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Topics du Jour:

= Make your own classes!
> Needed for Boggle assignment!
> We are starting to see a little bit in MarbleBoard assignment as well
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Classes In C++

Making your own kinds of objects!
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Class examples

A calendar program might want to store information o a2
about dates, but C++ does not have a Date type. & Tn g
AY N ’L..(\ R

A student registration system needs to store info
about students, but C++ has no Student type.

A bank app might want to store information about
users' accounts, but C++ has no BankAccount type.

However, C++ does provide a feature for us to add
new data types to the language: classes.

= \Writing a class defines a new data type.

Stanford University



Classes and objects (6.1)

e class: A program entity that represents
a template for a new type of objects.

—e.g. class Vector defines a new data type
named Vector and allows you to declare
objects of that type.

e objects: Entities that combines state and behavior.

— object-oriented programming (OOP): Programs that
perform their behavior as interactions between objects.

— A new kind of abstraction: Separation between
concepts and details. Objects provide abstraction.
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Client, class, object

Client program

int main() {

asks class to construct a new object

/ - interacts with class and objects

CIaSS send/receive messages with object
by calling member functions

(never directly access private data)
- what goes into each object
- how to construct new objects \ -
Object
constructs! \ \ - member functions (public behavior)
memberFunctionl()

memberFunction2()

0 bject object O bject - member variables (private data)

C@l 1 lencapsulated)
Qvare__]
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Client, class, object: an example you already know!
This was from the 3™
“Gpidcbool> s

or (int i=@; i<board(numRows (\)3?

N

ient program ™N
int main() {

- interacts with class and objects
ey —————————

Class

send/receive messages with object
by calling member functions

(never directly access private data)
- what goes into each object
- how to construct new objects \‘ .
} [ Object
constructsj \ \ - member functions (public behavior)
memberFunction1()

K memberFunction2()
Object - member variables (private data)
ivarl [ ]| Vencapsulated)
ivar2 [ ]

object || object




Elements of a class

member variables: State inside each object.

= Also called "instance variables" or "fields"

» Declared as private

= Each object created has a copy of each field.

member functions: Behavior that executes inside each object.
= Also called "methods"

= Each object created has a copy of each method.

= The method can interact with the data inside that object.

constructor: Initializes new objects as they are created.
e —

= Sets the initial state of each object as it is being created.
= Often accepts parameters for the initial state of the fields.
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Interface vs. code

INTERFACE
declarations
in .h file

IMPLEMENTATION
definitions (code)
in .cpp file
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Interface vs. code

In C++, when writing classes you must understand separation of:
= interface: Declarations of functions, classes, members, etc.
= implementation: Definitions of how the above are implemented.

C++ implements this separation using two kinds of code files:
= _h: A "header" file containing only interface (declarations).
= .cpp:. A'"source" file containing definitions.
> When you define a new class Foo, you write Foo.h and Foo. cpp.

The content of .h files is "#included" inside .cpp files.
= Makes them aware of declarations of code implemented elsewhere.
= At compilation, all definitions are linked together into an executable.
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Interface: Structure of a .h file

// classname.h
.r'lfndef _classname_h

This is protection in case
multiple .cpp files include this .h,

\ so that its contents won't
class decLar‘ata/ get declared twice

tendif

#define _classname

<
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Interface: A class declaration

class ClassName { // in ClassName.h
bublic:
ClassName (parameters); // constructor

returnType name(parameters); // member functions
returnType name(parameters); // (behavior inside
returnType name(parameters); // each object)

private:

type name; // member variables

type name; // (data inside each object)
33

IMPORTANT: must put a semicolon at end of class declaration (argh)
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Class example (v1)

// Initial version of BankAccount.h.
// Uses public member variables and no functions.
// Not good style, but we will improve it.

#ifndef bankaccount h
#define _bankaccount h

class BankAccount {

public:
string name; // each BankAccount object
double balance; // has a name and balance
}s
#endif
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Using our objects bal
name = "Cynthia"
balance = 1.25

// vl with public fields (bad)
BankAccount bal;
bal.name = "Cynthia";

bal.balance = 1.25; ba?
BankAccount ba2; name = "Mehran
ba2.name = "Mehran"; balance = 9999.00

ba2.balance = 9999.00;

Think of an object as a way of grouping multiple variables.
= Each object contains a name and balance field inside it.
= \We can get/set them individually.

= Code that uses your objects is called client code.
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Member func. bodies

In CLassName . cpp, we write bodies (definitions) for the member
functions that were declared in the . h file:

// ClassName .cpp
#include "ClassName.h"

= Member functions/constructors can refer to the object's fields.

Exercise: Write a withdraw member function to deduct money from a
bank account's balance.
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The implicit parameter

implicit parameter:
The object on which a member function is called.

= During the call cynthia .F\ALithdr‘aw( eel),
the object named cynthia is the implicit parameter.

» During the call mehran.withdraw(...),
the object named mehran is the implicit parameter.

= The member function can refer to that object's member variables.

» We say that it executes in the context of a particular object.
» The function can refer to the data of the object it was called on.

» It behaves as if each object has its own copy of the member functions.
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Member func diagram

// BankAccount.cpp
void BankAccount: :withdraw(double amount) {
if (balance >= amount) {

balance -= amount;
}
} name "cynthia" | balance | 1.25
// client program void withdraw(double amount) {
BankAccount cynthia; if (balance >= amount) {
BankAccount mehran; bal - .
} name mehran balance | 9999
cynthia.withdraw(5.00); )
mehr‘an.withdr‘aw(99.00) . void withdraw(double amount) {
? if (balance >= amount) {
balance -= amount;
}
}




Initializing objects

It's bad to take 3 lines to create a BankAccount and initialize it:

BankAccount ba;
ba.name = "Cynthia";
ba.balance = 1.25; // tedious

We'd rather specify the fields' initial values at the start:
BankAccount ba("Cynthia", 1.25); // better

= We are able to this with most types of objects in C++ and Java.
» You can achieve this functionality using a constructor.
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Constructors

ClassName: :ClassName (parameters) {
statements to initialize the object,;

}

constructor: Initializes state of new objects as they are created.

» runs when the client declares a new object

" NO return type is specified,;
it implicitly "returns” the new object being created

= |f a class has no constructor, C++ gives it a default constructor
with no parameters that does nothing.
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Constructor diagram

// BankAccount.cpp

BankAccount: :BankAccount(string n, double b) {

name = n;
balance = b;

// client program
BankAccount b1(
"Cynthia", 1.25);

BankAccount b2(
"Mehran", 9999);

name balance

BankAccount(string n, double b) {
name = n;
balance = b;

name balance

BankAccount(string n, double b) {
name = n;
balance = b;
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The keyword this

As in Java, C++ has a this keyword to refer to the current object.
= Syntax: this->member

= Common usage: In constructor, so parameter names can match
the names of the object's member variables:

BankAccount: :BankAccount(string name,

double balance) {
this->name = name;
this->balance = balance;

this uses -> not . because itis a "pointer"; we'll discuss that later
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Preconditions

precondition: Something your code assumes is true
at the start of its execution.

= Often documented as a comment on the function's header:

// Initializes a BankAccount with the given state.

// Precondition: balance is non-negative

BankAccount: :BankAccount(string name, double balance) {
this->name = name;
this->balance = balance;

= Stating a precondition doesn't really "solve" the problem, but
it at least documents our decision and warns the client what
not to do.

= What if we want to actually enforce the precondition?
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Throwing exceptions

throw expression;

Generates an exception that will crash the program,
unless it has code to handle ("catch") the exception.

// Initializes a BankAccount with the given state.
// Precondition: balance is non-negative
BankAccount: :BankAccount(string name, double balance) {
if (balance < 9) {
throw "Illegal negative balance";
}

this->name = name;
this->balance = balance;

Why would anyone ever want a program to crash?
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Private data

private:
type name;

encapsulation: Hiding implementation details of an
object from its clients.

= Encapsulation provides abstraction.
» separates external view (behavior) from internal view (state)
= Encapsulation protects the integrity of an object's data.

A class's data members should be declared private.

= No code outside the class can access or change it.
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Accessor functions

We can provide methods to get and/or set a data field's value:

// "read-only" access to the balance ("accessor"
double BankAccount::getBalance() {
return balance;

}

// Allows clients to change the field ("mutator")
void BankAccount: :setName(string newName) {
name = newName;

}

= Client code will look like this:

cout << ba.getName() << ":$" << ba.getBalance() << endl;
ba.setName("Cynthia"); Stanford University




Encapsulation benefits

Provides abstraction between an object and its clients.
Protects an object from unwanted access by clients.

Allows you to change the class implementation.

» Point could be rewritten to use polar coordinates | .
(radius r, angle 6), but with the same methods. .

Allows you to constrain objects' state (invariants).

= Example: Don't allow a BankAccount with a negative
balance.
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Extra topics

Operators and const
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Operator overloading

Making your own kinds of objects work with operators!
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Operator overloading (6.2)

C++ allows you to overload, or redefine, the behavior of many

common operators-iithe language:

" unary:+ - ++ -- * o~ new delete

= binary:+ - * / % += -= *= /= %= & | && || ~
== l=< ><=>= =[] -> () ,

CV Meia ! 500

Overuse of operator overloading can lead to confusing code.

* Rule of Thumb: Don't | Don't define an
overloaded op ' g and behavior are
completely obvious.
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Op overload syntax

Declare your operator in a .h file, implementitin a .cpp file.

returnType operator op(parameters); // .h

returnType operator op(parameters) { // .cpp
statements;

}s

= where op is some operator like +, ==, <<, etc.

» the parameters are the operands next to the operator;
for example,a + b becomes operator +(Foo a, Foo b)

Overloaded operators can also be declared inside a class (not shown here)
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Op overload example

// BankAccount.h
class BankAccount {

}s

bool operator(==28ankAccount& bal, BankAccount& ba2);
\BBBI‘opera or !=(BankAccount& bal, BankAccount& ba2);

bool operato ankAccount& bal, BankAccount& ba2) {
return bal.getName() == ba2.getName()
&& bal.getBalance() == ba2.getBalance();

// BankAccount.cpC
B

}

bool operator !=(BankAccount& bal, BankAccount& ba2) {
return !(bal == ba2); // calls operator ==

}
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Make objects printable

To make it easy to print your object to cout, overload the <<
operator between an ostream and your type:

ostream& operator <<(ostream& out,( Type& name)) {
—

statements;
return out;

}
» The operator returns a reference to the stream so it can be
chained.
>@out“<< a << b <<9is really ((cout << a) << b)
KK C

» Technically cout is being returned by each << operation.
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<< overload example

// BankAccount.h
class BankAccount {

}s

ostream& operator <<(ostream& out, BankAccount& ba);

// BankAccount.cpp
ostream& operator <<(ostream& out, BankAccount& ba) {
out << ba.getName() << ": $"
<< setprecision(2) << ba.getBalance();
return out;
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Classes and const
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The keyword const

C++ const keyword indicates that a value cannot change.

const int x = 4; // x will always be 4

a const reference parameter can't be modified by the function:

void foo(const BankAccount& ba) { // won't change ba

» Any attempts to modify d inside foo's code won't compile.

a const member function can't change the object's state:

class BankAccount { ...
double getBalance() const; // won't change account

> On a const reference, you can only call const member functions.
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