Programming Abstractions
CS106B

Cynthia Lee

Stanford University

Topics du Jour:

= Make your own classes!
> Needed for Boggle assignment!
> We are starting to see a little bit in MarbleBoard assignment as well

Stanford University

Classes In C++

Making your own kinds of objects!

Stanford University

Class examples

A calendar program might want to store information o a2
about dates, but C++ does not have a Date type. & Tn g
AY N ’L..(\ R

A student registration system needs to store info
about students, but C++ has no Student type.

A bank app might want to store information about
users' accounts, but C++ has no BankAccount type.

However, C++ does provide a feature for us to add
new data types to the language: classes.

= \Writing a class defines a new data type.

Stanford University

Classes and objects (6.1)

e class: A program entity that represents
a template for a new type of objects.

—e.g. class Vector defines a new data type
named Vector and allows you to declare
objects of that type.

e objects: Entities that combines state and behavior.

— object-oriented programming (OOP): Programs that
perform their behavior as interactions between objects.

— A new kind of abstraction: Separation between
concepts and details. Objects provide abstraction.

Stanford University

Client, class, object

Client program

int main() {

asks class to construct a new object

/ - interacts with class and objects

CIaSS send/receive messages with object
by calling member functions

(never directly access private data)
- what goes into each object
- how to construct new objects \ -
Object
constructs! \ \ - member functions (public behavior)
memberFunctionl()

memberFunction2()

0 bject object O bject - member variables (private data)

C@l 1 lencapsulated)
Qvare__]

Stanford University

Client, class, object: an example you already know!
This was from the 3™
“Gpidcbool> s

or (int i=@; i<board(numRows (\)3?

N

ient program ™N
int main() {

- interacts with class and objects
ey —————————

Class

send/receive messages with object
by calling member functions

(never directly access private data)
- what goes into each object
- how to construct new objects \‘ .
} [Object
constructsj \ \ - member functions (public behavior)
memberFunction1()

K memberFunction2()
Object - member variables (private data)
ivarl []| Vencapsulated)
ivar2 []

object || object

Elements of a class

member variables: State inside each object.

= Also called "instance variables" or "fields"

» Declared as private

= Each object created has a copy of each field.

member functions: Behavior that executes inside each object.
= Also called "methods"

= Each object created has a copy of each method.

= The method can interact with the data inside that object.

constructor: Initializes new objects as they are created.
e —

= Sets the initial state of each object as it is being created.
= Often accepts parameters for the initial state of the fields.

Stanford University

Interface vs. code

INTERFACE
declarations
in .h file

IMPLEMENTATION
definitions (code)
in .cpp file

Stanford University

Interface vs. code

In C++, when writing classes you must understand separation of:
= interface: Declarations of functions, classes, members, etc.
= implementation: Definitions of how the above are implemented.

C++ implements this separation using two kinds of code files:
= _h: A "header" file containing only interface (declarations).
= .cpp:. A'"source" file containing definitions.
> When you define a new class Foo, you write Foo.h and Foo. cpp.

The content of .h files is "#included" inside .cpp files.
= Makes them aware of declarations of code implemented elsewhere.
= At compilation, all definitions are linked together into an executable.

Stanford University

Interface: Structure of a .h file

// classname.h
.r'lfndef _classname_h

This is protection in case
multiple .cpp files include this .h,

\ so that its contents won't
class decLar‘ata/ get declared twice

tendif

#define _classname

<

Stanford University

Interface: A class declaration

class ClassName { // in ClassName.h
bublic:
ClassName (parameters); // constructor

returnType name(parameters); // member functions
returnType name(parameters); // (behavior inside
returnType name(parameters); // each object)

private:

type name; // member variables

type name; // (data inside each object)
33

IMPORTANT: must put a semicolon at end of class declaration (argh)
Stanford University

Class example (v1)

// Initial version of BankAccount.h.
// Uses public member variables and no functions.
// Not good style, but we will improve it.

#ifndef bankaccount h
#define _bankaccount h

class BankAccount {

public:
string name; // each BankAccount object
double balance; // has a name and balance
}s
#endif

Stanford University

Using our objects bal
name = "Cynthia"
balance = 1.25

// vl with public fields (bad)
BankAccount bal;
bal.name = "Cynthia";

bal.balance = 1.25; ba?
BankAccount ba2; name = "Mehran
ba2.name = "Mehran"; balance = 9999.00

ba2.balance = 9999.00;

Think of an object as a way of grouping multiple variables.
= Each object contains a name and balance field inside it.
= \We can get/set them individually.

= Code that uses your objects is called client code.

Stanford University

Member func. bodies

In CLassName . cpp, we write bodies (definitions) for the member
functions that were declared in the . h file:

// ClassName .cpp
#include "ClassName.h"

= Member functions/constructors can refer to the object's fields.

Exercise: Write a withdraw member function to deduct money from a
bank account's balance.

Stanford University

The implicit parameter

implicit parameter:
The object on which a member function is called.

= During the call cynthia .F\ALithdr‘aw(eel),
the object named cynthia is the implicit parameter.

» During the call mehran.withdraw(...),
the object named mehran is the implicit parameter.

= The member function can refer to that object's member variables.

» We say that it executes in the context of a particular object.
» The function can refer to the data of the object it was called on.

» It behaves as if each object has its own copy of the member functions.
Stanford University

Member func diagram

// BankAccount.cpp
void BankAccount: :withdraw(double amount) {
if (balance >= amount) {

balance -= amount;
}
} name "cynthia" | balance | 1.25
// client program void withdraw(double amount) {
BankAccount cynthia; if (balance >= amount) {
BankAccount mehran; bal - .
} name mehran balance | 9999
cynthia.withdraw(5.00);)
mehr‘an.withdr‘aw(99.00) . void withdraw(double amount) {
? if (balance >= amount) {
balance -= amount;
}
}

Initializing objects

It's bad to take 3 lines to create a BankAccount and initialize it:

BankAccount ba;
ba.name = "Cynthia";
ba.balance = 1.25; // tedious

We'd rather specify the fields' initial values at the start:
BankAccount ba("Cynthia", 1.25); // better

= We are able to this with most types of objects in C++ and Java.
» You can achieve this functionality using a constructor.

Stanford University

Constructors

ClassName: :ClassName (parameters) {
statements to initialize the object,;

}

constructor: Initializes state of new objects as they are created.

» runs when the client declares a new object

" NO return type is specified,;
it implicitly "returns” the new object being created

= |f a class has no constructor, C++ gives it a default constructor
with no parameters that does nothing.

Stanford University

Constructor diagram

// BankAccount.cpp

BankAccount: :BankAccount(string n, double b) {

name = n;
balance = b;

// client program
BankAccount b1(
"Cynthia", 1.25);

BankAccount b2(
"Mehran", 9999);

name balance

BankAccount(string n, double b) {
name = n;
balance = b;

name balance

BankAccount(string n, double b) {
name = n;
balance = b;

Niversity

The keyword this

As in Java, C++ has a this keyword to refer to the current object.
= Syntax: this->member

= Common usage: In constructor, so parameter names can match
the names of the object's member variables:

BankAccount: :BankAccount(string name,

double balance) {
this->name = name;
this->balance = balance;

this uses -> not . because itis a "pointer"; we'll discuss that later

Stanford University

Preconditions

precondition: Something your code assumes is true
at the start of its execution.

= Often documented as a comment on the function's header:

// Initializes a BankAccount with the given state.

// Precondition: balance is non-negative

BankAccount: :BankAccount(string name, double balance) {
this->name = name;
this->balance = balance;

= Stating a precondition doesn't really "solve" the problem, but
it at least documents our decision and warns the client what
not to do.

= What if we want to actually enforce the precondition?
Stanford University

Throwing exceptions

throw expression;

Generates an exception that will crash the program,
unless it has code to handle ("catch") the exception.

// Initializes a BankAccount with the given state.
// Precondition: balance is non-negative
BankAccount: :BankAccount(string name, double balance) {
if (balance < 9) {
throw "Illegal negative balance";
}

this->name = name;
this->balance = balance;

Why would anyone ever want a program to crash?

Stanford University

Private data

private:
type name;

encapsulation: Hiding implementation details of an
object from its clients.

= Encapsulation provides abstraction.
» separates external view (behavior) from internal view (state)
= Encapsulation protects the integrity of an object's data.

A class's data members should be declared private.

= No code outside the class can access or change it.
Stanford University

Accessor functions

We can provide methods to get and/or set a data field's value:

// "read-only" access to the balance ("accessor"
double BankAccount::getBalance() {
return balance;

}

// Allows clients to change the field ("mutator")
void BankAccount: :setName(string newName) {
name = newName;

}

= Client code will look like this:

cout << ba.getName() << ":$" << ba.getBalance() << endl;
ba.setName("Cynthia"); Stanford University

Encapsulation benefits

Provides abstraction between an object and its clients.
Protects an object from unwanted access by clients.

Allows you to change the class implementation.

» Point could be rewritten to use polar coordinates | .
(radius r, angle 6), but with the same methods. .

Allows you to constrain objects' state (invariants).

= Example: Don't allow a BankAccount with a negative
balance.

Stanford University

Extra topics

Operators and const

Stanford University

Operator overloading

Making your own kinds of objects work with operators!

Stanford University

Operator overloading (6.2)

C++ allows you to overload, or redefine, the behavior of many

common operators-iithe language:

" unary:+ - ++ -- * o~ new delete

= binary:+ - * / % += -= *= /= %= & | && || ~
== l=< ><=>= =[] -> () ,

CV Meia ! 500

Overuse of operator overloading can lead to confusing code.

* Rule of Thumb: Don't | Don't define an
overloaded op ' g and behavior are
completely obvious.

Stanford University

Op overload syntax

Declare your operator in a .h file, implementitin a .cpp file.

returnType operator op(parameters); // .h

returnType operator op(parameters) { // .cpp
statements;

}s

= where op is some operator like +, ==, <<, etc.

» the parameters are the operands next to the operator;
for example,a + b becomes operator +(Foo a, Foo b)

Overloaded operators can also be declared inside a class (not shown here)
Stanford University

Op overload example

// BankAccount.h
class BankAccount {

}s

bool operator(==28ankAccount& bal, BankAccount& ba2);
\BBBI‘opera or !=(BankAccount& bal, BankAccount& ba2);

bool operato ankAccount& bal, BankAccount& ba2) {
return bal.getName() == ba2.getName()
&& bal.getBalance() == ba2.getBalance();

// BankAccount.cpC
B

}

bool operator !=(BankAccount& bal, BankAccount& ba2) {
return !(bal == ba2); // calls operator ==

}

Stanford University

Make objects printable

To make it easy to print your object to cout, overload the <<
operator between an ostream and your type:

ostream& operator <<(ostream& out,(Type& name)) {
—

statements;
return out;

}
» The operator returns a reference to the stream so it can be
chained.
>@out“<< a << b <<9is really ((cout << a) << b)
KK C

» Technically cout is being returned by each << operation.
Stanford University

<< overload example

// BankAccount.h
class BankAccount {

}s

ostream& operator <<(ostream& out, BankAccount& ba);

// BankAccount.cpp
ostream& operator <<(ostream& out, BankAccount& ba) {
out << ba.getName() << ": $"
<< setprecision(2) << ba.getBalance();
return out;

Stanford University

Classes and const

Stanford University

The keyword const

C++ const keyword indicates that a value cannot change.

const int x = 4; // x will always be 4

a const reference parameter can't be modified by the function:

void foo(const BankAccount& ba) { // won't change ba

» Any attempts to modify d inside foo's code won't compile.

a const member function can't change the object's state:

class BankAccount { ...
double getBalance() const; // won't change account

> On a const reference, you can only call const member functions.

Stanford University

