PQ Yeah Hours

Alexander De Baets

If you are looking at these

online, please watch the

video! This week's YEAH

hours had a lot of drawing
on the board!

Helpful Resources

e Pointer & Linked Nodes Lecture
e Linked Lists Lecure
e Priority Queue and Heap Data Structure Lecture

What is a Priority Queue?

Deliverables

SLinkedPriorityQueue.h/.cpp:
USLinkedPriorityQueue.h/.cpp
HeapPriorityQueue.h/.cpp
analysis.pdf
pgueue-main.cpp:

What methods do

need to implement?

Member

Description

pq.enqueue(value,
priority);

In this function you should add the given string value into your priority
queue with the given priority. Duplicates are allowed. Any string is a
legal value, and any integer is a legal priority; there are no invalid values
that can be passed.

pq.dequeue()

In this function you should remove the element with the most urgent
priority from your priority queue, and you should also return it. You
should throw a string exception if the queue does not contain any
elements.

pq.peek()

In this function you should return the string element with the most
urgent priority from your priority queue, without removing it or altering
the state of the queue. You should throw a string exception if the queue
does not contain any elements.

pq.peekPriority()

In this function you should return the integer priority that is most
urgent from your priority queue (the priority associated with the string
that would be returned by a call to peek), without removing it or altering
the state of the queue. You should throw a string exception if the queue
does not contain any elements.

pq.changePriority(value,
newPriority);

In this function you will modify the priority of a given existing value in
the queue. The intent is to change the value's priority to be more urgent
(smaller integer) than its current value. If the given value is present in
the queue and already has a more urgent priority to the given new
priority, or if the given value is not already in the queue, your function
should throw a string exception. If the given value occurs multiple times
in the priority queue, you should alter the priority of the first occurrence
you find when searching your internal data from the start.

pq.isEmpty ()

In this function you should return true if your priority queue does not
contain any elements and false if it does contain at least one element.

pqg.size()

In this function you should return the number of elements in your
priority queue.

pqg.clear();

In this function you should remove all elements from the priority queue.

out << pq

You should write a << operator for printing your priority queue to the
console. The elements can print out in any order and must be in the form
of "value" :priority with {} braces, suchas {"t":2, "b":4, "m":5,
"q":5, "x":5, "a":8}.The PQEntry and ListNode structures both
have << operators that may be useful. Your formatting and spacing
should match exactly. Do not place a \n or endl at the end.

The Sorted Linked List

e Only one private member variable: a pointer to the front of the list!

e You are NOT allowed to have a variable that contains the number of elements
in the queue.

e ~On board drawings & explanations~

The Unsorted Linked List

e Only one private member variable: a pointer to the front of the list!

e You are NOT allowed to have a variable that contains the number of elements
in the queue.

e ~On board drawings & explanations~

The Heap PQ

Fact summary:
Binary heap in an array

/ °\
W A A
O-based: 2 % % % 1-based: ® ® % &
For tree of height h, array length is 2"-1 For tree of height h, array length is 2"
For a node in array index i: For a node in array index i:
= Parentis at array index: (i—1)/2 = Parentis at array index: i /2
= Left child is at array index: 2i + 1 = [eft child is at array index: 2i

= Right child is at array index: 2i + 2 = Right child is at array index: 2i + 1

[Binary heap insert reference page]

/5\
7 10
N 2N

18 14 11 21

27

(a) A minheap prior to adding an
element. The circle is where the new

element will be put initially.

/5\

7 10
NN /\
6. 14 11 21
/N
27 18

/5\
7 10
s s
18 14 11 21
N\
27 8

(b) Add the element. 6. as the new rightmost
leaf. This maintains a complete binary tree,
but may violate the minheap ordering

property.
6/5\10
O\ /\
7 14 11 21
/
27 18

(¢) “Bubble up” the new element.
Starting with the new element. if the
child is less than the parent, swap them.

This moves the new element up the tree.

(d) Repeat the step described in (c) until the
parent of the new element is less than or equal to
the new element. The minheap invariants have

been restored.

suannurd University

(a) Moving the rightmost leaf to the top of
the heap to fill the gap created when the top
element (5) was removed. This is a complete
binary tree. but the minheap ordering
property has been violated.

(b) “Trickle down™ the element. Swapping
top with the smaller of its two children leaves
top’s right subtree a valid heap. The subtree
rooted at 18 still needs fixing.

(c) Last swap. The heap is fixed when 18 is
less than or equal to both of its children. The
minheap invariants have been restored

[Binary heap delete + “trickle-down” reference page]

top is removed
¢~ from the heap

AL

6 10

N /N

7 14 11 21
27 18

7 14 11 21

27
/6\
T 10
O\ /\
18 14 11 21

57 ford University

Analysis
e Test Enqueue and Dequeue with 5 different N values to see how they react.

e How do you choose your N values?
e Check out our TImer-class

http://stanford.edu/~stepp/cppdoc/Timer-class.html

Good Luck!

