RECURSION YEAH
HOURS

Alexander De Baets

A quick note on the starter code and
handout

Helpful Resources

Recursion (Factorial, Binary Search)

Recursion (Backtracking)

Recursion (Fibonacci), Big O

Remember to visit the CLalR if you have conceptual questions! The CLalR is
Sunday-Thursday, 8PM-10PM on the second floor of Old Union.

e As always, the LalR is there to help you work through your bugs! The LalR is
Sunday-Thursday 6PM-Midnight on the second floor of Old Union.

RECURSION

There are two parts to a recursive algorithm:

e The Base Case: The problem is so small we can easily solve it in a
straightforward manner

e The Recursive Case: The problem is too big to be solved in a straightforward
manner, so we break it into smaller subproblems and solve those.

PROJECT 1: HUMAN PYRAMID

N4
A

JA D
N ;ﬂ;«
~DeDe
I\/I\ N

Beware of how data is stored!

col e 1 2 3
row © {{A},
1 {B, C},
2 {D..'l EJ F}J
3 {6, H, I, 3J}}

PROJECT 2: SIERPINSKI TRIANGLE

Order-1 Order-2 Order-3

A“

.AA. ‘ v

Graphics? Yikes!

& C' | stanford.edu/~stepp/cppdoc/GLine-class.html

vl
Ng

e
O

]

& The Stanford cs1ib package

#include "gobjects.h"

class GLine : public GObject

This graphical object subclass represents a line segment. For example, the following code adds lines that mark the diagonals of the graphics window:
int main() {
GWindow gw;

cout << "This program draws the diagonals on the window." << endl;
gw.add (new GLine (0, 0, gw.getWidth(), gw.getHeight())):

gw.add (new GLine (0, gw.getHeight(), gw.getWidth(), 0));
return 0;

Constructor
GlLine (x0, y0, x1, yl)

Constructs a line segment from its endpoints.

Methods
getEndPoint (Returns the point at which the line ends.
getStartPoint () Returns the point at which the line starts.

setEndPoint (x, y)

Sets the end point in the line to (x, y), leaving the start point unchanged.

setStartPoint (x, y) Sets the initial point in the line to (x, y), leaving the end point unchanged.

Things to beware of!

e \When do you use Ints? When do you use Doubles?
e Are you drawing multiple lines in the same spot?
e Do not use a “pair” of functions which call each other

EXPLORATION VIA RECURSIVE BACKTRACKING

Base Case:

e \We have found what we are looking for. We return the path that led us to this
objective

Otherwise enter the Recursive Case:

e For every possible option (unless I've already faced this situation!)
o “Choose” that option
o Fully explore that option (Did | reach my objective?)
o “Unchoose” that option

PROJECT 3: MARBLE SOLITAIRE

YOUR TASK

i e i D

bool solvePuzzle(Gr1d<Marb1eType>& board, Set<uint32 t>& exploredBoards,

L]

Vector<Move>& moveHlstory)
board is the current game board configuration. More on what MarbleType is below, but the
idea is that it keeps track of which spaces are currently occupied by a marble, which are free,
and which are not playable (i.e. the four corners of the board where there are no marbles).

exploredBoards is a set containing all the board configurations we have already explored.
Because it is possible to reach a given board configuration via different sequences of moves,
your recursive function should test if we have seen this board configuration before. If the
current board is found in exploredBoards., return false to avoid repeating work. (Also

be sure to add new boards to exploredBoards.) Note that the type is Set<uint32_t>&, not
Set<Grid<MarbleType>>&, as you might expect! More on this below.

moveHistory is the sequence of moves that led to the current board (not including human-
played moves, if any). These are saved so that if/when a winning sequence is found and the
function returns, the original calling function can reproduce the sequence of moves in the
graphics display. More on what the Move type is below.

What you are given

In Marbles.cpp/h: In marbletypes.ccp/h:

e Enum marble type
e makeMove

e undoMove

e findPossibleMoves In marblegraphics.cpp/h:

e ALL THE GRAPHICS YAY!
In compression.cpp/h:

e compressMarbleBoard

Some words of advice

e DO NOT try to debug this with an entire board. It will drive you up a wall! Use
the smaller boards we have given you.
e If your assignment is running slow, there are several things you should ask
yourself:
o Am | sending things through by reference or by value?
o Do | search down the same path multiple times?

Good Luck!

