HUFFMAN ENCODING
YEAH HOURS

Alexander De Baets

Cynthia Spent a lot of time
working out some examples,
so be sure to watch lecture if

you missed |t

The Problem

byte 1 2 3 4 5 6 7 8 9 10
char 'a' g v 'a' o’ ! “e* 'a' ‘b’ EOF
ASCII 97 98 32 97 98 32 99 97 98 256
binary | 01100001 | 91100010 | ©0100000 | 01100001 | 01100010 | @©100000 | 01100011 | @1100001 | 01100010 | N/A

So, how do | do that?

1. Count character frequencies: Make a quick pass through the file to be encoded,
counting how many of each distinct character you find in the text.

2. Build encoding tree: Build a binary tree using a specific queue-based algorithm.

3. Build encoding map: Traverse the binary tree to record the binary encodings of each
character in a map for future quick-access use.

4. Encode the file: Do a second pass through the file, looking up each byte (each character)
in the map from Step 3, to get the encoding for each byte.

Step 1: Count the character frequencies

byte 1 2 3 4 5 6 7 8 9 10
char 'a' 'b' vt 'a' B’ ' g 'a’ 'b' EOF
ASCII 97 98 32 97 98 32 99 97 98 256
binary | 01100001 | 91100010 | 00100000 | 01100001 | 1100010 | 00100000 | 01100011 | 1100001 | 01100010 | N/A

Step 2: Building the Encoding Tree

(Example on board)

THe Huffman Node Struct

struct HuffmanNode {
int character; // character being represented by this node

int count; // number of occurrences of that character
HuffmanNode* zero; // © (left) subtree (NULL if empty)
HuffmanNode* one; // 1 (right) subtree (NULL if empty)

}s

Step 3: Building the encoding map

(on the board)

Reading and Writing to Files

obitstream (bit output stream) member

Description

void writeBit(int bit)

writes a single bit (0 or 1) to the output stream

ibitstream (bit input stream) member

Description

int readBit()

reads a single bit (0 or 1) from input; -1 at end of file

~r S -

—r = .

ostream (output stream) member

Description

void put(int byte)

writes a single byte (character, 8 bits) to the output stream

istream (input stream) member

Description

int get()

reads a single byte (character, 8 bits) from input; -1 at EOF

Step 4: Encode the Text Datal

(on board)

Decoding the Data

(on board)

The Header

et R e e Es i ety aelpt i d . —
byte ! 2 3 Rl 5 6 7 8 9 10 11 12 13 14 15 16 17
l{l l3! lzl t:l '2. '1' L] L] lgl l?l l:l l3l IJI L Ll lgl ls' l:l I3!
byte | 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
l,l L] L] I9I lgl L :I l1l Il'l L] L] '2. ISI IGI I:I .1[I}I ‘ = ‘
/ / /
// output << frequencyTable; input >> frequencyTable; / / /
// output.writeBit(...); input.readBit();

10110010 11000101 01101100

Putting it all together!

e Compress
e Decompress
e FreeTlree

