
Programming Abstractions

Cynthia Lee

C S 106B

Recursion!
The exclamation point isn’t there only because this is so exciting, it also

relates to one of our recursion examples….

Announcement: Recursive art contest!

Steps to participate:

1. Go to http://recursivedrawing.com/

2. Make recursive art

3. Email me: cbl@stanford.edu

4. Win prizes!

Come to my office hours and see my Wall of Fame of past recursive art submissions!

 Submission deadline:

› Wednesday of Week 4 (April 20)

3

http://recursivedrawing.com/

Wall of Fame

Classic and important CS problem:
searching

Current issue in
computer science:
we have loads of
data! One we have
all this data, how do
we find anything?

Imagine storing sorted data in an array

How long does it take us to find a number we are

looking for?

0 1 2 3 4 5 6 7 8 9 10

2 7 8 13 25 29 33 51 89 90 95

Imagine storing sorted data in an array

How long does it take us to find a number we are

looking for?

If you start at the front and proceed forward, each

item you examine rules out 1 item

0 1 2 3 4 5 6 7 8 9 10

2 7 8 13 25 29 33 51 89 90 95

Imagine storing sorted data in an array

If instead we jump right to the middle, one of three

things can happen:

1. The middle one happens to be the number we

were looking for, yay!

2. We realize we went too far

3. We realize we didn’t go far enough

0 1 2 3 4 5 6 7 8 9 10

2 7 8 13 25 29 33 51 89 90 95

Imagine storing sorted data in an array

If instead we jump right to the middle, one of three
things can happen:

1. The middle one happens to be the number we
were looking for, yay!

2. We realize we went too far

3. We realize we didn’t go far enough

Ruling out HALF the options in one step is so
much faster than only ruling out one!

0 1 2 3 4 5 6 7 8 9 10

2 7 8 13 25 29 33 51 89 90 95

Binary search

Let’s say the answer was case 3, “we didn’t go far enough”

• We ruled out the entire first half, and now only have the

second half to search

• We could start at the front of the second half and

proceed forward…

0 1 2 3 4 5 6 7 8 9 10

2 7 8 13 25 29 33 51 89 90 95

Binary search

Let’s say the answer was case 3, “we didn’t go far enough”

• We ruled out the entire first half, and now only have the

second half to search

• We could start at the front of the second half and

proceed forward…but why do that when we know we

have a better way?

Jump right to the middle of the region to search

0 1 2 3 4 5 6 7 8 9 10

2 7 8 13 25 29 33 51 89 90 95

Binary search

Let’s say the answer was case 3, “we didn’t go far enough”

• We ruled out the entire first half, and now only have the

second half to search

• We could start at the front of the second half and

proceed forward…but why do that when we know we

have a better way?

Jump right to the middle of the region to search

0 1 2 3 4 5 6 7 8 9 10

2 7 8 13 25 29 33 51 89 90 95

RECURSION!!

Designing a recursive algorithm

 Recursion is a way of taking a big problem and repeatedly breaking it

into smaller and smaller pieces until it is so small that it can be so

easily solved that it almost doesn't even need solving.

 There are two parts of a recursive algorithm:

› base case: where we identify that the problem is so small that we

trivially solve it and return that result

› recursive case: where we see that the problem is still a bit too big for

our taste, so we chop it into smaller bits and call our self (the function

we are in now) on the smaller bits to find out the answer to the

problem we face

15

To write a recursive function, we need base
case(s) and recursive call(s)

What would be a good base case for our Binary
Search function?

A. Only three items remain: save yourself an
unnecessary function call that would trivially
divide them into halves of size 1, and just check
all three.

B. Only two items remain: so just check the two.

C. Only one item remains: check it.

D. No items remain: obviously we didn’t find it.

E. More than one

Binary Search
bool binarySearch(const Vector<int>& data, int key){

return binarySearch(data, key, 0, data.size()-1);

}

bool binarySearch(const Vector<int>& data, int key,

int start, int end){

//to be continued…

}

Fractals: Boxy Snowflake Fractal
Fractals, squee!!!

static const double SCALE = 0.45;

static void drawFractal(GWindow& window, double cx, double cy,

double dim, int order) {

if (order >= 0) {

drawFractal(window, cx-dim/2, cy+dim/2, SCALE*dim, order-1);

drawFractal(window, cx+dim/2, cy-dim/2, SCALE*dim, order-1);

drawFractal(window, cx-dim/2, cy-dim/2, SCALE*dim, order-1);

drawFractal(window, cx+dim/2, cy+dim/2, SCALE*dim, order-1);

}

}

Boxy Snowflake example

Where should this line of code be inserted to produce the pattern
shown on the right?

drawFilledBox(window, cx, cy, dim, "Gray", "Black");

(E) None of the above

(A) Insert code here

(B) Insert code here

(C) Insert code here

(D) Insert code here

Variants:

How can we code this?

Real or Photoshop?

Can these be made by changing the order of lines and/or
deleting lines in the draw function?

(A) Only 1 is real (B) Only 2 is real

(C) Both are ‘shopped (D) Both are real

(1) (2)

