
CS106B Spring 2016

Cynthia Lee

Assignment 5: Priority Queue
Assignment handout authors include: Cynthia Lee, Marty Stepp, and Julie Zelenski.

Some edits over time by Jerry Cain, Keith Schwarz, and others.

Due: Wednesday, May 11th at 6:00pm

Pair programming is permitted on this assignment. See course information sheet and honor code.

On the very first day of class, I talked about the structure of our course overall as follows: in the
beginning, we learn about the ADTs from the client perspective, then (after an aside to study
recursion) we learn about how the ADTs could be implemented behind the scenes in C++. We are
now firmly in the “behind the scenes” stage of the course, with lectures on ArrayList
implementation, Priority Queue implementation, and Map implementation. For this assignment,
you’ll be operating directly in the same space by implementing a PriorityQueue in several
different ways. It’s the most low-level assignment of the quarter, which can be challenging, but
it’s an irreplaceable learning experience in your programming life.

The assignment has four main purposes:
1. To give you experience implementing a data structure “behind the scenes.”
2. To give you experience working with pointers and dynamic memory.
3. To give you experience working with several classic data structures.
4. To compare, using empirical experiments, the performance of a data structures that

share the same interface but have different implementations.

Deliverables (turn in these files):
 SLinkedPriorityQueue.h/.cpp: a PQ implementation using a sorted linked list as

internal storage

 USLinkedPriorityQueue.h/.cpp: a PQ implementation using an unsorted linked list
as internal storage

 HeapPriorityQueue.h/.cpp: a PQ implementation using a "heap" array as internal

storage

 analysis.pdf: a written document reporting your results on empirical experiments
with your code’s performance (you may use any program to do the writeup, but please
only turn in PDF, not .doc/.odt/etc.)

 pqueue-main.cpp: a simple test harness to run tests necessary for your analysis.pdf
analysis.

This is a pair assignment. If you work as a pair, comment both members' names on top of every
submitted code file. Only one of you should submit the assignment; do not turn in two copies.

 2

THE PRIORITY QUEUE COLLECTION
A priority queue is a collection that is similar to a queue, except that the elements are enqueued
with "priority" ratings. Then when the elements are dequeued later, they always come out in
increasing order of priority. That is, regardless of the order in which you add (enqueue) the
elements, when you remove (dequeue) them, the one with the lowest priority number comes out
first, then the second-smallest, and so on, with the largest priority item coming out last. Priority
queues are useful for modeling tasks where some jobs are more important to process than others,
like the line of patients at an emergency room (a severely injured patient has higher "priority"
than one with a cold).

We will use the convention that a smaller priority number means a greater urgency, such that
a priority-1 item would take precedence over a priority-2 item. Because terms like "higher
priority" can be confusing, since a "higher" priority means a lower integer value, we will follow
the convention in this document of referring to a "more urgent" priority for a smaller integer
and a "less urgent" priority for a greater integer.

In this assignment, you will be writing three different implementations of a priority queue class
that stores strings. If two strings in the queue have the same priority, you will break ties by
considering the one that comes first in alphabetical order to come first. Use C++'s built-in
relational operators (<, >, <=, etc.) to compare the strings.

For example, if you enqueue these strings into a priority queue:

enqueue "x" with priority 5
enqueue "b" with priority 4
enqueue "a" with priority 8
enqueue "m" with priority 5
enqueue "q" with priority 5
enqueue "t" with priority 2

Then if you were to dequeue the strings, they would be returned in this order:
"t", then "b", then "m", then "q", then "x", then "a"

You could think of a priority queue as a sorted queue where the elements are sorted by priority,
breaking ties by comparing the string elements themselves. But internally the priority queue
might not actually store its elements in sorted order; all that matters is that when they are
dequeued, they come out in sorted order by priority. An actual priority queue implementation
is not required to store its internal data in any particular order, so long as it dequeues its elements
in increasing order of priority. As we will see, this difference between the external expected
behavior of the priority queue and its true internal state can lead to interesting differences in
implementation.

 3

PRIORITY QUEUE IMPLEMENTATIONS
1) SLinkedPriorityQueue: The first priority queue implementation you will write uses a
sorted linked list as its internal data storage. This class is only allowed to have a single private
member variable inside it: a pointer to the front of your list. The elements of the linked list are
stored in sorted order internally. As new elements are enqueued, you should add them at the
appropriate place in the linked list so as to maintain the sorted order. When dequeuing, you do
not need to search the linked list to find the smallest element and remove/return it; it is always
at the front of the list. The following is a diagram of the internal linked list state of a
SLinkedPriorityQueue after enqueuing the elements listed on the previous page:
 data next data next data next data next data next data next

 +-------+---+ +-------+---+ +-------+---+ +-------+---+ +-------+---+ +-------+---+

front -> | "t":2 | | -> | "b":4 | | -> | "m":5 | | -> | "q":5 | | -> | "x":5 | | -> | "a":8 | / |

 +-------+---+ +-------+---+ +-------+---+ +-------+---+ +-------+---+ +-------+---+

The hardest part of this implementation is inserting a new node in the proper place when
enqueue is called. You must look for the proper insertion point by finding the first element
whose priority is at least as large as the new value to insert, breaking ties by comparing the
strings. Remember that, as shown in class, you must often stop one node early so that you can
adjust the next pointer of the preceding node. For example, if you were going to insert the value
"o" with priority 5 into the list shown above , your code should iterate until you have a pointer
to the node containing "m", as shown below:
 data next data next data next data next data next data next

 +-------+---+ +-------+---+ +-------+---+ +-------+---+ +-------+---+ +-------+---+

front -> | "t":2 | | -> | "b":4 | | -> | "m":5 | | -> | "q":5 | | -> | "x":5 | | -> | "a":8 | / |

 +-------+---+ +-------+---+ +-------+---+ +-------+---+ +-------+---+ +-------+---+

 ^

 |

 current --->---+

Once the current pointer shown above points to the right location, you can insert the new node
as shown below:
 data next data next data next data next data next data next

 +-------+---+ +-------+---+ +-------+---+ +-------+---+ +-------+---+ +-------+---+

front -> | "t":2 | | -> | "b":4 | | -> | "m":5 | * | -> | "q":5 | | -> | "x":5 | | -> | "a":8 | / |

 +-------+---+ +-------+---+ +-------+-+-+ +-------+---+ +-------+---+ +-------+---+

 ^ | ^

 | | \

 current --->---+ | +-------+-+-+

 +-> | "o":5 | * |

 +-------+---+

We supply you with a ListNode structure that is a small object representing a single node of the
linked list. Each ListNode stores a string value and integer priority in it, and a pointer to a next

 4

node. You should use this structure to store the elements of your priority queue along with their
priorities.

Your list is not allowed to store an integer size member variable; you must use the presence of a
NULL next pointer to figure out where the end of the list is and how long it is.

2) USLinkedPriorityQueue: The second priority queue implementation you will write uses
an unsorted linked list as its internal data storage. This class is only allowed to have a single
private member variable inside it: a pointer to the front of your list. The elements of the linked
list are stored in unsorted order internally. As new elements are enqueued, you should add at
the front. When dequeuing, you need to search the linked list to find the smallest element and
remove/return it; it could be anywhere. The following is a diagram of the internal linked list
state of a USLinkedPriorityQueue after enqueuing the elements listed on the previous page:
 data next data next data next data next data next data next

 +-------+---+ +-------+---+ +-------+---+ +-------+---+ +-------+---+ +-------+---+

front -> | "x":5 | | -> | "b":4 | | -> | "a":8 | | -> | "m":5 | | -> | "q":5 | | -> | "t":2 | / |

 +-------+---+ +-------+---+ +-------+---+ +-------+---+ +-------+---+ +-------+---+

We supply you with a ListNode structure that is a small object representing a single node of the
linked list. Each ListNode stores a string value and integer priority in it, and a pointer to a next
node. You should use this structure to store the elements of your priority queue along with their
priorities.

Your list is not allowed to store an integer size member variable; you must use the presence of a
NULL next pointer to figure out where the end of the list is and how long it is.

3) HeapPriorityQueue: The third priority queue implementation you will write uses a special
array structure called a binary heap as its internal data storage. The only private member
variables this class is allowed to have inside it are a pointer to your internal array of elements,
and integers for the array's capacity and the priority queue's size.

As discussed in lecture, a binary heap is an unfilled array that maintains a "heap ordering"
property where each index i is thought of as having two "child" indexes, i * 2 and i * 2 + 1, and
where the elements must be arranged such that "parent" indexes always store more urgent
priorities than their "child" indexes. To simplify the index math, we will leave index 0 blank and
start the data at an overall parent "root" or "start" index of 1. One very desirable property of a
binary heap is that the most urgent-priority element (the one that should be returned from a call
to peek or dequeue) is always at the start of the data in index 1. For example, the six elements
listed in the previous pages could be put into a binary heap as follows. Notice that the most
urgent element, "t":2, is stored at the root index of 1.
index 0 1 2 3 4 5 6 7 8 9

 +-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+

value | | "t":2 | "m":5 | "b":4 | "x":5 | "q":5 | "a":8 | | | |

 +-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+

 5

size = 6

capacity = 10

As discussed in lecture, adding (enqueuing) a new element into a heap involves placing it into the
first empty index (7, in this case) and then "bubbling up" or "percolating up" by swapping it with
its parent index (i/2) so long as it has a more urgent (lower) priority than its parent. We use
integer division, so the parent of index 7 = 7/2 = 3. For example, if we added "y" with priority 3,
it would first be placed into index 7, then swapped with "b":4 from index 3 because its priority of
3 is less than b's priority of 4. It would not swap any further because its new parent, "t":2 in index
1, has a lower priority than y. So the final heap array contents after adding "y":3 would be:
index 0 1 2 3 4 5 6 7 8 9

 +-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+

value | | "t":2 | "m":5 | "y":3 | "x":5 | "q":5 | "a":8 | "b":4 | | |

 +-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+

size = 7

capacity = 10

Removing (dequeuing) the most urgent element from a heap involves moving the element from
the last occupied index (7, in this case) all the way up to the "root" or "start" index of 1, replacing
the root that was there before; and then "bubbling down" or "percolating down" by swapping it
with its more urgent-priority child index (i*2 or i*2+1) so long as it has a less urgent (higher)
priority than its child. For example, if we removed "t":2, we would first swap up the element
"b":4 from index 7 to index 1, then bubble it down by swapping it with its more urgent child, "y":3
because the child's priority of 3 is less than b's priority of 4. It would not swap any further
because its new only child, "a":8 in index 6, has a higher priority than b. So the final heap array
contents after removing "t":2 would be:
index 0 1 2 3 4 5 6 7 8 9

 +-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+

value | | "y":3 | "m":5 | "b":4 | "x":5 | "q":5 | "a":8 | | | |

 +-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+

size = 6

capacity = 10

A key benefit of using a binary heap to represent a priority queue is efficiency. The common
operations of enqueue and dequeue take only O(log N) time to perform, since the "bubbling"
jumps by powers of 2 every time. The peek operation takes only O(1) time since the most urgent-
priority element's location is always at index 1.

If nodes ever have a tie in priority, break ties by comparing the strings themselves, treating
strings that come earlier in the alphabet as being more urgent (e.g. "a" before "b"). Compare
strings using the standard relational operators like <, <=, >, >=, ==, and !=. Do not make
assumptions about the lengths of the strings.

 6

Changing the priority of an existing value involves looping over the heap to find that value, then
once you find it, setting its new priority and "bubbling up" that value from its present location,
somewhat like an enqueue operation.

For heap PQs, when the array becomes full and has no more available indexes to store data, you
must resize it to a larger array. Your larger array should be a multiple of the old array size,
such as double the size. You must not leak memory; free all dynamically allocated arrays
created by your class.

PRIORITY QUEUE OPERATIONS

Each of your three priority queue implementations must support all of the following operations.

Member Description

pq.enqueue(value,
priority);

In this function you should add the given string value into your priority
queue with the given priority. Duplicates are allowed. Any string is a
legal value, and any integer is a legal priority; there are no invalid values
that can be passed.

pq.dequeue() In this function you should remove the element with the most urgent
priority from your priority queue, and you should also return it. You
should throw a string exception if the queue does not contain any
elements.

pq.peek() In this function you should return the string element with the most
urgent priority from your priority queue, without removing it or altering
the state of the queue. You should throw a string exception if the queue
does not contain any elements.

pq.peekPriority() In this function you should return the integer priority that is most
urgent from your priority queue (the priority associated with the string
that would be returned by a call to peek), without removing it or altering
the state of the queue. You should throw a string exception if the queue
does not contain any elements.

pq.changePriority(value,
newPriority);

In this function you will modify the priority of a given existing value in
the queue. The intent is to change the value's priority to be more urgent
(smaller integer) than its current value. If the given value is present in
the queue and already has a more urgent priority to the given new
priority, or if the given value is not already in the queue, your function
should throw a string exception. If the given value occurs multiple times
in the priority queue, you should alter the priority of the first occurrence
you find when searching your internal data from the start.

pq.isEmpty() In this function you should return true if your priority queue does not
contain any elements and false if it does contain at least one element.

pq.size() In this function you should return the number of elements in your
priority queue.

 7

pq.clear(); In this function you should remove all elements from the priority queue.

out << pq You should write a << operator for printing your priority queue to the
console. The elements can print out in any order and must be in the form
of "value":priority with {} braces, such as {"t":2, "b":4, "m":5,

"q":5, "x":5, "a":8} . The PQEntry and ListNode structures both
have << operators that may be useful. Your formatting and spacing
should match exactly. Do not place a \n or endl at the end.

The headers of every operation must match those specified above. Do not change the
parameters or function names.

Constructor/destructor: Each class must also define a parameterless constructor. If the
implementation allocates any dynamic memory, you must ensure that there are no memory leaks
by freeing any allocated memory at the appropriate time. This will mean that you will need a
destructor for classes that dynamically allocate memory.

Helper functions: The members listed on the previous page represent a large fraction of each class's
behavior. But you should add other members to help you implement all of the appropriate
behavior. Any other member functions you provide must be private. Remember that each
member function of your class should have a clear, coherent purpose. You should provide private
helper members for common repeated operations. Make a member function and/or parameter
const if it does not perform modification of the object's state.

Member variables: We have already specified what member variables you should have. Here are
some other constraints:

 Don't make something a member variable if it is only needed by one function. Make it
local. Making a variable into a data member that could have been a local variable or
parameter will hurt your Style grade.

 All data member variables inside each of your classes should be private.

OTHER IMPLEMENTATION DETAILS
Here are a few other constraints we expect you to follow that don't fit neatly into any other
section.

 The HeapPriorityQueue has some similar aspects to the ArrayList written in lecture.
It's completely fine to borrow any of the code from that lecture and use it in your Array
PQ as needed. (Cite it as a source.)

 The US/SLinkedPriorityQueue's operations should not make unnecessary passes
over the linked list. For example, when enqueuing an element in sorted order, a poor
implementation would be to traverse the entire list once to count its size and to find the
proper spot to insert, and then make a second traversal to get back to the spot to insert
and add the new element. Do not make such multiple passes. Also, keep in mind that
your US/SLinkedPriorityQueue is not allowed to store an integer size member

 8

variable; you must use the presence of a NULL next pointer to figure out where the end of
the list is and how long it is.

 The HeapPriorityQueue must implement its operations efficiently using the
"bubbling" or "percolating" described in this handout. It is important that these
operations run in O(log N) time.

 Duplicates are allowed in your priority queue, so be mindful of this. For example, the
changePriority operation should affect only a single occurrence of a value (the first one
found). If there are other occurrences of that same value in the queue, a single call to
changePriority shouldn't affect them all.

 You are not allowed to use a sort function to arrange the elements of any collection, nor
are you allowed to create any temporary or auxiliary data structures inside any of your
priority queue implementations. They must implement all of their behavior using only
their primary internal data structure as specified.

 You will need pointers for several of your implementations, but you should not use
pointers-to-pointers (for example, ListNode**) or references to pointers (e.g.
ListNode*&).

 You should not create any more ListNode objects than necessary. For example, if a
US/SLinkedPriorityQueue contains 6 elements, there should be exactly 6 ListNode
objects in the chain, no more, no less. You shouldn't, say, have a seventh empty "dummy"
node at the front or back of the list that serves only as a marker. You can declare as many
local variable pointers to ListNodes as you like.

DEVELOPMENT TIPS AND STRATEGY
Order of Implementation: While you are free to implement the three priority queues in any order
you wish, we recommend that you implement them in the order we specified: Linked Lists, then
Heap. This goes from simplest to most difficult.

Draw pictures. Remember the first rule of linked lists: draw pictures of linked lists! Draw pictures
of the before, during, and after state each of the operations you perform on it. Manipulating
linked lists can be tricky, but if you have a picture in front of you as you're coding it can make
your job substantially easier.

Don't panic. You will be doing a lot of pointer gymnastics in the course of this assignment, and
you will almost certainly encounter a crash in the course of writing your program. If your
program crashes, resist the urge to immediately make changes to your code. Instead, look over
your code methodically. Use the debugger to step through the code one piece at a time, or use
the provided testing harness to execute specific commands on the priority queue. The bug is
waiting there to be found, and with persistence you will find it. If your program crashes with a
specific error message, try to figure out exactly what that message means. Don't hesitate to get
in touch with your section leader, and feel free to stop by the LaIR or office hours.

Testing: Extensively test your program. There is a provided test harness that will help you with
testing. You will need to edit it specifically to perform the performance analysis, but the version
provided in the starter code already runs many of the tests you’ll want to do while you’re still

 9

implementing and debugging. Be sure to take advantage of that resource! Of course, we won’t
guarantee that our test harness will catch all your bugs.

EMPIRICAL PERFORMANCE ANALYSIS
A major purpose of doing all these different implementations is to compare and contrast how
difficult/complicated they are to code (which correlates with potential for bugs), and how they
perform. You’ve no doubt thought about the former as you’ve worked on the assignment. For
this final part of the assignment, you will run experiments to formally investigate the latter.

A test harness is included with the code (pqueue-main.cpp). Edit this as you see fit (no need to
perfectly match the original user interaction, etc.) so that it will generate random strings and
enqueue them into your priority queues, then dequeue them again, and time the operations. Vary
the “N” (number of strings enqueued/dequeued) so you can plot a few points and begin to see
the expected big-O behavior for each implementation. First just play around with the N for a
while to see where the most relevant or “interesting” range of values to use is (for the purposes
of observing Big-O behavior and comparing implementations), and then you should do your
official experiment runs.

 You may want to in some way reuse or copy and slightly rewrite the bulk enqueue code
that is already in the provided test harness.

 If your N is too small, the timing that you do will be influenced too much by background
noise on the system and won’t elucidate the actual performance of your data structures.

 If your N is too large, the performance differences you observe may have more to do with
whether you fit in cache or main memory than the performance of your data structures.
(Though this would be a fascinating thing to observe and document!)

 One way to reduce background noise, which you should definitely plan on doing, is
running the test many times to “average out” occasional variations that occur (e.g., when
your computer decides to do something other than execute your testing code). For
example, if you want to run on N=1000, do something like this pseudocode (this repeats
tests 100 times but you might try larger and smaller values to see where you get the best
noise filtering without wasting time unnecessarily):

Generate 1000 random strings

Start timer

For (i = 0 to 99)

 Create empty PriorityQueue

 Enqueue 1000 strings

End timer

 To do the timings, use the Stanford Library Timer class:
 http://stanford.edu/~stepp/cppdoc/Timer-class.html

Your report should include:

 1 plot showing timing results for ENQUEUE (plot all implementations in the same figure
for comparison). You should plot at least 5 data points (5 values of N) per implementation,
but you could do many, many more if you want.

http://stanford.edu/~stepp/cppdoc/Timer-class.html

 10

 1 plot showing timing results for DEQUEUE (plot all implementations in the same figure
for comparison). You should plot at least 5 data points (5 values of N) per implementation,
but you could do many, many more if you want.

 A short paragraph explaining how you set up your tests (what is the range of N values you
tried, how many test repetitions were needed to effectively reduce noise, etc.).

 A short paragraph drawing conclusions about your results, including remarks on whether
you were able to observe the expected Big-O behavior. It’s ok to say that you were not
able to get a particularly clear picture of this, but you should describe your efforts and
speculate as to what the roadblocks might be.

A key word for this part of the assignment is “simple.” It is not required to dazzle us with the
graphic design of the plots or anything like that.

STYLE GUIDELINES SPECIFIC TO THIS ASSIGNMENT
In general, items mentioned in the "Implementation and Grading" from the previous
assignment(s) specs also apply here. Please refer to those documents as needed. Note the
instructions in the previous assignments about procedural decomposition, variables, types,
parameters, value vs. reference, and commenting. Don't forget to cite any sources you used in
your comments. Refer to the course Style Guide for a more thorough discussion of good coding
style.

Commenting: Since all of the queue classes have the same public members, we will allow you to
comment the public member functions (enqueue, dequeue, etc.) a single time in
SLinkedPriorityQueue, and then in the other classes you can simply write, "See
SLinkedPriorityQueue.h for documentation member functions." But we do expect you to
put a descriptive comment header on each queue class file and explain that implementation and
its pros and cons. Also put a comment atop every member function that states its Big-Oh. For
example, in a HeapPriorityQueue the peek operation runs in constant time, so you should put
a comment on that function that says "O(1)."

Redundancy: Redundancy is another major grading focus; avoid repeated logic as much as
possible. Your classes will be graded on whether you make good choices about what members it
should have, and other factors such as which are public vs. private, and const-correctness, and
so on. You may find that there are some operations that you have to repeat in all of your classes,
like checking whether a queue is empty before dequeuing from it. We do not require you to
reduce redundancy across multiple classes (for example, copy/paste code between the two linked
lists rather than attempting to unify them somehow); but we do expect you to remove
redundancy within a single class. If one implementation has a common operation, make a private
helper function and call it multiple times in that file.

Follow the Honor Code on this assignment. Submit your own (pair's) work; do not look at others'
solutions. Cite sources. Do not give out your solution or place it on a public web site or forum.
The Stanford C++ library includes a priority queue similar to the HeapPriorityQueue you must

 11

implement. We ask that you do not look at that file's source code because it is too similar to what
you are asked to do here. You must solve the problem yourself.

EXTRA CREDIT IDEAS
A good extra would be to write a PQ implementation(s) beyond those required by this assignment.
Below are some ideas. The ideas that are especially difficult are marked with **. Remember to
include your extra data structures in your empirical analysis. Especially for Binomial Heap, you
should see the dazzling performance results of your efforts!

 Map of Queues: Use a Map with integer priorities as its keys and queues of strings as the
values associated with those keys. This puts all elements with the same priority into an
inner queue together.

 Binary Search Tree: We talked about BST as an implementation of Map, not
PriorityQueue, but it is possible to use BST for PriorityQueue.

 **Doubly-Linked List: Rewrite one or both of your linked list implementations as a
doubly-linked list (a list whose nodes have both prev and next pointers). This makes it
easy to move both forward and backward in the list, which can speed up certain
operations like changing priority. Also declare both a front and a back pointer, which
point to the first and last element in the list, respectively. Implementing a doubly-linked
list is a classic “bucket list” thing to do in learning how to program.

 **Binomial Heap: A binomial heap is a variation on the binary heap already described
that is especially efficient for certain common priority queue operations. See separate
handout on class web site describing this idea. Binomial Heap implementation is the
experience of legend in CS106X. Super fun data structure!! (for some definition of fun)

Another good idea is to add operations to each heap beyond those specified:
 Merge: Write a member function that accepts another priority queue of the same type

and adds all of its elements into the current priority queue. Do this merging "in place" as
much as possible; for example, if you are merging two linked list PQs, directly connect the
node pointers of one to the other as appropriate.

 Deep Copy: Make your priority queues properly support the = assignment statement, copy
constructor, and deep copying. See the C++ "Rule of Three" and follow that guideline in
your implementation.

 Iterator: Write a class that implements the STL iterator and a begin and end function in
your priority queues, which would enable "for-each" over your PQ. This requires
knowledge of the C++ STL library.

 Other: Do you have an interesting idea for an extra feature? Ask the head TA or instructor.

Submitting with extra features: If you complete any extras, please list them in your comment
headings. Also please submit your program twice: first without extra features (or with them
deactivated), and a second time with the extensions.

