in the context of a particular object.

› The function can refer to the data of the object it was called on.

› It behaves as if each object has its own copy of the member functions.



Member func diagram

// BankAccount.cpp
void BankAccount::withdraw(double amount) {

if (balance >= amount) {
balance -= amount;

}
}

// client program
BankAccount cynthia;
BankAccount mehran;
...
cynthia.withdraw(5.00);

mehran.withdraw(99.00);

void withdraw(double amount) {
if (balance >= amount) {

balance -= amount;
}

}

name "cynthia" balance 1.25

void withdraw(double amount) {
if (balance >= amount) {

balance -= amount;
}

}

name "mehran" balance 9999



Initializing objects

It's bad to take 3 lines to create a BankAccount and initialize it:

BankAccount ba;
ba.name = "Cynthia";
ba.balance = 1.25;               // tedious

We'd rather specify the fields' initial values at the start:

BankAccount ba("Cynthia", 1.25);   // better

 We are able to this with most types of objects in C++ and Java.

 You can achieve this functionality using a constructor.



Constructors

ClassName::ClassName(parameters) {
statements to initialize the object;

}

constructor: Initializes state of new objects as they are created.

 runs when the client declares a new object

 no return type is specified;

it implicitly "returns" the new object being created

 If a class has no constructor, C++ gives it a default constructor

with no parameters that does nothing.



Constructor diagram

// BankAccount.cpp
BankAccount::BankAccount(string n, double b) {

name = n;
balance = b;

}

// client program
BankAccount b1(

"Cynthia", 1.25);

BankAccount b2(
"Mehran", 9999);

BankAccount(string n, double b) {
name = n;
balance = b;

}

name balance

BankAccount(string n, double b) {
name = n;
balance = b;

}

name balance



The keyword this

As in Java, C++ has a this keyword to refer to the current object.

 Syntax:  this->member

 Common usage: In constructor, so parameter names can match 

the names of the object's member variables:

BankAccount::BankAccount(string name,
double balance) {

this->name = name;
this->balance = balance;

}

this uses -> not . because it is a "pointer";  we'll discuss that later



Preconditions

precondition: Something your code assumes is true

at the start of its execution.

 Often documented as a comment on the function's header:

// Initializes a BankAccount with the given state.
// Precondition: balance is non-negative
BankAccount::BankAccount(string name, double balance) {

this->name = name;
this->balance = balance;

}

 Stating a precondition doesn't really "solve" the problem, but 

it at least documents our decision and warns the client what 

not to do.

 What if we want to actually enforce the precondition?



Throwing exceptions

throw expression;

Generates an exception that will crash the program,

unless it has code to handle ("catch") the exception.

// Initializes a BankAccount with the given state.
// Precondition: balance is non-negative
BankAccount::BankAccount(string name, double balance) {

if (balance < 0) {
throw "Illegal negative balance";

}
this->name = name;
this->balance = balance;

}

Why would anyone ever want  a program to crash?



Private data

private:

type name;

encapsulation: Hiding implementation details of an 

object from its clients.

 Encapsulation provides abstraction.

› separates external view (behavior) from internal view (state)

 Encapsulation protects the integrity of an object's data.

A class's data members should be declared private.

 No code outside the class can access or change it.



Accessor functions

We can provide methods to get and/or set a data field's value:

// "read-only" access to the balance ("accessor")
double BankAccount::getBalance() {

return balance;
}

// Allows clients to change the field ("mutator")
void BankAccount::setName(string newName) {

name = newName;
}

 Client code will look like this:

cout << ba.getName() << ":$" << ba.getBalance() << endl;

ba.setName("Cynthia");



Encapsulation benefits

Provides abstraction between an object and its clients.

Protects an object from unwanted access by clients.

Allows you to change the class implementation.

 Point could be rewritten to use polar coordinates

(radius r, angle θ), but with the same methods.

Allows you to constrain objects' state (invariants).

 Example: Don't allow a BankAccount with a negative 

balance.



Extra topics
Operators and const



Operator overloading
Making your own kinds of objects work with operators!



Operator overloading (6.2)

C++ allows you to overload, or redefine, the behavior of many 

common operators in the language:

 unary: + - ++ -- * & ! ~ new delete

 binary: + - * / % += -= *= /= %= & | && || ^

== != < > <= >= = [] -> () ,

Overuse of operator overloading can lead to confusing code.

 Rule of Thumb: Don't abuse this feature.  Don't define an 

overloaded operator unless its meaning and behavior are 

completely obvious.



Op overload syntax

Declare your operator in a .h file,  implement it in a .cpp file.

returnType operator op(parameters);      // .h

returnType operator op(parameters) {     // .cpp

statements;

};

 where op is some operator like +, ==, <<, etc.

 the parameters are the operands next to the operator;

for example, a + b becomes   operator +(Foo a, Foo b)

Overloaded operators can also be declared inside a class (not shown here)



Op overload example

// BankAccount.h
class BankAccount {

...
};

bool operator ==(BankAccount& ba1, BankAccount& ba2);
bool operator !=(BankAccount& ba1, BankAccount& ba2);

// BankAccount.cpp
bool operator ==(BankAccount& ba1, BankAccount& ba2) {

return ba1.getName() == ba2.getName()
&& ba1.getBalance() == ba2.getBalance();

}

bool operator !=(BankAccount& ba1, BankAccount& ba2) {
return !(ba1 == ba2);   // calls operator ==

}



Make objects printable

To make it easy to print your object to cout, overload the <<
operator between an ostream and your type:

ostream& operator <<(ostream& out, Type& name) {
statements;
return out;

}

 The operator returns a reference to the stream so it can be 

chained.

› cout << a << b << c is really   ((cout << a) << b) 
<< c

› Technically cout is being returned by each << operation.



<< overload example

// BankAccount.h
class BankAccount {

...
};

ostream& operator <<(ostream& out, BankAccount& ba);

// BankAccount.cpp
ostream& operator <<(ostream& out, BankAccount& ba) {

out << ba.getName() << ": $"
<< setprecision(2) << ba.getBalance();

return out;
}



Classes and const



The keyword const

C++ const keyword indicates that a value cannot change.

const int x = 4;                // x will always be 4

a const reference parameter can't be modified by the function:

void foo(const BankAccount& ba) {   // won't change ba

› Any attempts to modify d inside foo's code won't compile.

a const member function can't change the object's state:

class BankAccount { ...
double getBalance() const;  // won't change account

› On a const reference, you can only call const member functions.


