Trailblazer YEAH Hours

Alexander De Baets

r
|£| CS 1068 Trailblazer

Dikstra's Agorittm = | Delay:]

World: | terrain05-medium.txt | |

| Run || Clear || r38c64

Load

Exit

[Y

What do you have to do?

Vector depthFirstSearch(BasicGraph& graph, Vertex* start, Vertex* end)
Vector breadthFirstSearch(BasicGraph& graph, Vertex* start, Vertex* end)
Vector dijkstrasAlgorithm(BasicGraph& graph, Vertex* start, Vertex* end)
Vector aStar(BasicGraph& graph, Vertex* start, Vertex* end)

Set kruskal(BasicGraph& graph)

All your code should live in trailblazer.cpp, don’'t modify any other files!

Searching

You'll be given:

e Start Vertex
e End Vertex
e BasicGraph

Your job is to find a path from Start Vertex to End Vertex.

What does the Vertex look like?

string name

vertex's name, such as "r34c25" or "vertex17"

Set<Edge*> edges

edges outbound from this vertex

double cost

cost to reach this vertex (initially o)

bool visited

whether this vertex has been visited yet (initially false)

Vertex* previous

pointer to a vertex that comes before this one; initially NULL

void setColor(Color c)

sets this vertex to be drawn in the given color in the GUI,
one of WHITE, GRAY, YELLOW, or GREEN

Color getColor()

returns color you set previously using setColor; initially
UNCOLORED

void resetData()

sets cost, visited, previous, and color back to their initial
values

string toString()

returns a printable string representation of the vertex for
debugging

What does the Edge look like?

Edge member

Description

Vertex* start

the starting vertex of this edge

Vertex* finish

the ending vertex of this edge (i.e., finish is a neighbor of start)

double cost

cost to traverse this edge

Section Seven!

The first two pages are just HUGE reference sheets! You should go through it
before you start this assignment, it will save you a lot of pain!

Depth-first search (DFS) pseudo-code:

function dfs(vl, v2):
dfs(vl, v2, { }).

function dfs(vl, v2, path):
path += vi.
mark vl as visited.
if vl 1s v2:
a path is found!

for each unvisited neighbor n of vil:
if dfs(n, v2, path) finds a path:
a path is found!

path -= vl. // path is not found.

Breadth-first search (BFS) pseudo-code:

function bfs(vl, v2):
queue := {vl}.
mark vl as visited.

while queue is not empty:
v := queue.dequeue().
if v is v2:
a path is found!

for each unvisited neighbor n of v:

mark n as visited.
queue.enqueue(n).

// path is not found.

Dijkstra's algorithm pseudo-code:

function dijkstra(vl, v2):
for each vertex v:

v's cost := infinity.
v's previous := none.
vl's cost := @.

pqueue := {vl1, at priority 0}.

while pqueue is not empty:
VvV := pqueue.dequeue().
mark v as visited.
for each unvisited neighbor n of v:
cost := v's cost +
weight of edge (v, n).
if cost < n's cost:
n's cost := cost.
n's previous := v.
enqueue/update n in pqueue.
reconstruct path back from v2 to vi.

A* algorithm pseudo-code:

function astar(vl, v2):
for each vertex v:

v's cost := infinity.
v's previous := none.
vl's cost := 0.

pqueue := {vl, at priority H(vi, v2)}.

while pqueue is not empty:
v := pqueue.dequeue().
mark v as visited.
for each unvisited neighbor n of v:
cost := v's cost +
weight of edge (v, n).
if cost < n's cost:
n‘s cost := cost.
n's previous := v.
enqueue n at priority (cost + H(n, v2)).
reconstruct path back from v2 to vil.

The pseudocode for Kruskal’s is as follows:
kruskal(graph):
1. Place each vertex into its own "cluster" (group of reachable vertices).
2. Putall edges into a priority queue, using weights as priorities.
3. While there are two or more separate clusters remaining;
o Dequeue an edge e from the priority queue.
o If the start and finish vertices of e are not in the same cluster:
* Merge the clusters containing the start and finish vertices of e.
* Add e to your spanning tree.
o Else:
* Do not add e to your spanning tree.
4, Once the while loop terminates, your spanning tree is complete.

