
Programming Abstractions

Cynthia Lee

C S 106B

Topics du Jour:

 Make your own classes!

› Needed for Boggle assignment!

› We are starting to see a little bit in MarbleBoard assignment as well

2

Classes in C++
Making your own kinds of objects!

Class examples

A calendar program might want to store information
about dates, but C++ does not have a Date type.

A student registration system needs to store info

about students, but C++ has no Student type.

A bank app might want to store information about

users' accounts, but C++ has no BankAccount type.

However, C++ does provide a feature for us to add

new data types to the language: classes.

 Writing a class defines a new data type.

Classes and objects (6.1)

• class: A program entity that represents
a template for a new type of objects.

– e.g. class Vector defines a new data type
named Vector and allows you to declare
objects of that type.

• objects: Entities that combines state and behavior.

– object-oriented programming (OOP): Programs that

perform their behavior as interactions between objects.

– A new kind of abstraction: Separation between

concepts and details. Objects provide abstraction.

Client, class, object

Class

- what goes into each object
- how to construct new objects

Client program
int main() {

...

- interacts with class and objects

object objectobject

constructs

Object
- member functions (public behavior)

memberFunction1()
memberFunction2()

- member variables (private data)
ivar1 [___] (encapsulated)
ivar2 [___]

asks class to construct a new object

send/receive messages with object
by calling member functions
(never directly access private data)

Client, class, object: an example you already know!

This was from the 3rd lecture:

int main() {

Grid<bool> board(8,8);

for (int i=0; i<board.numRows(); i++){

for (int j=0; j<board.numCols(); j++){

board[i][j] = false;

}

}

return 0;

}

Elements of a class

member variables: State inside each object.

 Also called "instance variables" or "fields"

 Declared as private

 Each object created has a copy of each field.

member functions: Behavior that executes inside each object.

 Also called "methods"

 Each object created has a copy of each method.

 The method can interact with the data inside that object.

constructor: Initializes new objects as they are created.

 Sets the initial state of each object as it is being created.

 Often accepts parameters for the initial state of the fields.

Interface vs. code

INTERFACE

declarations

in .h file

IMPLEMENTATION

definitions (code)

in .cpp file

Class

Interface vs. code

In C++, when writing classes you must understand separation of:

 interface: Declarations of functions, classes, members, etc.

 implementation: Definitions of how the above are implemented.

C++ implements this separation using two kinds of code files:

 .h: A "header" file containing only interface (declarations).

 .cpp: A "source" file containing definitions.

› When you define a new class Foo, you write Foo.h and Foo.cpp.

The content of .h files is "#included" inside .cpp files.

 Makes them aware of declarations of code implemented elsewhere.

 At compilation, all definitions are linked together into an executable.

Interface: Structure of a .h file

// classname.h

#ifndef _classname_h

#define _classname_h

class declaration;

#endif

This is protection in case
multiple .cpp files include this .h,
so that its contents won't
get declared twice

Interface: A class declaration

class ClassName { // in ClassName.h
public:

ClassName(parameters); // constructor

returnType name(parameters); // member functions
returnType name(parameters); // (behavior inside
returnType name(parameters); // each object)

private:
type name; // member variables
type name; // (data inside each object)

};

IMPORTANT: must put a semicolon at end of class declaration (argh)

Class example (v1)

// Initial version of BankAccount.h.
// Uses public member variables and no functions.
// Not good style, but we will improve it.

#ifndef _bankaccount_h
#define _bankaccount_h

class BankAccount {
public:

string name; // each BankAccount object
double balance; // has a name and balance

};

#endif

Using our objects

// v1 with public fields (bad)
BankAccount ba1;
ba1.name = "Cynthia";
ba1.balance = 1.25;

BankAccount ba2;
ba2.name = "Mehran";
ba2.balance = 9999.00;

Think of an object as a way of grouping multiple variables.

 Each object contains a name and balance field inside it.

 We can get/set them individually.

 Code that uses your objects is called client code.

name = "Cynthia"
balance = 1.25

name = "Mehran"
balance = 9999.00

ba1

ba2

Member func. bodies

In ClassName.cpp, we write bodies (definitions) for the member

functions that were declared in the .h file:

// ClassName.cpp
#include "ClassName.h"

// member function
returnType ClassName::methodName(parameters) {

statements;
}

 Member functions/constructors can refer to the object's fields.

Exercise: Write a withdraw member function to deduct money from a

bank account's balance.

The implicit parameter

implicit parameter:

The object on which a member function is called.

 During the call cynthia.withdraw(...),

the object named cynthia is the implicit parameter.

 During the call mehran.withdraw(...),

the object named mehran is the implicit parameter.

 The member function can refer to that object's member variables.

› We say that it executes in the context of a particular object.

› The function can refer to the data of the object it was called on.

› It behaves as if each object has its own copy of the member functions.

Member func diagram

// BankAccount.cpp
void BankAccount::withdraw(double amount) {

if (balance >= amount) {
balance -= amount;

}
}

// client program
BankAccount cynthia;
BankAccount mehran;
...
cynthia.withdraw(5.00);

mehran.withdraw(99.00);

void withdraw(double amount) {
if (balance >= amount) {

balance -= amount;
}

}

name "cynthia" balance 1.25

void withdraw(double amount) {
if (balance >= amount) {

balance -= amount;
}

}

name "mehran" balance 9999

Initializing objects

It's bad to take 3 lines to create a BankAccount and initialize it:

BankAccount ba;
ba.name = "Cynthia";
ba.balance = 1.25; // tedious

We'd rather specify the fields' initial values at the start:

BankAccount ba("Cynthia", 1.25); // better

 We are able to this with most types of objects in C++ and Java.

 You can achieve this functionality using a constructor.

Constructors

ClassName::ClassName(parameters) {
statements to initialize the object;

}

constructor: Initializes state of new objects as they are created.

 runs when the client declares a new object

 no return type is specified;

it implicitly "returns" the new object being created

 If a class has no constructor, C++ gives it a default constructor

with no parameters that does nothing.

Constructor diagram

// BankAccount.cpp
BankAccount::BankAccount(string n, double b) {

name = n;
balance = b;

}

// client program
BankAccount b1(

"Cynthia", 1.25);

BankAccount b2(
"Mehran", 9999);

BankAccount(string n, double b) {
name = n;
balance = b;

}

name balance

BankAccount(string n, double b) {
name = n;
balance = b;

}

name balance

The keyword this

As in Java, C++ has a this keyword to refer to the current object.

 Syntax: this->member

 Common usage: In constructor, so parameter names can match

the names of the object's member variables:

BankAccount::BankAccount(string name,
double balance) {

this->name = name;
this->balance = balance;

}

this uses -> not . because it is a "pointer"; we'll discuss that later

Preconditions

precondition: Something your code assumes is true

at the start of its execution.

 Often documented as a comment on the function's header:

// Initializes a BankAccount with the given state.
// Precondition: balance is non-negative
BankAccount::BankAccount(string name, double balance) {

this->name = name;
this->balance = balance;

}

 Stating a precondition doesn't really "solve" the problem, but

it at least documents our decision and warns the client what

not to do.

 What if we want to actually enforce the precondition?

Throwing exceptions

throw expression;

Generates an exception that will crash the program,

unless it has code to handle ("catch") the exception.

// Initializes a BankAccount with the given state.
// Precondition: balance is non-negative
BankAccount::BankAccount(string name, double balance) {

if (balance < 0) {
throw "Illegal negative balance";

}
this->name = name;
this->balance = balance;

}

Why would anyone ever want a program to crash?

Private data

private:

type name;

encapsulation: Hiding implementation details of an

object from its clients.

 Encapsulation provides abstraction.

› separates external view (behavior) from internal view (state)

 Encapsulation protects the integrity of an object's data.

A class's data members should be declared private.

 No code outside the class can access or change it.

Accessor functions

We can provide methods to get and/or set a data field's value:

// "read-only" access to the balance ("accessor")
double BankAccount::getBalance() {

return balance;
}

// Allows clients to change the field ("mutator")
void BankAccount::setName(string newName) {

name = newName;
}

 Client code will look like this:

cout << ba.getName() << ":$" << ba.getBalance() << endl;

ba.setName("Cynthia");

Encapsulation benefits

Provides abstraction between an object and its clients.

Protects an object from unwanted access by clients.

Allows you to change the class implementation.

 Point could be rewritten to use polar coordinates

(radius r, angle θ), but with the same methods.

Allows you to constrain objects' state (invariants).

 Example: Don't allow a BankAccount with a negative

balance.

Extra topics
Operators and const

Operator overloading
Making your own kinds of objects work with operators!

Operator overloading (6.2)

C++ allows you to overload, or redefine, the behavior of many

common operators in the language:

 unary: + - ++ -- * & ! ~ new delete

 binary: + - * / % += -= *= /= %= & | && || ^

== != < > <= >= = [] -> () ,

Overuse of operator overloading can lead to confusing code.

 Rule of Thumb: Don't abuse this feature. Don't define an

overloaded operator unless its meaning and behavior are

completely obvious.

Op overload syntax

Declare your operator in a .h file, implement it in a .cpp file.

returnType operator op(parameters); // .h

returnType operator op(parameters) { // .cpp

statements;

};

 where op is some operator like +, ==, <<, etc.

 the parameters are the operands next to the operator;

for example, a + b becomes operator +(Foo a, Foo b)

Overloaded operators can also be declared inside a class (not shown here)

Op overload example

// BankAccount.h
class BankAccount {

...
};

bool operator ==(BankAccount& ba1, BankAccount& ba2);
bool operator !=(BankAccount& ba1, BankAccount& ba2);

// BankAccount.cpp
bool operator ==(BankAccount& ba1, BankAccount& ba2) {

return ba1.getName() == ba2.getName()
&& ba1.getBalance() == ba2.getBalance();

}

bool operator !=(BankAccount& ba1, BankAccount& ba2) {
return !(ba1 == ba2); // calls operator ==

}

Make objects printable

To make it easy to print your object to cout, overload the <<
operator between an ostream and your type:

ostream& operator <<(ostream& out, Type& name) {
statements;
return out;

}

 The operator returns a reference to the stream so it can be

chained.

› cout << a << b << c is really ((cout << a) << b)
<< c

› Technically cout is being returned by each << operation.

<< overload example

// BankAccount.h
class BankAccount {

...
};

ostream& operator <<(ostream& out, BankAccount& ba);

// BankAccount.cpp
ostream& operator <<(ostream& out, BankAccount& ba) {

out << ba.getName() << ": $"
<< setprecision(2) << ba.getBalance();

return out;
}

Classes and const

The keyword const

C++ const keyword indicates that a value cannot change.

const int x = 4; // x will always be 4

a const reference parameter can't be modified by the function:

void foo(const BankAccount& ba) { // won't change ba

› Any attempts to modify d inside foo's code won't compile.

a const member function can't change the object's state:

class BankAccount { ...
double getBalance() const; // won't change account

› On a const reference, you can only call const member functions.

