
Programming Abstractions

Cynthia Lee

C S 106B

Topics roadmap:

Previous classes:

 Recursion intro: factorial and stack frames (Friday)

 Designing recursive solutions: binary search and fractals (Monday)

 Loops + recursion: permutations and backtracking (Wednesday)

Today:

 Contrast: Word ladder and Maze solving

› Revisiting Wednesday’s maze solving example

 Performance issues in recursion

 Big-O performance analysis

Monday:

 More big-O performance analysis

2

3

The stack

Θ

What is the deepest the Stack

gets (number of stack frames)

during the solving of this maze?

A. Less than 5

B. 5-10

C. 11-20

D. More than 20

E. Other/none/more

Heap

Stack

0

Contrast: Recursive maze-solving vs. Word ladder

 With word ladder, you did breadth-first search

 Our recursive maze-solver uses depth-first search

 Both are possible for maze-solving!

 The contrast between these approaches is a theme

that you’ll see again and again in your CS career

Fibonacci

This image is licensed under the Creative Commons Attribution-Share Alike 3.0 Unported license.
http://commons.wikimedia.org/wiki/File:Golden_spiral_in_rectangles.png

http://en.wikipedia.org/wiki/en:Creative_Commons
http://creativecommons.org/licenses/by-sa/3.0/deed.en
http://commons.wikimedia.org/wiki/File:Golden_spiral_in_rectangles.png

Fibonacci in nature

T
h

e
s
e

 f
ile

s
 a

re
,

re
s
p
e

c
ti
v
e
ly

:
p
u

b
lic

 d
o

m
a

in
 (

h
u

rr
ic

a
n
e

)
a

n
d

 l
ic

e
n

s
e
d

 u
n

d
e

r
th

e
C

re
a

ti
v
e

C
o

m
m

o
n

s
A

tt
ri

b
u

ti
o
n

 2
.0

 G
e
n

e
ri

c
lic

e
n

s
e

 (
fi
b
o
n

a
c
c
i
a
n

d
 f

e
rn

).

http://en.wikipedia.org/wiki/en:Creative_Commons
http://creativecommons.org/licenses/by/2.0/deed.en

Fibonacci in politics

Fibonacci

f(0) = 0

f(1) = 1

For all n > 1:

 f(n) = f(n-1) + f(n-2)

Fibonacci

F(0) = 0

F(1) = 1

F(n) = F(n-1) + F(n-2) for n > 1

Work is duplicated throughout the call tree

 F(2) is calculated 3 separate times when calculating F(5)!

 15 function calls in total for F(5)!

Image is in the public domain.

http://commons.wikimedia.org/wiki/File:Fibonacci_call_tree_5.gif

http://commons.wikimedia.org/wiki/File:Fibonacci_call_tree_5.gif

Fibonacci

How many times would we calculate Fib(2) while calculating

Fib(6)? See if you can just “read” it off the chart above.

A. 4 times

B. 5 times

C. 6 times

D. Other/none/more

Image is in the public domain.

http://commons.wikimedia.org/wiki/File:Fibonacci_call_tree_5.gif

F(2) is calculated 3

separate times when

calculating F(5)!

http://commons.wikimedia.org/wiki/File:Fibonacci_call_tree_5.gif

Fibonacci

Image is in the public domain.

http://commons.wikimedia.org/wiki/File:Fibonacci_call_tree_5.gif

N fib(N)

of

calls

to

fib(2)

2 1 1

3 2 1

4 3 2

5 5 3

6 8

7 13

8 21

9 34

10 55

How many times would we calculate Fib(2)

while calculating Fib(7)?

How many times would we calculate Fib(2)

while calculating Fib(8)?

http://commons.wikimedia.org/wiki/File:Fibonacci_call_tree_5.gif

Efficiency of naïve Fibonacci implementation

When we added 1 to the input to Fibonacci, the number of

times we had to calculate a given subroutine nearly

doubled (~1.6 times*)

 Ouch!

Can we predict how much time it will take to compute for

arbitrary input n?

* This number is called the “Golden Ratio” in math—cool!

Efficiency of naïve Fibonacci implementation

Can we predict how much time it will take to compute for
arbitrary input n?

Each time we add 1 to the input, the time increases by a
factor of 1.6

For input n, we multiply the “baseline” time by 1.6 n times:

 b * 1.6 * 1.6 * 1.6 * … * 1.6 = b * 1.6n

 We don’t really care what b is exactly (different on every machine
anyway), so we just normalize by saying b = 1 “time unit” (i.e. we
remove b)

n times

Aside: recursion isn’t always this bad!

Memory Recursive code

long factorial(int n) {

cout << n << endl;

if (n == 1) return 1;

else return n * factorial(n – 1);

}

“Roughly” how much time does factorial take, as a
function of the input n?

It’s better!! Just b * n = n (when we say that b=1
because we define b = one “time unit”)

main()

Heap

myfunction() x:

xfac:

factorial() n: 10

0

1

0

Fibonacci

Assume we have to calculate

each unique function call

once, but never again

We “remember” the answer

from the first time

How many rectangles

remain in the above

chart for n=5?

Image is in the public domain.

http://commons.wikimedia.org/wiki/File:Fibonacci_call_tree_5.gif

http://commons.wikimedia.org/wiki/File:Fibonacci_call_tree_5.gif

Memo-ization

Take notes (“memos”) as you go

For Fibonacci, we will have answers for F(i) for all i, 0 ≤ i ≤ n, so

a simple array or Vector can store intermediate results:

› results[i] stores Fib(i)

Big-O Performance Analysis

log2n n n log2n n2 2n

2 4 8 16 16

3 8 24 64 256

4 16 64 256 65,536

5 32 160 1,024 4,294,967,296

6 64

7 128

8 256

9 512

10 1,024

30 1,300,000,000

log2n n n log2n n2 2n

2 4 8 16 16

3 8 24 64 256

4 16 64 256 65,536

5 32 160 1,024 4,294,967,296

6 64

7 128

8 256

9 512

10 1,024

30 1,300,000,000

2.4s

Easy!

Traveling Salesperson Problem:
We have a bunch of cities to visit. In what order should
we visit them to minimize total travel distance?

Exhaustively try all orderings: O(n!)
Use memoization (yay!): O(n22n)
Maybe we could invent an algorithm closer
to Fibonacci performance: O(2n)

So let’s say we come up with a way to solve
Traveling Salesperson Problem in O(2n).

It would take ~4 days to solve Traveling
Salesperson Problem on 50 state capitals (with
3GHz computer)

Two tiny little updates

Imagine we approve statehood for

Puerto Rico

 Add San Juan, the capital city

Also add Washington, DC

Now 52 capital cities instead of 50

This work has been released into the public domain by its author, Madden.

This applies worldwide.

http://en.wikipedia.org/wiki/en:public_domain
http://commons.wikimedia.org/wiki/User:Madden

For 50 state capitals: ~4 days
With the O(2n) algorithm we invented, it
would take ~__?__ days to solve Traveling
Salesperson problem on 50 state capitals + 2
(DC and San Juan)

A. 6 days

B. 8 days

C. 10 days

D. > 10 days

With the O(2n) algorithm we invented, it would
take ~17 days to solve Traveling Salesperson
problem on 50 state capitals + 2 (DC and San Juan)

Sacramento is not exactly the most interesting or
important city in California (sorry, Sacramento).
What if we add the 12 biggest non-capital cities
in the United States to our map?

With the O(2n) algorithm we invented,
It would take 194 YEARS to solve Traveling
Salesman problem on 64 cities (state capitals +
DC + San Juan + 12 biggest non-capital cities)

log2n n n log2n n2 2n

2 4 8 16 16

3 8 24 64 256

4 16 64 256 65,536

5 32 160 1,024 4,294,967,296

6 64 384 4,096 1.84 x 1019

7 128

8 256

9 512

10 1,024

30 1,300,000,000

194 YEARS

log2n n n log2n n2 2n

2 4 8 16 16

3 8 24 64 256

4 16 64 256 65,536

5 32 160 1,024 4,294,967,296

6 64 384 4,096 1.84 x 1019

7 128 896 16,384 3.40 x 1038

8 256

9 512

10 1,024

30 1,300,000,000

3.59E+21 YEARS

log2n n n log2n n2 2n

2 4 8 16 16

3 8 24 64 256

4 16 64 256 65,536

5 32 160 1,024 4,294,967,296

6 64 384 4,096 1.84 x 1019

7 128 896 16,384 3.40 x 1038

8 256

9 512

10 1,024

30 1,300,000,000

3,590,000,000,000,000,000,000
YEARS

log2n n n log2n n2 2n

2 4 8 16 16

3 8 24 64 256

4 16 64 256 65,536

5 32 160 1,024 4,294,967,296

6 64 384 4,096 1.84 x 1019

7 128 896 16,384 3.40 x 1038

8 256 2,048 65,536 1.16 x 1077

9 512

10 1,024

30 1,300,000,000

For comparison: there are
about 10E+80 atoms in the
universe. No big deal.

log2n n n log2n n2 2n

2 4 8 16 16

3 8 24 64 256

4 16 64 256 65,536

5 32 160 1,024 4,294,967,296

6 64 384 4,096 1.84 x 1019

7 128 896 16,384 3.40 x 1038

8 256 2,048 65,536 1.16 x 1077

9 512 4,608 262,144 1.34 x 10154

10 1,024

30 1,300,000,000

1.42E+137 YEARS (another way
of thinking about the size:
including commas, this number of
years cannot be written in a single
tweet)

LOL

log2n n n log2n n2 2n

2 4 8 16 16

3 8 24 64 256

4 16 64 256 65,536

5 32 160 1,024 4,294,967,296

6 64 384 4,096 1.84 x 1019

7 128 896 16,384 3.40 x 1038

8 256 2,048 65,536 1.16 x 1077

9 512 4,608 262,144 1.34 x 10154

10 1,024
10,240

(.000003s)

1,048,576

(.0003s)
1.80 x 10308

30 1,300,000,000
39000000000

(13s)

1690000000000000000

(18 years)

log2n n n log2n n2 2n

2 4 8 16 16

3 8 24 64 256

4 16 64 256 65,536

5 32 160 1,024 4,294,967,296

6 64 384 4,096 1.84 x 1019

7 128 896 16,384 3.40 x 1038

8 256 2,048 65,536 1.16 x 1077

9 512 4,608 262,144 1.34 x 10154

10 1,024
10,240

(.000003s)

1,048,576

(.0003s)
1.80 x 10308

30 1,300,000,000
39000000000

(13s)

1690000000000000000

(18 years)
2.3 x

10391,338,994

log2n n n log2n n2 2n

2 4 8 16 16

3 8 24 64 256

4 16 64 256 65,536

5 32 160 1,024 4,294,967,296

6 64 384 4,096 1.84 x 1019

7 128 896 16,384 3.40 x 1038

8 256 2,048 65,536 1.16 x 1077

9 512 4,608 262,144 1.34 x 10154

10 1,024
10,240

(.000003s)

1,048,576

(.0003s)
1.80 x 10308

30 1,300,000,000
39000000000

(13s)

1690000000000000000

(18 years)
2.3 x

10391,338,994

2n is way into crazy LOL territory, but
look at nlog2n—only 13 seconds!!

Big-O
Extracting time cost from example code

38

Translating code to a f(n) model of the performance

Statements Cost

1 double findAvg (Vector<int>& grades){
2 double sum = 0; 1
3 int count = 0; 1
4 while (count < grades.size()) { n + 1
5 sum += grades[count]; n
6 count++; n
7 }
8 if (grades.size() > 0) 1
9 return sum / grades.size();
10 else 1
11 return 0.0;
12 }

ALL 3n+5

Do we really care about the +5?

Or the 3 for that matter?

Formal definition of Big-O

We say a function f(n) is “big-O” of another function

g(n), and write “f(n) is O(g(n))” if there exist positive

constants c and n0 such that:

f(n) ≤ c g(n) for all n ≥ n0.

Im
a
g
e
 h

a
s
 b

e
e
n
 p

u
t

in
 t

h
e
 p

u
b
lic

 d
o

m
a
in

 b
y
 i
ts

 a
u
th

o
r.

h
tt

p
:/

/c
o
m

m
o
n
s
.w

ik
im

e
d
ia

.o
rg

/w
ik

i/
F

ile
:K

it
te

n
_
(0

6
)_

b
y
_
R

o
n
.j
p
g

Big-O

We say a function f(n) is “big-O” of another function

g(n), and write “f(n) is O(g(n))” if there exist positive

constants c and n0 such that:

f(n) ≤ c g(n) for all n ≥ n0.

What you need to know:

O(X) describes an “upper bound”—the algorithm will

perform no worse than X

• We ignore constant factors in saying that

• We ignore behavior for “small” n

