
Programming Abstractions

Cynthia Lee

C S 106B



Today’s topics:

 Previous lectures:

› Introduction to recursion with Factorial

› Mechanics of recursion: looking at the stack frames

› Classic, widely-used CS algorithm example: Binary Search

› Visual example: Boxy “snowflake” fractal

 Today:

› New patterns of recursion application: adding loops

• Loops + recursion for generating combinations/permutations

• Loops + recursion for recursive backtracking

2



Generating combinations/permutations



Recursion pattern: generating permutations

• Example problems:

• Given a deck of cards, output all possible distinct 5-card poker hands

• Generate all strings of length N

• Pseudocode of the approach for “generate all strings of length N”:

• In a loop, do:

1. Choose a character to be the first letter, then recursively 
generate the rest of the string from the remaining characters

2. Now let a different character be the first letter, …



Backtracking
Maze solving



Backtracking

A particular behavior in recursive code where you 
tentatively explore many options, and recover to the 
nearest junction when you hit a “dead end”

Similar to generating all permutations/combinations, 
but as you go along you evaluate each one to 
determine if it has potential to become successful in 
the future or not (and then “give up” early if not)

The easiest way to understand this is probably to see 
literal exploration and dead ends



7

Maze-solving

Θ



8

Maze-solving

Θ

Thinking through the 

pseudo-code:

 From position Θ, 

what does it mean 

for a step North to 

be a good idea?



9

Maze-solving

Θ

Thinking through the 

pseudo-code:

 From position Θ, 

what does it mean 

for a step South to 

be a good idea?

 It means that from 

position one-step-

South-of-Θ, there 

exists some step that 

is a good idea…

 …Recursion!



Backtracking template

 bool recursiveFunction(){

› Base case test for success: return true

› Base case test for failure: return false

› Loop over several options for “what to do next”:

• Tentatively “do” one option

• if (recursiveFunction()) return true

• That tentative idea didn’t work, so “undo” that option

› None of the options we tried in the loop worked, so return false



SolveMaze code
Adapted from the textbook by Eric Roberts

bool solveMaze(Maze & maze, Point start) {

if (maze.isOutside(start)) return true;

if (maze.isMarked(start)) return false;

maze.markSquare(start);

pause(200);

for (Direction dir = NORTH; dir <= WEST; dir++) {

if (!maze.wallExists(start, dir)) {

if (solveMaze(maze, adjacentPoint(start, dir))) {

return true;

}

}

}

maze.unmarkSquare(start);

return false;

}

enum Direction = 

{NORTH, EAST, SOUTH, 

WEST};



12

Maze-solving

x1

x2 Θ

x3

In what order do we visit 

these spaces?

A. x1, x2, x3

B. x2, x3, x1

C. x1, x3, x2

D. We don’t visit all three

E. Other/none/more

//order of for loop:
enum Direction = 
{NORTH, EAST, SOUTH, WEST};



13

The stack

Θ

What is the deepest the Stack 

gets (number of stack frames) 

during the solving of this maze?

A. Less than 5

B. 5-10

C. 11-20

D. More than 20

E. Other/none/more

Heap

Stack

0



Contrast: Recursive maze-solving vs. Word ladder

 With word ladder, you did breadth-first search

 This problem uses depth-first search

 Both are possible for maze-solving!

 The contrast between these approaches is a theme 

that you’ll see again and again in your CS career


