

CS106B Spring 2016

Cynthia Lee

Assignment 4: Boggle
Assignment handout authors and problem concept contributors include: Cynthia Lee, Marty Stepp,

and Julie Zelenski.

Due: Friday, April 29th at 6:00pm

Pair programming is permitted on this assignment. See course information sheet and honor code.

There are two Recursion assignments: Assignment 3 (Warm-Ups) and Assignment 4 (Boggle). You
could really think of them as one assignment, but we separate them out into two due dates to
alleviate risk of being overwhelmed at the last minute by such a large and (for many) tricky
coding project. After the Assignment 3 due date, there are only 5 days until the Boggle due date,
so you should plan to complete work on these warm-ups as soon as possible and, ideally, move
on to Boggle before the warm-up deadline.

The assignment has two main purposes:
1. To give you experience applying recursive backtracking.
2. To give you experience creating a substantial, multi-featured application.

General guidelines:

 When we specify the function prototype, your function must exactly match that
prototype (same name, same arguments, same return type). You are welcome to use a
wrapper function as a way of structuring your code, as discussed in class.

 You must use recursion; even if you can come up with an iterative alternative, we insist
on a recursive formulation!

Deliverables (turn in these files):
 Boggle.h / .cpp : a Boggle class representing the Boggle game state
 boggleplay.cpp : client to perform console UI and work with Boggle class
 We provide you with several other files to help you, but you should not modify them (so

you don’t need to turn them in either).
This is a pair assignment. If you work as a pair, comment both members' names on top of every
submitted code file. Only one of you should submit the assignment; do not turn in two copies.

THE GAME OF BOGGLE
Boggle is a game played on a square grid onto which you randomly distribute a set of letter cubes.
Letter cubes are 6-sided dice, except that they have a letter on each side rather than a number.
The goal is to find words on the board by tracing a path through neighboring letters. Two letters
are neighbors if they are next to each other horizontally, vertically, or diagonally. There are up
to eight letters near a cube. Each cube can be used at most once in a word.

In the real-life version of this game, all players work at the same time, listing the words they find
on a piece of paper. When time is called, duplicates are removed from the lists and the players
receive one point for each unique word, that is, for each word that player found that no other
player was able to find.

YOUR BOGGLE PROGRAM
You will write a program that plays this game, adapted for one human to play against a computer
opponent. Unfortunately, the computer knows recursive backtracking, so it can find every
word on the board and destroy you every time. But it's still fun to write a program that can so
soundly thrash you again and again.

To begin a game, you shake up the letter cubes and lay them out on the board. The human player
plays first, entering words one by one. Your code first verifies that the word is valid, then you
add it to the player's word list and award the player points according to the word's length (one
point per letter ≥ 4). A word is valid if it meets all of the following conditions:

 at least 4 letters long

 is a word found in the English dictionary

 can be formed by connecting neighboring letter cubes (using any given cube only once)
 has not already been formed by the player in this game yet (even if there are multiple paths

on the board to form the same word, the word is counted at most once)

Once the player has found as many words as they can, the computer takes a turn. The computer
searches through the board to find all the remaining words and awards itself points for those
words. The computer typically beats the player, since it finds all words.

Your program's output format should exactly match the abridged log of execution below. See the
course web site for complete example output files.

Sample console output:

Do you want to generate a random board? y
It's your turn!
FYCL
IOMG
ORIL
HJHU
...
Your words (3): {"FOIL", "FORM", "ROOF"}
Your score: 3
Type a word (or Enter to stop): room
You found a new word! "ROOM"
...
Your words (5): {"FOIL", "FORM", "ROOF", "ROOM", "ROOMY"}
Your score: 6
Type a word (or Enter to stop):

It's my turn!
My words (16): {"COIF", "COIL", "COIR", "CORM", "FIRM", "GIRO", "GLIM", "HOOF",
"IGLU", "LIMO", "LIMY", "MIRI", "MOIL", "MOOR", "RIMY", "ROIL"}
My score: 16
Ha ha ha, I destroyed you. Better luck next time, puny human!

SETTING UP THE GAME BOARD
The real Boggle game comes with sixteen letter cubes, each with particular letters on each of
their six faces. The letters on each cube are not random; they were chosen in such a way that
common letters come up more often and it is easier to get a good mix of vowels and consonants.
We want your Boggle game to match this. The following table lists all of the letters on all six faces
of each of the sixteen cubes from the original Boggle. You should decide on an appropriate way
to represent this information in your program and declare it accordingly.

AAEEGN ABBJOO ACHOPS AFFKPS AOOTTW CIMOTU DEILRX DELRVY

DISTTY EEGHNW EEINSU EHRTVW EIOSST ELRTTY HIMNQU HLNNRZ

At the beginning of each game, "shake" the board cubes. There are two different random aspects
to consider:

 A random location on the 4x4 game board should be chosen for each cube.
(For example, the AAEEGN cube should not always appear in the top-left square of the
board; it should randomly appear in one of the 16 available squares with equal
probability.)

 A random side from each cube should be chosen to be the face-up letter of that cube.
(For example, the AAEEGN cube should not always show A; it should randomly show A 1/3
of the time, E 1/3 of the time, G 1/6 of the time, and N 1/6 of the time.)

The Stanford C++ libraries have a file shuffle.h with a shuffle function you can use to rearrange
the elements of an array, Vector, or Grid. See shuffle.h if you are curious about how the
shuffling algorithm works.

Your game must also have an option where the user can enter a manual board configuration.
In this option, rather than randomly choosing the letters to be on the board, the user enters a
string of 16 characters, representing the cubes from left to right, top to bottom. (This is also a
useful feature for testing your code.) Verify that the user's string is long enough to fill the board
and re-prompt if it is not exactly 16 characters in length. Also re-prompt the user if any of the 16
characters is not a letter from A-Z. Your code should work case-insensitively. You should not
check whether the 16 letters typed could actually be formed from the 16 letter cubes; just accept
any 16 alphabetic letters.

THE HUMAN PLAYER’S TURN
The human player enters each word she finds on the board. As described previously, for each
word the user types, you must check that it is at least four letters long, contained in the English
dictionary, has not already been included in the player's word list, and can be formed on the
board from neighboring cubes. If any condition fails, alert the user. There is no penalty for trying
an invalid word, but invalid words also do not count toward the player's list or score.

If the word is valid, you add the word to the player's word list and score. The length of the word
determines the score: a 4-letter word is worth 1 point; a 5-letter word is worth 2 points; 6-letter
words are worth 3; and so on. The player enters a blank line when done finding words, which
signals the end of the human's turn.

THE COMPUTER’S TURN
Once the human player is done entering words, the computer then searches the entire board to
find the remaining words missed by the human player. The computer earns points for each
remaining word found that meets the requirements (minimum length, contained in English
lexicon, not already found, and can be formed on board). If the computer's resulting score is
strictly greater than the human's, the computer wins. If the players tie or if the human's score
exceeds the computer's, the human player wins.

You can find all words on the board using recursive backtracking. The idea is to start from a
given letter cube, then explore neighboring cubes around it and try all partial strings that can
be made, then try each neighbor's neighbor, and so on. The algorithm is roughly the following:

for each letter cube c:
mark cube c as visited. // choose
for each neighboring cube next to c:

explore all words that could start with c's letter. // explore
un-mark cube c as visited. // un-choose

IMPLEMENTATION DETAILS: boggleplay.cpp
We have provided you with a file bogglemain.cpp that contains the program's overall main
function. The provided code prints an introduction message about the game and then starts a
loop that repeatedly calls a function called playOneGame. After each call to playOneGame, the
main code prompts to play again and then exits when the user finally says "no". The

playOneGame function is not already written; you must write it in boggleplay.cpp. In that same
file, you can place any other logic and helper functions needed to play one game. You may want
to use the getYesOrNo function from simpio.h that prompts the user to type yes/no and returns
a bool.

One aspect of the console UI is that it should "clear" the console between each word the user
types, and then re-print the game state such as the board words found so far, score, etc. This
makes a more pleasant UI where the game state is generally visible at the same place on the
screen at all times during the game. See the provided sample solution for an example. Use the
Stanford Library's clearConsole(); function from console.h to clear the screen.

The playOneGame function (along with any sub-functions it calls within the same file) should
perform all console user interaction such as printing out the current state of the game. This is
the only file in which you should have any statements that read/write to cout or cin. But
boggleplay.cpp is not meant to be the place to store the majority of the game's state, logic, or
algorithms. Your boggleplay file will interact with a class you will write named Boggle,
described on the following pages. We describe a partial set of methods that your Boggle class
must have. The intention is that your boggleplay code will call all of these methods to help
achieve the overall task of playing the game. For example, no recursion or backtracking should
take place in boggleplay; all such recursive searching should happen in the Boggle class. If you
find that your boggleplay code is implomenting a lot of complex logic itself, or that boggleplay is
never calling a particular public method from the Boggle class, this is likely a sign that you have
not divided the functionality in your code the way that we intend, which might lead to a style
deduction.

Later in the spec we will describe a graphical user interface (GUI) that your Boggle game must
display. As much as possible, the code to create and interact with this GUI should be in your
boggleplay.cpp file. The one exception is the code to highlight and un-highlight letter cubes on
the GUI as your algorithms are searching for words typed by the human player. Highlighting
should be done in the Boggle class, because it would be very difficult to separate that code out
of your recursive backtracking algorithms that are defined in the Boggle class.

IMPLEMENTATION DETAILS: boggle.cpp/.h
The majority of your code should be in the Boggle.h and Boggle.cpp files, which should contain
the implementation of a Boggle class. A Boggle object represents the current board and state
for a single Boggle game, and it should have member functions to perform most major game
functions like finding words on the board and keeping score. Declare all Boggle class members
in Boggle.h, and implement their bodies in Boggle.cpp. We provide you a skeleton that declares
some required members below that your class must have.

Do not change the headings of any of the following functions. Do not add parameters; do
not rename them. You must implement exactly these functions with exactly these headings,
or you will receive a deduction. (See note below about const.)

Boggle class member Description

Boggle(dictionary,
boardText)

In this constructor you initialize your Boggle board to use the given dictionary
lexicon to look up words, and use the given 16-letter string to initialize the 16
board cubes from top-left to bottom-right. If the string is empty, you should
generate a random shuffled board. Your method should be case-insensitive; it
should accept the board text whether it is passed in upper, lower, or mixed case.

b.getLetter(row, col) In this function you should return the character that is stored in your Boggle board
at the given 0-based row and column. If the row and/or column are out of bounds,

you should throw an int exception.

b.checkWord(word) In this function you should check whether the given word string is suitable to
search for: that is, whether it is in the dictionary, long enough to be a valid Boggle

word, and has not already been found. You should return a boolean result of true

if the word is suitable, and otherwise you should return false. Your method
should be case-insensitive; you should properly verify the word whether it is passed
in upper, lower, or mixed case.

b.humanWordSearch(word) In this function you should perform a search on the board for an individual word.
If the word can be formed, you should add it to the human's set of found words.
Your function returns a boolean result of whether the word can be formed. Your
code for this function should use recursive backtracking. As each cube is
explored, you should highlight it in the GUI to perform an animated search with a
100ms delay (see GUI page). If the word is unsuitable, you should not perform the
recursive search. Your method should be case-insensitive; you should properly
search for the word whether it is passed in upper, lower, or mixed case.

b.computerWordSearch() In this function you should perform a search on the board for all words that can be

formed (that have not already been found by the human player), and return them as a Set
of strings. Your code for this function should use recursive backtracking.
Though similar to your human search, this is different because you should look for
all words and not perform any animation; therefore its code should be

implemented separately from humanWordSearch. The words in your set should
be all uppercase.

b.getScoreHuman() In this function you return the total number of points the human player has scored
in the game so far as an integer. This total is 0 when the game begins, but

whenever a successful human word search is performed, points for that word are
added to the human's total score.

b.getScoreComputer() In this function you should return the total number of points the computer player
has scored in the game as an integer. This total is initially 0 when the game begins,
but after a computer word search is performed, all points for those words are
added to the computer's total score.

ostream& << b You should write a << operator for printing a Boggle object to the console. The
operator should print only the 4x4 grid of characters representing the board as four
lines of text. It should print the board text in all uppercase.

Once again for emphasis, do not modify the names, parameters, or return types of the preceding
functions. Implement them as-is. The one exception is that you can (and should) modify headers
to make the member function const if it does not modify the state of your Boggle object. Review
all of your functions (the ones provided above, and any others you choose to add to your class)
and make them const as much as possible.

Case sensitivity: Your methods that accept strings must be case-insensitive; they should work
with upper, lower, or mixed case. This should be enforced in your program by the Boggle class,
not by the boggleplay.cpp code.

(MORE) IMPLEMENTATION DETAILS: boggle.cpp/.h
Adding your own member functions: In some past assignments, we gave you an exact list of the
functions to implement. In this assignment, we are asking you to come up with some of the
members. The Boggle class members listed on the previous page represent a large fraction of
that class's behavior. But you can, and should, add other members to implement all of the
appropriate behavior for this assignment. Your added members should be public if they are to
be called directly by the boggleplay.cpp code, and private otherwise. You must also decide
what code and/or data should go in boggleplay.cpp, and what should go in the Boggle class.
Part of the challenge of this assignment is learning how to design a class and console UI client
effectively. Remember that each member function of your class should have a single clear,
coherent purpose.

Here are some suggestions for good member functions to put in your Boggle class:

 Though the boggleplay.cpp file should do all console I/O, your Boggle class should have
lots of convenient functions for boggleplay to call so that it doesn't need as much complex
logic. No recursion or backtracking should take place in boggleplay; all such recursive
searching should happen in the Boggle class.

 The boggleplay code needs to be able to display various aspects of the game state, such
as all words that have been found by the each player, along with the players' scores. The
Boggle class should keep track of such things, NOT boggleplay. The boggleplay code
should ask the Boggle class for this information by calling accessor functions on it, which

should return appropriate data to the caller. Note that the Boggle class itself should not
contain any output statements to cout; let boggleplay do that.

 Make a member function and/or parameter const if it does not perform modification of
the object's state.

 Make a member function private if it is used internally and not to be called by the client
(a "helper").

 Do not add functions to your Boggle class that directly return internal data structures
in a way that allows the client to make direct modifications to them. (This is called
"representation exposure" and is considered poor style.)

Member variables: We also have not specified any of the private member variables that should go
inside the Boggle class; you must decide those yourself. Here are some thoughts about data
members that your class might need:

 You'll certainly need a data structure to represent the current game board state,
meaning the 16 letter cubes and what letter is showing on top of each cube. The exact
choice of data structure is up to you, but you should make an efficient and appropriate
choice from the Stanford libraries.

 It is fine to declare additional data structures, such as a collection of words found, etc.
 Don't make something a private data member if it is only needed by one function; make

it local. Making a variable into a data member that could have been a local variable or
parameter will hurt your Style grade.

 All data member variables inside a Boggle object should be private.

Searching: You don't want to visit the same letter cube twice during a given exploration, so for
the search algorithm to work, your Boggle class needs some way to "mark" whether a letter
cube has been visited or not. You could use a separate structure for marking, or modify your
existing board, etc. It's up to you, as long as it is efficient and works.

Efficiency is very important for this part of the program. It is important to limit the search to
ensure that the process can be completed quickly. If written properly, the code to find all words
on the board should run in around one second or less. To make sure your code is efficient enough,
you must perform the following optimizations:

 use a Lexicon data structure to store the English dictionary, and do not needlessly copy
the lexicon

 prune the tree of searches by not exploring partial paths that will be unable to form a
valid word

 use efficient data structures otherwise in your program (e.g. to represent which words are
already found)

One of the most important Boggle strategies is to prune dead-end searches. The Lexicon has
a containsPrefix function that accepts a string and returns true if any word in the dictionary
begins with that substring. For example, if the first cube you examine shows the letter Z and your
algorithm tries to explore one of its neighbors that shows an X, your path would start with ZX. In

this case, containsPrefix will inform you that there are no English words that begin with the
prefix "ZX". Therefore your algorithm should stop that path and move on to other combinations.

IMPLEMENTATION DETAILS: THE GRAPHICAL USER INTERFACE (GUI)
As a required part of this assignment, you must also add a graphical user interface (GUI) to your
program. The GUI does not replace the console UI; it can't be clicked on to play the game, for
example. It just shows a display of the current game state. To use the GUI, include bogglegui.h
in your code, then call the functions below:

clearHighlight() Sets all letter cubes to be un-highlighted. (See setHighlighted.)

initialize(rows,
cols)

Starts up the GUI and displays the graphical window. The board is drawn with

empty squares and scores are 0. If called again, resets the board (see reset). Throws

an error if rows or cols is not a positive integer from 1-6.

isInitialized() Returns true if initialize has already been called.

labelCube(r, c, char,
bool)

Sets the given cube to display the given character. Rows and columns have 0-based

indexes with (0, 0) at top-left. If true is passed for the optional highlighted
parameter, the cube is drawn with a colored highlight (useful to show progress of

word searches). The highlight will remain until turned off. Throws an error if ch is
not a letter or space.

labelAllCubes(str) Sets all letter cubes to display the characters from the given string. For example,

"ABCDEFGHIJKLMNOP" would label cube (0, 0) with 'A', cube (0, 1) with 'B', and
so on. The string can contain other characters such as whitespace, line breaks, etc.,
which will be skipped over. All cubes are un-highlighted after a call to this function.

Throws an error if str does not contain 16 alphabetic letters.

recordWord(word,
player)

Displays that the given player has found the given word string on the board. This
function does not check word validity, e.g. that the word is not already shown, can be
formed on the board, is in the dictionary, etc. That is up to you.

The player parameter indicates which player found the given word. The value you

pass should be either BoggleGUI::HUMAN or BoggleGUI::COMPUTER .

reset() Sets the GUI window back to its initial state, with the letter cubes blank and un-
highlighted, the scores both at 0, and no solved words shown on the screen.

setAnimationDelay(ms) Sets a pause/delay of the given number of milliseconds. After calling this, subsequent

calls to setHighlighted or to labelCube that have highlight set to true
will trigger a pause. Use this to animate a word search algorithm.

setHighlighted(r, c,
bool)

Sets the given letter cube to be highlighted (true) or un-highlighted (false).

setScore(score,
player)

Sets the GUI's score display for the given player to the given number. The GUI does
not know anything about scoring rules for Boggle; it accepts any integer.

The player parameter indicates which player found the given word. The value you

pass should be either BoggleGUI::HUMAN or BoggleGUI::COMPUTER .

setStatusMessage(str) Displays a status message in the bottom part of the window. Useful for showing
messages such as telling the user that they have found a word, etc.

shutdown() Closes the GUI window and frees memory associated with the GUI.

The functions of the GUI are enclosed in a namespace so that they do not conflict with any other
global function names in your program. To call one of them, you must prefix the function's name
with BoggleGUI:: , such as:

BoggleGUI::recordWord("hello", BoggleGUI::HUMAN);

You must call the GUI's setStatusMessage function to display information about the game
state during play. Messages like "It's your turn!", "You must enter an unfound word ...", "That
word can't be formed", "You found a new word", "It's my turn", "You defeated me", and "Ha ha
ha, I destroyed you" should be shown. These are the same messages that display at the top of the
text console on each turn. See the runnable sample solution for more details.

DEVELOPMENT STRATEGY
In a project of this complexity, it is important that you get an early start and work consistently
toward your goal. To be sure that you're making progress, it also helps to divide up the work into
manageable pieces, each of which has identifiable milestones. Here's a suggested plan of attack
that breaks the problem down into six phases:

1. Cube setup, board drawing, cube shaking. Design your data structure for the cubes and board.

As usual, no global variables. Set up and shuffle the cubes. Use the provided shuffle function

and/or the randomInteger function from random.h to help you make random choices.

Add an option for the user to force the board configuration, as illustrated by the sample

application.
2. Human's turn (except for finding words on the board). Write the loop that allows the user to enter

words. Reject words that have already been entered, don't meet the minimum word length, or

aren't in the lexicon. Don't worry about the recursive backtracking algorithm yet for verifying

that the word can be formed from the cubes on the board; just perform the other validity

checks and see if the word passes all of them.
3. Human's backtracking algorithm to find a given word on the board. Now use recursion to

verify that a word can be formed on the board, subject to the various rules. You will employ

recursive backtracking that "fails fast": as soon as you realize you can't form the word starting

at a position, you backtrack.
4. Computer's turn (find all the words on the board). Now implement the killer computer player.

Employing the power of recursion, your computer player traverses the board using an

exhaustive search to find all remaining words. Be sure to use the lexicon prefix search to

abandon searches down dead-end paths.
NOTE: The program contains two recursive searches: one to find a specific word entered by

the human player, and another to search the board exhaustively for the computer's turn. You

might think that you should try to integrate the two into one combined function, by doing all

word-finding at the beginning of the game, just after the board is initialized. But for full credit,

you must implement the human and computer player as two separate search functions.

There are enough differences between the two that they don't combine cleanly and the unified

code is usually worse as a result. Focus on writing clean code that clearly communicates its

algorithm.
5. Loop to play many games and add polish. Once you can successfully play one game, it's a snap

to play many. Be sure to gracefully handle all user input so that it is not possible to break or

crash the program.
6. Add the graphical user interface and animation. The GUI serves as a supplement to the existing

text UI, not a replacement. So your text UI should still work properly in the presence of the

GUI.
Make sure to extensively test your program. Run the sample solution posted on the class web site to

see the expected behavior of your program. When in doubt, match the behavior of the sample solution.

GRADING AND GENERAL REMARKS (this applies to all parts)

 Note the instructions in the previous assignment about style, pass by reference, passing
by const reference, and so on.

 Don't forget to cite any sources you used in your comments. Please read the entire CS106
Honor Code on the course website.

 Refer to the course Style Guide for a more thorough discussion of good coding style.
 Place a descriptive comment header on each file you submit.
 In your .h files, place detailed comment headers next to every member explaining its

purpose, parameters, what it returns, any exceptions it throws, assumptions it makes, etc.
You don't need to put any comment headers on those same members in the
corresponding .cpp file, though you should place inline comments as needed on any
complex code in the bodies.

 Do not use pointers, arrays, or STL containers on this program. You should also avoid
expensive operations that would cause you to reconstruct bulky collections multiple
times unnecessarily.

 For reference, our solution to the Boggle class has 12 public member functions, 4 private
member variables (fields), and a few private helper member functions. Our Boggle.cpp is
around 180 lines not including comments, and our boggleplay.cpp is around 80 lines
including comments. You don't have to match these numbers or even come close to them;
they are just to use as a reference and a sanity check.

EXTRA CREDIT IDEAS
 Make the Q a useful letter: The Q is largely useless unless it is adjacent to a U, so the real

Boggle prints Qu together on a single face of the cube. You use both letters together, a

strategy that not only makes the Q more playable but also allows you to increase your
score because the combination counts as two letters.

 Big Boggle: Once you have a working program, it should require only a few changes to
support a variant that uses a 5 × 5 board. Word game aficionados generally agree that the
original size was just a bit too small and scaling it up adds to the fun and challenge. This
is a great exercise in verifying that your design is sufficiently organized and flexible to
permit this adaptation. Our starting code declares two different cube arrays, one with the
16 cubes for the standard game and another with the 25 cubes for the bigger version.

 Embellish the GUI: Our Boggle GUI module is supplied in source form so you can adapt
into a snazzier interface. For example, the current game merely highlights the word; it
might be nice if it also drew lines or arrows marking the connections. Or you could use
the Stanford C++ library's gevent.h facilities to let the user assemble a word by clicking
or dragging the mouse through the letter cubes. Make it play sounds. Etc.

 Board exploration: As you will learn, some Boggle boards are a lot more fruitful that
others. Write some code to discover things about the possible boards. Is there an
arrangement of the standard cubes that produces a board containing no words? What
about an arrangement that produces a longest word, maybe even using all the cubes?
What is the highest-scoring board you can construct? Recursion will be handy in trying
out all the possible arrangements, but there are a lot of options (do the math on all the
permutations...), so you may need to come up with some heuristics to direct your
explorations.

Submitting with extra features: If you complete any extra features, then in the comment heading on
the top of your program, please list all extra features that you worked on and where in the code
they can be found. Since we use automated testing for part of our grading process, if your
feature(s) cause your program to no longer match the expected output test cases provided,
submit two versions of your files: a first one without any extra features added (or with all
necessary extensions disabled or commented out), and a second one with the extensions enabled.

