
CS106B                                                                                                                               Spring 2016 

Cynthia Lee  

Assignment 7: Trailblazer 
Thanks to Keith Schwarz, Dawson Zhou, Eric Roberts, Julie Zelenski, Nick Parlante, Jerry Cain, and Leonid Shamis (UC Davis) for 
creating and evolving this assignment and its predecessor, "Pathfinder."  BasicGraph class and other modifications by Marty 
Stepp. Final edits by Cynthia Lee. 
 

Due: Monday, May 30th at 6:00pm 

Hard Deadline: Wednesday, June 1st at 6:00pm 

No submissions accepted after the hard deadline for any reason. You may not use more 
than one free late day on this assignment, even if you have more than one remaining.  

Pair programming is permitted on this assignment. See course information sheet and honor code. 
 

The assignment has two main purposes: 
1. To give you experience using one implementation of a Graph ADT. 
2. To give you experience coding several graph algorithms of theoretical and practical 

interest. 
 

Deliverables (turn in these files): 
 trailblazer.cpp: code to perform graph path searches 

 map-custom.txt, map-custom.jpg: a world map of your own creation 

 Do not modify the other files in the starter code. 
 
This is a pair assignment.  If you work as a pair, comment both members' names on top of every 
submitted code file.  Only one of you should submit the assignment; do not turn in two copies. 
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PROGRAM OVERVIEW 
This program displays various 2-
dimensional worlds that represent either 
maps, mazes, or terrain and allows the user 
to generate paths in a world from one point 
to another.  When you start up the program, 
you will see a graphical window containing a 
2D maze, where white squares are open and 
black ones represent walls.  The program is 
also able to display terrain, where bright 
colors indicate higher elevations and darker 
colors represent lower elevations.  Mountain 
ranges appear in bright white, while deep 
canyons are closer to black. 
 
If you click on any two points in the world, 
the program will find a path from the 
starting position to the ending position.  As 
it does so, it will color the vertices green, 
yellow, and gray based on the colors 
assigned to them by the algorithm.  Once the 
path is found, the program will highlight it and display information about the path cost in the 
console.  The user can select one of four path-searching algorithms in the top menu: 

 Depth-first search (DFS) 
 Breadth-first search (BFS) 
 Dijkstra's algorithm 
 A* search 
 (We didn’t forget about Kruskal’s! That fits in later.) 

 

The window also contains several controls.  You can load mazes and terrains of different sizes 
(tiny, small, medium, large, and huge) from the bottom drop-down menu and then clicking the 
"Load" button. In your trailblazer.cpp file, you must write the following 5 functions for finding 
paths and creating mazes in a graph: 

 Vector<Vertex*> depthFirstSearch(BasicGraph& graph, Vertex* start, Vertex* end) 

 Vector<Vertex*> breadthFirstSearch(BasicGraph& graph, Vertex* start, Vertex* 
end) 

 Vector<Vertex*> dijkstrasAlgorithm(BasicGraph& graph, Vertex* start, Vertex* 
end) 

 Vector<Vertex*> aStar(BasicGraph& graph, Vertex* start, Vertex* end) 

 Set<Edge*> kruskal(BasicGraph& graph) 

Each of the first four implements a path-searching algorithm taught in class.  You should search 
the given graph for a path from the given start vertex to the given end vertex.  If you find such a 
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path, the path you return should be a list of all vertices along that path, with the starting vertex 
first (index 0 of the vector) and the ending vertex last. 
 
If no path is found, return an empty vector.  If the start and end vertices are the same, return a 
one-element vector containing only that vertex.  Though the mazes and terrains in our main app 
are undirected graphs, your code should not assume this.  You may assume that the graph passed 
has a valid state. 
 
Our provided main client program will allow you to test each algorithm one at a time before 
moving on to the next.  You can add more functions as helpers if you like, particularly to help 
you implement any recursive algorithms and/or to remove redundancy between some 
algorithms containing similar code.  
 
The 2D world is represented by a Stanford Library BasicGraph, 
where each vertex represents a specific location on the world.  
If it is a maze, each location represents one square in the maze's 
grid-like world.  Open squares are connected by edges to any 
other neighboring open squares that are directly adjacent to 
them (differ by +/- 1 row or column exactly).  Black "wall" 
squares are not connected as neighbors to any other squares; no 
edges touch them.  If the world is a terrain rather than a maze, 
each location represents some elevation between 0 (lowland) and 1 (high mountain peak).  
Terrain locations are connected to neighbors in all 8 directions including diagonal neighbors, but 
maze locations are only connected to neighbors directly up, down, left, and right. 
 
Your code can treat maps, mazes, and terrains exactly the same.  You should just think of each 
kind of world as a graph with vertices and edges that connect neighboring vertices.  In the case 
of mazes, vertices happen to represent 2D locations and neighbors happen to be directly up, 
down, left, right, etc., but your code does not utilize or rely on that information.  Your path-
searching algorithms will work on any kind of graph that might be passed to them. 

PROVIDED CODE 
We provide you with a lot of starter code for this assignment. Here is a quick breakdown of what 
each file contains, though you do not need to examine or know about each file or its contents in 
order to complete the assignment. 
Don’t modify any code except trailblazer.cpp. 

 trailblazer.h/.cpp: We provide a skeleton version of these files where you will write 
your path-searching code for the assignment. 

 Color.h/.cpp: Constants representing colors of vertices. 
 TrailblazerGUI.h/.cpp: The app's graphical user interface. 
 trailblazermain/.cpp: The main function that initializes the GUI and launches the 

application. 
 World(Abstract,Grid,Map,Maze,Terrain).h/.cpp: Hierarchy of types of world 

graphs. 
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Each vertex in the graph is represented by an instance of the Vertex structure, which has the 
following members: 

Vertex member Description 

string name vertex's name, such as "r34c25" or "vertex17" 

Set<Edge*> edges edges outbound from this vertex 

double cost cost to reach this vertex (initially 0) 

bool visited whether this vertex has been visited yet (initially false) 

Vertex* previous pointer to a vertex that comes before this one; initially NULL 

void setColor(Color c) sets this vertex to be drawn in the given color in the GUI,  
one of WHITE, GRAY, YELLOW, or GREEN 

Color getColor() returns color you set previously using setColor; initially 
UNCOLORED 

void resetData() sets cost, visited, previous, and color back to their initial 
values 

string toString() returns a printable string representation of the vertex for 
debugging 

 
The cost, visited, and previous member variables are for you to use in path-search algorithms. 
Several algorithms depend on being able to "mark" a vertex as visited, or to associate a cost with 
a vertex, or to keep pointers from one vertex to another to trace a path. Use these members in 
each vertex to keep track of such information. Call resetData on a vertex to wipe this data 
(returns color to “UNCOLORED”), or on the BasicGraph as a whole to wipe all such data for all 
vertices. 
 
Each edge in the graph is represented by an instance of the Edge structure, which has the 
following members: 

Edge member Description 

Vertex* start the starting vertex of this edge 

Vertex* finish the ending vertex of this edge (i.e., finish is a neighbor of start) 

double cost cost to traverse this edge 
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string toString() returns a printable string representation of the vertex for 
debugging 

 
The vertices and edges are contained inside a BasicGraph object passed to each of your algorithm 
functions. See the Stanford C++ library documentation for descriptions of the members of 
the BasicGraph class. In addition to those members, BasicGraph includes all of the public 
members from its parent class Graph. 
 
BasicGraph has a useful public member named resetData. You must call resetData on the 
graph at the start of any path-searching algorithm that wants to store data in the vertices, to 
make sure that no stale data is left in the vertices from some prior call. Call it at the start of your 
algorithm and not at the end, to ensure that any old state is cleaned out before your algorithm 
begins. If you don't call it, your algorithms may fail for subsequent calls. 
 

COLORING VERTICES 
In addition to searching for a path in each algorithm, we also want you to add some code to give 
colors to various vertices at various times. This coloring information is used by the GUI to show 
the progress of your algorithm and to provide the appearance of animation. To give a color to a 
vertex, call the color member function on that vertex's Vertex object, passing it a global color 
constant such as GRAY, YELLOW, or GREEN. For example: 

Vertex* myVertex = graph.getVertex("foo"); 
myVertex->setColor(GREEN); // set the vertex's color to green 

Here is a listing of colors available and when you should use them (see also lecture notes from 
the Graph lectures): 

 default = uncolored: This is the color after a call to resetData. In class, we talked about 
all the nodes starting with gray color (and then changing to yellow and green). For this 
assignment, that beginning/unexplored color should be this default value UNCOLORED, 
not the actual color GRAY. Do not loop over all the nodes and color them GRAY to start; 
just call resetData. We will use the actual color GRAY for a different purpose (see 
below). 

 enqueued = yellow: Whenever you enqueue a vertex to be visited for the first time, such 
as in BFS and Dijkstra's algorithm when you add a vertex to a data structure for later 
processing, color it yellow (YELLOW). 

 visited = green: Whenever your algorithm directly visits and examines a particular vertex, 
such as when it is dequeued from the processing queue in BFS or Dijkstra's algorithm, or 
when it is the starting vertex of a recursive call in DFS, color it green (GREEN). 

 eliminated = gray: When the DFS algorithm has finished exploring a vertex and did not 
find a path from that vertex, and is therefore "giving up" on that vertex as a candidate, 
color it gray (GRAY). The only algorithm that explicitly "backtracks" like this is depth-
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first search (DFS). You don't need to set any vertices to gray in any other path-searching 
algorithms besides DFS. 

 
The provided GUI has an animation slider that you can drag to set a delay between coloring calls. 
If the slider is not all the way to its left edge, each call to setColor on a vertex will pause the GUI 
briefly, causing the appearance of animation so that you can watch your algorithms run. 

GRAPH ALGORITHMS 
Depth-first search implementation notes: You can implement it recursively as shown in 
lecture, or non-recursively. The choice is up to you. A recursive solution can sometimes run 
slowly or crash on extremely large worlds; this is okay. You do not need to modify your DFS 
implementation to avoid crashes due to excessive call stack size. 
 
Breadth-first search implementation notes: Your code will need to regenerate the path that it 
finds, so look at the version of the algorithm pseudo-code from lecture that keeps track of paths 
along the way. One interesting note is that BFS and Dijkstra's algorithm behave exactly the same 
when run on a maze, but differently on a terrain. (Why?) 
 
Dijkstra's algorithm implementation notes: The version of Dijkstra's algorithm suggested in 
the course reader is slightly different than the version we discussed in lecture and is less efficient. 
Your implementation of Dijkstra's algorithm should follow the version we discussed in lecture. 
The priority queue should store vertices to visit, and once you find the destination, you should 
reconstruct the shortest path back. See the lecture slides for more details. 
 
Our pseudocode for Dijkstra's algorithm occasionally refers to "infinity" as an initial value when 
talking about the cost of reaching a vertex. If you want to refer to infinity in your code, you can 
use the double constant POSITIVE_INFINITY that is visible to your code. 
 
Both Dijkstra's algorithm and A* involve a priority queue of vertices to process, and 
furthermore, they each depend on the ability to alter a given vertex's priority in the queue as 
the algorithm progresses. To do this, call the changePriority member function on the priority 
queue and pass it the new priority to use. It is important to use this function here because 
otherwise there is no way to access an arbitrary element from the priority queue to find the one 
whose priority you want to change. You would have to remove vertices repeatedly until you 
found the one you wanted, which would be very expensive and wasteful. The new priority you 
pass must be at least as urgent as the old priority for that vertex (because the function bubbles a 
value upward in the priority queue's internal heap structure). 
 
Note that the notion of a given vertex's current priority might be stored in two places in your 
code: in the cost field of the Vertex structure itself, and in the priority queue's ordering. You'll 
have to keep these two in sync yourself; if you update just the vertex, the priority queue won't 
know about it if you don't call changePriority, and vice versa. If the two values get out of sync, 
this can lead to bugs in your program. 
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A* implementation notes: As discussed in class, the A* search algorithm is essentially a 
variation of Dijkstra's algorithm that uses heuristics to fine-tune the order of elements in its 
priority queue to explore more likely desirable elements first. So when you are implementing A*, 
you need a heuristic function to incorporate into the algorithm. We supply you with a global 
function called heuristicFunction that accepts a pointer to two vertices v1 and v2 and returns a 
heuristic value from v1 to v2 as a double. You can assume that this is an admissible heuristic, 
meaning that it never overestimates the distance to the destination (which is important for A*). 
For example: 

Vertex* v1 = graph.getVertex("foo"); 
Vertex* v2 = graph.getVertex("bar"); 
double h = heuristicFunction(v1, v2); // get an A* heuristic 
 

You can compare the behavior of Dijkstra's algorithm and A* (or any pair of algorithms). First try 
performing a search between two points using Dijkstra's algorithm, then select A* and press the 
"Run" button at the top of the GUI window. This will repeat the same search using the currently 
selected algorithm. Run a search using Dijkstra's algorithm, switch the algorithm choice to "A*," 
then run that search to see how much more efficient A* is. 
 
Your A* search algorithm should always return a path with the same length and cost as the path 
found by Dijkstra's algorithm. If you find that the algorithms give paths of different costs, it 
probably indicates a bug in your solution. For mazes, all three of BFS, Dijkstra's algorithm, and 
A* should return paths with the same length and cost. 
 
The A* algorithm performs no better than Dijkstra's algorithm when run on maps because they 
have no heuristic. 
 
Several expected output files have been posted to the class web site. If you have implemented 
each path-searching algorithm correctly, for DFS you should get any valid path from the start to 
the end; for BFS you should get the same path lengths as shown in the expected outputs posted 
on the class web site. For Dijkstra's and A* you should get the same path costs as shown in the 
expected outputs. But you do not need to exactly match our path itself, nor its "locations visited", 
so long as your path is a correct one. For Kruskal's algorithm (described next), your code must 
find a valid minimum spanning tree on the given graph. If there are several of equal total weight, 
any will suffice. 
 
As mentioned previously, your code should not assume that the graph is undirected; we will test 
your code with directed graphs as well as undirected ones. 

RANDOM MAZE GENERATION (KRUSKAL’S MST) 
Your final task in this assignment is to implement Kruskal's algorithm for finding a minimum 
spanning tree.  Your function should accept a graph as a parameter, and you should return a set 
of pointers to edges in the graph such that those edges would connect the graph's vertices into a 
minimum spanning tree.  (Don't actually add/remove edges from the graph object passed in by 
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calling addEdge, removeEdge, etc. on it.  Just return the set of edges separately.)  Specifically, 
your task is to write a function with the following signature: 

Set<Edge*> kruskal(BasicGraph& graph) 

The pseudocode for Kruskal’s is as follows: 
kruskal(graph): 

1. Place each vertex into its own "cluster" (group of reachable vertices). 
2. Put all edges into a priority queue, using weights as priorities. 
3. While there are two or more separate clusters remaining: 

o Dequeue an edge e from the priority queue. 
o If the start and finish vertices of e are not in the same cluster: 

 Merge the clusters containing the start and finish vertices of e. 
 Add e to your spanning tree. 

o Else: 
 Do not add e to your spanning tree. 

4. Once the while loop terminates, your spanning tree is complete. 
 
The specific application we'll Kruskal's algorithm to solve is the problem of generating new 
random mazes. As discussed earlier in this handout, you can think of a maze as a graph, where 
the vertices are connected as follows.  

 
In the tree (above left), lines represent edges between connected neighbors, which are passable. 
Neighbors that are not connected by an edge can be thought of as having an impassable "wall" 
between them. You can turn the tree (above left) into a maze (above right) by drawing lines in all 
of the empty space, as shown. Then following figure would be a fully connected maze with no 
walls (because passage is always possible between all adjacent nodes).  

 
 
Of course, a maze with no walls in not an interesting maze! So we want to strategically remove 
some of the edges from the above example to get a nice maze. This is done by assigning each 
edge a random weight and then running Kruskal's algorithm on the resulting graph. Kruskal’s 
will select a subset of the edges of a graph, and discard the others. In particular, using Kruskal’s, 
you will end up with a spanning tree: there will be exactly one path between each pair of vertices. 
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For example, assigning the edges in the above graph weights as follows and running Kruskal's 
algorithm would produce the following result: 
 

 
 
Whenever you click the GUI's "Load" button with one of the "Random" options selected, our 
starter code will generate a maze of the given size with every vertex connected to all of its 
neighbors, as in the "fully connected" maze figure above. Our code will randomly assign 
weights to each edge for you; you shouldn't change the weights we pass in. Then we will pass 
the graph to your algorithm for you to find the minimum spanning tree. Once you return your 
set of edges, our starter code will process your set and fill in "walls" between any neighbors that 
are not directly connected by an edge. The resulting maze will show in the GUI. Once you've made 
a maze, you can run your path-finding algorithms to locate paths between points in the maze. 
Implementing this function raises questions such as: 

 How will you keep track of which nodes are in each cluster? 
 How will you determine which cluster a node belongs to? 
 How will you merge together two clusters? 

 
Think about these issues yourself and come up with a clean and efficient way of solving the 
problem. Our own sample solution is able to generate "Large" sized mazes in a few seconds' time 
at most, and you should strive for similar efficiency. If your maze generation algorithm takes, 
say, close to a minute or more to finish, optimize it. 

CREATIVE ASPECT: YOUR OWN MAP 
Turn in files map-custom.txt and map-custom.jpg representing a map graph of your own.  
Put the files into the res/ folder of your project.  The text file contains information about the 
graph's vertices and edges.  The graph can be whatever you want, so long as it is not essentially 
the same as any of the provided graphs.  Your image can be any (non-offensive) JPEG image you 
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like; we encourage you to use a search engine like Google Image Search to find an interesting 
background.  The text file's format should exactly match the following example, from map-
small.txt.  For full credit, your file should load successfully into the program without causing an 
error and be searchable by the user. 
 

DEVELOPMENT STRATEGY AND TIPS 
 Trace through the algorithms by hand on small sample graphs before coding them. 
 Work step-by-step. Complete each algorithm before starting the next one. You can test 

each individually even if others are incomplete. We suggest doing DFS/BFS, then 
Dijkstra's, then A*, and finally Kruskal's. 

 Start out with tiny worlds first. It is much easier to trace your algorithm and/or print 
every step of its execution if the world is small. Once your output matches perfectly on 
tiny files, go to small, medium, large. 

 In Dijkstra's algorithm, you cannot call changePriority on a vertex that is not already in 
the queue. You also cannot call changePriority with a priority less urgent (greater) than 
the existing priority in the queue. 

 Remember that edge costs are doubles, not ints. 
 In A* search, when storing the candidate distance to a vertex, do not add the heuristic 

value in. The heuristic is only used when setting the priorities in the priority queue, not 
when setting the cost fields of vertices. 

 Don't forget to keep previous pointers up-to-date in Dijkstra's algorithm or A* search. 
Otherwise, though you'll dequeue the vertices in the proper order, your resulting path 
might end up incorrect. 

 In Dijkstra's algorithm, don't stop your algorithm early when you enqueue the ending 
vertex; stop it when you dequeue the ending vertex (that is, when you color the vertex 
green). 

 When merging clusters together in Kruskal's algorithm, remember that every vertex in 
the same cluster as either endpoint (not just the endpoints themselves) should be merged 
together into one resulting cluster. 

STYLE AND GRADING 
Items from prior assignment(s) specs also apply here; refer to those documents as needed. Follow 
instructions about procedural decomposition, variables, types, parameters, value vs. reference, 
and commenting. Place inline comments as needed on complex code inside function bodies. Don't 
forget to cite sources you used in your comments. Refer to the course Style Guide for more 
discussion of coding style. 
 
Part of your grade will come from appropriately implementing the graph algorithms as 
described in class. Redundancy is another major grading focus; avoid repeated logic as much as 
possible. 
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Your code should have no memory leaks. You should not need to free anything because your code 
should not need to use the new operator. If for some reason you do use new, free it as soon as you 
are done using the object. 
 
Please remember to follow the Honor Code on this assignment. Submit your own (pair's) work; 
do not look at others' solutions. Cite sources. Do not give out your solution; do not place a solution 
on a public web site or forum. 

SUGGESTED EXTENSIONS 
Here are some suggested extensions. Those I especially recommend for students who want a 
challenge are marked with **. 

 Bidirectional search: A common alternative to using A* search is to use a bidirectional 
search algorithm, in which you search outward from both the start and end vertices 
simultaneously. As soon as the two searches find a vertex in common, you can construct 
a path from the start vertex to the end vertex by joining the two paths to that vertex 
together. Try coding this algorithm up as a fifth algorithm choice. 

 **Disjoint-set forest: When implementing Kruskal's algorithm, you need a way to keep 
track of which vertices in the graph are connected to one another. While it's possible to 
do this using the standard collections types, there is an extremely simple and much faster 
way to do this using a disjoint-set forest, a specialized data structure that makes it easy to 
determine if two vertices are connected and to connect pairs of vertices. It is not 
particularly hard to code up a disjoint-set forest, and doing so can dramatically reduce 
time required to create a maze. 

 New world type: The existing code has several classes that extend a superclass World to 
represent maps, mazes, and terrains. Add your own new subclass for a type of world that 
we didn't include. 

 Write better heuristics: The heuristics we have provided for estimating terrain costs and 
map / maze distances are simple admissible heuristics that work reasonably well. Try 
seeing if you can modify these functions to produce more accurate heuristics. If you do 
this correctly, you can cut down on the amount of unnecessary searching required. 
However, make sure that your heuristics are admissible; that is, they should never 
overestimate the distance from any starting vertex to any destination vertex. 

 **Choose a different maze-generation algorithm: Kruskal's algorithm is only one of 
many ways to generate a random maze. Another minimum spanning tree algorithm called 
Prim's algorithm can also be used here to generate random mazes. Try adding Prim's 
algorithm in addition to Kruskal's algorithm for maze generation. Can you generate more 
complicated mazes and maps? 

 Write a better terrain generator: Our starter code generates terrain uses the diamond-
square algorithm, coupled with a Gaussian blur. Many other algorithms exist that can 
generate random terrains, such as the 2D Perlin Noise algorithm. Try implementing a 
different terrain generator and see if it produces better results. 

 Other: If you have your own creative idea for an extra feature, ask your SL and/or the 
instructor about it. 
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Indicating that you have done extra features: If you complete any extra features, then in the comment 
heading on the top of your program, please list all extras that you worked on and where in the 
code they can be found (what functions, lines, etc. so that the grader can look at their code easily). 
 
Submitting a program with extra features: Since we use automated testing for part of our grading 
process, it is important that you submit a program that conforms to the preceding spec, even if 
you want to do extra features.  If your extras cause your program to change the output that it 
produces in such a way that it no longer matches the expected sample output test cases provided, 
you should submit your program twice: a first time without any extra features added (or with all 
necessary extras disabled or commented out), and a second time with the extras enabled.  Please 
distinguish them in by explaining which is which in the comment header.  Our turnin system 
saves every submission you make, so if you make multiple submissions we will be able to view all 
of them; your previously submitted files will not be lost or overwritten. 


