Programming Abstractions
 CS106B

Cynthia Lee

Stanford University

Recursion!

The exclamation point isn't there only because this is so exciting, it also relates to one of our recursion examples....

Announcement: Recursive art contest!

Steps to participate:

1. Go to http://recursivedrawing.com/
2. Make recursive art
3. Email me: cbl@stanford.edu
4. Win prizes!

Come to my office hours and see my Wall of Fame of past recursive art submissions!

- Submission deadline:
, Wednesday of Week 4 (April 20)

Art contest

Catherine Wong Autumn 2013

Stanford University

Classic and important CS problem: searching

Imagine storing sorted data in an array

How long does it take us to find a number we are looking for?

0	1	2	3	4	5	6	7	8	9	10
2	7	8	13	25	29	33	51	89	90	95

Imagine storing sorted data in an array

How long does it take us to find a number we are looking for?

$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	6	7	8	$\mathbf{9}$	10
2	7	8	13	25	29	33	51	89	90	95

If you start at the front and proceed forward, each item you examine rules out 1 item

Imagine storing sorted data in an array

0	1	2	3	4	5	6	7	8	9	10
2	7	8	13	25	29	33	51	89	90	95

If instead we jump right to the middle, one of three things can happen:

1. The middle one happens to be the number we were looking for, yay!
2. We realize we went too far
3. We realize we didn't go far enough

Imagine storing sorted data in an array

0	1	2	3	4	5	6	7	8	9	10
2	7	8	13	25	29	33	51	89	90	95

If instead we jump right to the middle, one of three things can happen:

1. The middle one happens to be the number we were looking for, yay!
2. We realize we went too far
3. We realize we didn't go far enough

Ruling out HALF the options in one step is so much faster than only ruling out one!

Binary search

0	1	2	3	4	5	6	7	8	9	10
2	7	8	13	25	29	33	51	89	90	95

Let's say the answer was case 3, "we didn't go far enough"

- We ruled out the entire first half, and now only have the second half to search
- We could start at the front of the second half and proceed forward...

Binary search

0	1	2	3	4	5	6	7	8	9	10
2	7	8	13	25	29	33	51	89	90	95

Let's say the answer was case 3, "we didn't go far enough"

- We ruled out the entire first half, and now only have the second half to search
- We could start at the front of the second half and proceed forward...but why do that when we know we have a better way?
Jump right to the middle of the region to search

Binary search

0	1	2	3	4	5	6	7	8	9	10
2	7	8	13	25	29	33	51	89	90	95

Let's say the answer was case β, "we didn't go far enough"

- We ruled out the er ef. half and now only have the second half
- We có proceed RECURSION!! second half and have an
Jump rig.
of the region to search

Designing a recursive algorithm

- Recursion is a way of taking a big problem and repeatedly breaking it into smaller and smaller pieces until it is so small that it can be so easily solved that it almost doesn't even need solving.
- There are two parts of a recursive algorithm:
, base case: where we identify that the problem is so small that we trivially solve it and return that result
, recursive case: where we see that the problem is still a bit too big for our taste, so we chop it into smaller bits and call our self (the function we are in now) on the smaller bits to find out the answer to the problem we face

To write a recursive function, we need base case(s) and recursive call(s)

What would be a good base case for our Binary

 Search function?A. Only three items remain: save yourself an unnecessary function call that would trivially divide them into halves of size 1, and just check all three.
B. Only two items remain: so just check the two.
C. Only one item remains: check it.
D. No items remain: obviously we didn't find it.
E. More than one

$$
\begin{aligned}
& \text { Binary Search } \\
& \text { wrapper } \\
& \text { function } \\
& \text { (for users) }
\end{aligned}
$$

bool binarySearch(const Vector<int>\& data, int key)\{ return binarySearch(data, key, 0, data.size()-1); \}
mol binarySearch(const vector<int>\& data, int keys teal
int start, int end)\{
recursive
re to be continued... function

Fractals: Boxy Snowflake Fractal

Fractals, squee!!!

Boxy Snowflake example

Where should this line of code be inserted to produce the pattern shown on the right?
drawFilledBox(window, cx, cy, dim, "Gray", "Black");
static const double SCALE $=0.45$
static void drawFractal(GWindow\& window, double cx, double cy, double dim, int order)
if (order $>=0$) \{
drawFractal (window, cx-dim/2,
$\square(A)$ lnsert code here
drawFractal(window, cx+dim/2,
(B) Insert code here
drawFractal(window, cx-dim/2,
(C) Insert code here
drawFractal(window, cx+dim/2, cy+dim/2, SCALE*dim, order-1);
(D) Insert code here
\}
(E) 0 e of the above
\}

Variants:
How can we code this?

Real or Photoshop?

Can these be made by changing the order of lines and/or deleting lines in the draw function?
(1)

(2)

(B) Only 2 is real
(D) Both are real

