Programming Abstractions
CS106B

Cynthia Lee

Stanford University

Topics du Jour:

= Last time:
» Performance of Fibonacci recursive code
» Look at growth of various functions
» Traveling Salesperson problem
* Problem sizes up to number of Facebook accounts
» Formal mathematical definition
= This time: Big-O performance analysis
» Simplifying Big-O expressions
» Analyzing algorithms/code

 Just a bit for now, but we’ll be applying this to all our algorithms as we
encounter them from now on

= Head start on Wednesday’s topic: make your own classes!

> Needed for Boggle assignment, we are starting to see a little bit in
MarbleBoard assignment as well.

Stanford University

Translating code to a f(n) model of the performance

Statements Cost
(C 1 double findAvg (Vector<int>& grades){
n= S\ ©° 2 double sum = 0; 1
N CYu 3 int count = 0; 1
4 while (count < grades.size()) { n+1
> sum += grades[count]; n
6 count++; n
! }
1
Do we really care about the +5? [..
Or the 3 for that matter? 1
11 return 0.0;
2 13 _—
ALL & 3n+5 w

Stanford University

¥ oS ‘?aCeLook alCounds

log,n n log,n n2 2n

2 8 16 16
3 24 64 256
4 64 256 65,536
5 160 1,024 | 4,294,967,296
6 384 4,096 1.84x 101
7 896 16,384 | 3.40 x 10%
8 2,048 65536| 1.16x 1077
9 4,608 262,144 | 1.34 x 10154

10 (000003) “Covossy| 180X 10%

30].1,300,000,000 3900000?10303 169000000?22032222(; 10391,3%,;3%9)2
/]

Stanford University

Big-O
We say a function f(n) is “big-O” of another function

g(n), and write “f(n) is O(g(n))” iff there exist positive
constants ¢ and n, such that:

f(n) = c g(n) for all n = n,,.

What you need to know:

O(X) describes an “upper bound”—the algorithm will
perform no worse than X

We ignore constant factors in saying that
« We ignore behavior for “small” n Stanford University

o
=2
c
S
0:l
>
a
,J
©
o
i
o
5}
E
X
Q
[
=
=
3
>
—
Q
8
5
@
=
=
2
(%]
c
S
IS
IS
S
(8]
=

a
£
<

Image has been put in the public domain by its author.

Simplifying Big-O Expressions

= We always report Big-O analyses in simplified form and
generally give the tightest bound we can

= Some examples:

\
Let f(n) = B46 + 34n + Bn2..................... f(n)is O(\N\ ©).
Let f(n) @ﬂnnz FIANS. fnyiso()").
Let f(n) = 480 L f(n)is O(| Yeonster

Stanford University

Big-O

Applying to algorithms

Stanford University

Applying Big-O to Algorithms
= Some code examples:
ﬁor‘ (int 1 =size() - 1; 1 >=0; i--){
for (int j = @; j < data.size(); j++){
cout << data[i] << data[j] << endl; h
}

2

is O(]) where nis data.size().

Stanford University

Applying Big-O to Algorithms

= Some code examples:

—
for (int i = data.size() - 1; 1 »>=
for (int j = @; j < data. 51ze(), j = 3) 5L,
cout << data[i] << data[j] << endl; /// I 55}“
}
}

. "L .
is O([|) where nis data.size(). ‘

g n

Stanford University

Applying Big-O to Algorithms
= Some familiar examples:

Binary search..................... is O(/\32(,/)\ where n is o &oﬁmj Are Ghee

EI-----E- 9 10

13 25 29 33 51 89 90 95

Tn™
uxtos>hop edg m) where n is .

C1 C+0 C+l MD\MS)
R +0 R +0 %(@\33 }f\

R +0 -
L/] M C-1 HoENE C +1
R+1 R+1 R+1 %
C1 C+0 C+l “RW’

Stanford University

Applying Big-O to Algorithms

= Some code examples (assume data.size() >= 5):
for (int 1 = @0; 1 < data.size(); i += (data.size() / 5)) {
cout << data[i] << endl;

}

is O(|) where nis data.size().

Stanford University

Big-O Extra Slides

Interpreting graphs using the formal definition

Stanford University

: "f(n) is O(g(n))” iff
f2 1S O(fl) dc,ng > 0,s.t.vn=ny, f(n) <c-gn)

2500

A. TRUE

B. FALSE / f

Why or why not? * /

ST T T e
mmmmmmmmmmm

Stanford University

f(n) is O(g(n)), if there are positive constants c and n,
such that f(n) < c * g(n) for all n = n,.

Because we ignore the 2500
constant coefficient that 2000 . f,
determines slope, f1 and /
f2 look the “same” in 1500
Big-O analysis // f,
f, is O(f,) and f, is O(f,) 1000 /
500
= Math version: We can move f, above f; /
by multiplying by c (we can change the O o ———————————— ————————
slope of f, by a constant factor) HoONUAIISBRIARS

Stanford University

“f(n) is O(g(n))” iff
dc,ng > 0,s.t.Vn=ny, f(n) < c-gn)

f, is O(f,)

2500
f3

2000 /
A. TRUE /
B. FALSE 1500 /

1000 - f1
The constant ¢ 500
cannot rescue us
here “because T 7 Io1s 60 s ssan et anar A ana

1 4 71013161922252831343740434649

calculus.”

Stanford University

