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Autumn 2012 November 28th, 2012 

Assignment 7: Pathfinder 
This assignment was developed and written by Julie Zelenski and Eric Roberts. 

 
Have you ever wondered how Google, Bing, and Yahoo Maps work their magic?   
 
Well, get ready to find out.  For your final challenge, you will create the Pathfinder 
application, which (in addition to other useful functions) finds and displays the shortest 
path between any two locations.  
 

Due: December 7th at 3:00 p.m. 

The Pathfinder application from the user’s perspective  
The Pathfinder application begins by asking the user to specify a filename containing data 
for a map consisting of a background image and a graph linking locations in the map.  The 
application then displays the graph in the graphics window.  For example, if the user asks 
for the map USA.txt, Pathfinder will create the display shown below: 
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The buttons along the bottom control strip are used as the primary controls used to advance 
through the application.  The Map button, for example, allows the user to enter the name of 
some other map, which it then loads into the window to replace the existing one.  The 
Dijkstra button executes Edsgar Dijkstra’s algorithm for finding the shortest path between 
two nodes in the graph, as described in Section 18.6 of the reader.  For example, if the user 
selects Dijkstra and then clicks on the city circles for Portland and Raleigh, the Pathfinder 
application will highlight the shortest path between those cities, as shown below.  The 
Kruskal button executes an algorithm by Joseph Kruskal that finds the lowest-cost cycle-free 
sub-graph connecting all nodes (as illustrated below.  Kruskal’s algorithm is described in 
some detail later in this handout.)  Clicking the Quit button exits from the program.  

 
The program from an implementer’s perspective  
The Pathfinder application is a substantial piece of code comprising several files, if you 
count both headers and implementations.  The good news is that you will need to modify 
just three of them: pathfinder.cpp, path.h, and path.cpp.  You will, however, need 
to use the rest of the files and must therefore understand their public interfaces, even if you 
can ignore their implementations.  The CS106B library header files—which I leave in the 
starter code files even though the starter code doesn’t make direct use of all of them—are 
documented online at http://cs106b.stanford.edu.  With Pathfinder—as with any 
large project—the most important advice we can offer is to subdivide the project into 



  3  

phases so that you can implement and test each phase independently.  In general, if you 
write the code for Pathfinder all at once and then try to get it working, you’ll likely struggle 
to manage the myriad bugs you’re sure to get.  On the other hand, if you take the time to 
test each new piece of your code as you write it, the assignment will go much more 
smoothly.  
 
We recommend that you implement Pathfinder in the following phases:  
 

1. Write the code to read map data from a file into its internal representation as a 
graph.  Examine the graphtypes.h header file within the project, and read 
through the graph.h documentation on the course web site.  

2. Use facilities from pathfinder-graphics.h to display the map on the screen.  
3. Add buttons to the control strip, making sure that they call the appropriate functions 

(even if they’re initially placeholder functions to be fleshed out in later phases). 
4. Re-implement Dijkstra’s algorithm—it’s presented in the reader—so it fits into the 

Pathfinder application. 
5. Design and implement the Path class and integrate it into your Dijkstra code.  
6. Implement Kruskal’s algorithm for finding minimum spanning trees. 

 
The sections that follow describe each of these phases in turn. 
 
Phase 1: Read the map data from a user-specified file 
The first step is to write the code necessary to read the information defining a Pathfinder 
graph from a data file.  The starter folder includes four data files: USA.txt, Small.txt, 
Stanford.txt, and MiddleEarth.txt.  The figure below, for example, shows the 
contents of the Small.txt data file, along with a few explanatory notes.  With only four 
nodes and six arcs, this file is ideal for testing.  
 

USA.jpg       Name of image file to display background picture  
NODES       Marks the beginning of list of nodes  
WashingtonDC 536 176    Each city is a one-word name with x-y coordinates  
Minneapolis 349 100  
SanFrancisco 26 170  
Dallas 310 296  
ARCS        Marks beginning of list of arcs  
Minneapolis SanFrancisco 1777  Each arc specifies two nodes and a distance  
Minneapolis Dallas 935    Note that each arc is a bidirectional connection  
Minneapolis WashingtonDC 1600  
SanFrancisco WashingtonDC 2200  
Dallas SanFrancisco 1540  
Dallas WashingtonDC 1319  

 
Each of the data files shares a common data format.  The first line is the name of a file 
containing the background image.  The next line consists of the word NODES, which 
indicates the beginning of the node entries.  The nodes are listed one per line, each with a 
name and x and y coordinates, each of the fields separated by spaces. The line ARCS 
indicates the end of the node entries and the beginning of the arc entries.  Each arc 
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identifies the two endpoints by name and gives the distance between the two (expressed as 
a real number with a fractional part—see Stanford.txt’s ARCS section to confirm).  The 
end of the ARCS section is the end of the file.  
 
Reading the Pathfinder data files is similar to reading the various other data files you’ve 
used this quarter.  In general, the simplest approach is to read each line from the file using 
getline and to then use a TokenScanner (as you did for the json-lite problem in 
section) to subdivide each line into meaningful subparts.  As you go through the file, you 
also have to make the appropriate calls to addNode and addArc methods in the 
PathfinderGraph class (which extends the Graph class) to create the appropriate data 
structure. 
 
As you create the graph structure, one point to keep in mind is that the arcs in the data file 
are bidirectional, in the sense that each arc indicates a connection both from the first to the 
second and from the second back to the first.  Because the PathfinderGraph class 
assumes that arcs run in one direction, you will need to add two arcs for each line in the 
data file: one from the first node to the second and one in the opposite direction.  
 
Given that Phase 1 comes before you have any means of displaying the graph on the 
screen, you should write additional code to test whether you have read the graph data 
correctly.  That code is not required of your final submission, but it is good practice to 
leave this kind of code in place so you can use it again if, for example, you need to change 
Pathfinder to work with a different file format. 
 
Phase 2: Display the map on the screen  
In Phase 2, your mission is to write the code necessary to take a graph of the sort you’ve 
created in Phase 1 and display it on the screen.  For example, assuming that you have read 
the graph data from the file USA.txt, there needs to be some function you can call that 
will produce the window shown on the first page of this handout.  Such a function, 
however, is not sufficient in and of itself.  At some point, you will need to be able to 
highlight individual nodes and arcs by drawing them in a different color.  If you think about 
what drawing capabilities you are going to need and design this part of the assignment so 
that those capabilities are easy to achieve, you will have an easier time implementing the 
algorithms in the later phases of this assignment.  
 
You are not, however, entirely on your own for Phase 2.  To make this assignment 
manageable, we’ve given you a pathfinder-graphics.h interface that includes a 
good number of useful functions for implementing the graphical elements of this 
assignment.  Everything you need is available in pathfinder-graphics.h, and you 
won’t need to work with the gwindow.h interfaces much at all. 
 
In contrast to earlier assignments, however, we are not going to describe in detail what 
functions are available in pathfinder-graphics.h.  You need to look at the interface 
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for that.  In today’s software development environment, programmers are always building 
on top of existing facilities whose structure they have to figure out on their own.  To help 
you with that process, pathfinder-graphics.h includes extensive comments, but you 
need to learn how to use it by looking at those comments and the function prototypes.  
 
Phase 3: Add buttons to the control strip  
For most of the last 15 years, the Pathfinder assignment has used a text-based menu to 
determine what operation it should execute.  That style of user interface dates from the 
1970s and seems entirely out of place over forty years later.  As you can see from the first 
two screenshots, the new Pathfinder (courtesy of Eric Roberts’ work this past summer and 
this past week) has buttons, which at least drags it some distance into the modern age. 
 
Although producing an application that seems a little less dated is useful in itself, the 
decision to incorporate buttons into this quarter’s Pathfinder assignment has an additional 
advantage.  In modern user interfaces, mouse clicks, button activation, and other similar 
user-generated activities represent actions that can occur at times not of the programmer’s 
choosing.  Such actions are collectively called events.  Programs respond to those events 
by designating some function to be invoked whenever an event occurs.  The program as a 
whole typically does nothing other than wait for events and call the appropriate functions. 
 
Event-driven programs of this sort depend on the idea of function pointers to trigger the 
action.  The programmer begins by providing the event manager with a pointer to a 
function that must be called whenever a particular event occurs.  At some later time, when 
the user performs an action that triggers the event, the event manager then uses that 
function pointer to trigger the appropriate action.  
 
A simple form of this mechanism is illustrated by the contents of the pathfinder.cpp 
file in the starter folder.  The main program in the starter file  
 

int main() { 
 GWindow gw(kWindowWidth, kWindowHeight + kControlStripHeight); 
   initPathfinderGraphics(&gw);  
   addButton("Quit", quitAction);  
   pathfinderEventLoop();  
   return 0;  
}  

 
where quitAction is defined as  
 

static void quitAction() {  
   exitGraphics(); // ends the program 
}  

 
In this code, the call  
 

addButton("Quit", quitAction);  
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creates a new button in the control strip and gives it the label Quit.  More importantly, the 
call also registers the function quitAction as the function to be invoked whenever the 
user activates (e.g. clicks on) the Quit button.  The pathfinderEventLoop function 
simply watches the mouse and waits for the user to click on one of the buttons.  When the 
user clicks a button, pathfinderEventLoop knows to invoke the registered function.  In 
the case of the Quit button, that function is quitAction, which invokes our custom 
exitGraphics function to terminate the application. 
 
The addButton and pathfinderEventLoop functions are exported by  
pathfinder-graphics.h and have no knowledge of functions like quitAction that 
live in the main program.  The implementations of addButton and quitAction lie on 
opposite sides of the abstraction barrier that the pathfinder-graphics.h interface is 
designed to create.  The function is provided by the main program and passed in pointer 
form across the abstraction barrier as a parameter to the addButton function.  At some later 
time, the implementation of pathfinderEventLoop has to retrieve the function pointer 
and make a call back across the abstraction barrier to the function defined in the main 
program.  Functions transmitted across an abstraction barrier and then invoked across that 
same barrier in the opposite direction are called callback functions. 
 
This simple model, however, is not sufficient to implement the other buttons you need for 
the Pathfinder application.  The quitAction function, after all, is extremely simple and 
requires minimal information.  The functions that implement the other buttons, however, 
must have access to the relevant graph.  The crux of the problem is therefore how to share 
information between the main program and the callback function triggered by an event. 
 
One possible strategy—and indeed one that ends up being used in far too many user- 
interface packages—is to share information in global variables.  This strategy, however, is a 
very poor one, because global variables can be manipulated by any part of the program.  
That global-variable approach is therefore too general and bad software engineering.  What 
we want instead is a mechanism that shares a data structure only between the cooperating 
parties: the main program that defines the button and the callback function invoked by 
pathfinderEventLoop.  To accomplish this objective, the usual approach is to give the 
callback function an argument and pass this argument in both directions as a reference 
parameter.  
 
The definition of addButton in pathfinder-graphics.h implements this strategy by 
allowing an optional third argument that represents the data structure being shared.  The 
callback function must also then take an argument of that same type.  When the user clicks 
a button, the registered callback function receives this information and can therefore 
communicate with the main program without using global variables.  
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To illustrate this idea, suppose that your graph data structure is stored in a variable named 
g whose type is PathfinderGraph.  You could then create a Clear button (not required 
for this assignment) by adding the line  
 

addButton("Clear", clearAction, g);  
 
to the main program.  You could then define clearAction like this:  
 

static void clearAction(PathfinderGraph& g) {  
   g.clear();  
   drawPathfinderMap(""); 
}  

 
Note that the parameter g is passed by reference, so the call to clear actually clears the 
graph defined in the main program, and not some transient copy of it.  The creation of the 
buttons on the screen requires just a few lines of code.  The harder part is writing the 
callback functions.  At this point, you don’t yet have enough of the assignment in place to 
implement the Dijkstra and Kruskal buttons, but you can put them on the screen and 
assign them to functions whose implementations will be fleshed out in later phases.  As 
part of Phase 3, however, you can (and indeed should) get the Map button working by 
having its callback function execute code you wrote in Phases 1 and 2. 
 
Phase 4: Re-implement Dijkstra’s algorithm so it fits into the Pathfinder application  
Figure 18-11 on page 805 of the reader has a complete implementation of Dijkstra’s 
algorithm for finding the shortest path between two nodes.  Your task for Phase 4 is to 
adapt that implementation so that it fits into your Pathfinder application architecture.  As 
you cannibalize the supplied implementation, be aware that the code references a 
PriorityQueue class different from those you implemented for Assignment 4 and used 
for Assignment 5.  The PriorityQueue used there is actually the one we expect you to 
use, as it’s part of the CS106B library set that includes the now-familiar Vector, Stack, 
Queue, and so forth. 
 
Copying the code for findShortestPath, even with that slight modification, is not your 
primary task in Phase 4.  The more challenging part is integrating the code into the 
application.  When you click the Dijkstra button in the user interface, the program 
should ask the user to click on two nodes on the graph.  These nodes then serve as the 
start and finish arguments to findShortestPath.  More challenging still is the 
problem of highlighting the path after findShortestPath returns. 
 
Phase 5: Design and implement the Path class and integrate it into the Dijkstra code  
The code for Dijkstra’s algorithm embodied in the findShortestPath function has 
some notable inefficiency.  One of these is that calculating the total distance along a path 
requires adding up the individual distances (or costs, in the language of the graph 
abstraction) of each of the arcs along the way.  Because this operation must be performed 
several times for each path as it evolves, looping over the arcs in a path generates 
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redundant computation that could easily be eliminated.  Unfortunately, as long as the path 
is represented as a Vector, there is no obvious place to store the total distance alongside 
the list of arcs.  
 
In Phase 5 of the assignment, your goal is to replace the Vector<Arc *> used to store the 
path with a new Path class you’re to define in path.h and implement in path.cpp.  
The versions of these files in the starter project are essentially empty.  We don’t tell you 
what methods the Path class must export or what data you need to maintain in the 
private section of the class.  We only require that your class meet the following 
conditions:  
 

1. The class must not export any public instance variables.  All data required to store 
the path must be private to the class.  

2. The method that returns the total cost of the path must run in constant time.  
3. The class must export a toString method that returns a string composed of the 

nodes on the path separated by arrows formed by the two-character sequence ->.  
4. Any heap storage allocated by this class must be freed when the object is deleted.  

 
Phase 6: Implement Kruskal’s algorithm for finding minimum spanning trees  
Your final task in the Pathfinder assignment is to implement another graph classic: Kruskal’s 
algorithm for constructing a minimal spanning tree, which is a sub-tree that connects all 
the nodes in a graph at minimal cost.  For example, if you invoke Kruskal’s algorithm on 
the graph from the USA.txt file, you get the result shown in the figure on page 2.  
Although a description of Kruskal’s algorithm appears in the reader as exercise 18-13, it 
seems worth repeating that discussion here so that you have all the information in one 
place. 
 
In many situations, a minimum-cost path between two specific nodes is not as important as 
minimizing the cost of a network as a whole.  As an example, suppose your company is 
building a new cable system that connects 10 large cities in the San Francisco Bay Area.  
Your preliminary research has provided you with cost estimates for laying new cable lines 
along a variety of possible routes.  Those routes and their associated costs are shown in the 
left graph of the two graphs on the next page.  Your job is to find the cheapest way to lay 
new cables so that all the cities are connected through some path. 
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To minimize the cost, one of the things you need to avoid is laying a cable that forms a 
cycle.  Such a cable is never needed, because some other path already links those cities, so 
you might as well leave such arcs out.  The remaining graph forms a structure that is in 
some ways like a tree, even though it lacks a root node.  Most importantly, the graph 
you’re left with after eliminating the redundant arcs is tree-like in that it has no cycles.  For 
historical reasons, the particular sub-graph that links all the nodes from the original one is 
called a spanning tree.  The spanning tree in which the total cost associated with the arcs is 
as small as possible is called a minimum spanning tree.  The cable-network problem is 
therefore equivalent to finding the minimum spanning tree of the graph, which is shown in 
the right side of the figure above.  
 
There are many algorithms for finding a minimum spanning tree.  Of these, one of the 
simplest was devised in 1956 by Joseph Kruskal.  In Kruskal’s algorithm, you consider the 
arcs in the graph in order of increasing cost.  If the nodes at the endpoints of the arc are 
unconnected, then you include this arc as part of the spanning tree.  If, however, the nodes 
are already connected by some path, you discard the arc instead.  
 
The steps in the construction of the minimum spanning tree for the graph are shown in the 
indented text below, which was generated by a program that traces the operation of the 
algorithm.  Since the goal is to minimize the overall total distance, it makes sense to 
consider shorter arcs before the longer ones.  To process the arcs in order of increasing 
distance, the priority queue will come in handy again. 
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Process edges in order of cost:  
10: Berkeley -> Oakland  
11: San Jose -> Sunnyvale  
13: Fremont -> Sunnyvale  
14: Fremont -> San Jose (not needed)  
15: Palo Alto -> Sunnyvale  
17: Fremont -> Hayward  
18: Hayward -> Oakland  
19: San Francisco -> San Rafael  
21: Fremont -> Palo Alto (not needed)  
22: Berkeley -> Vallejo  
23: Oakland -> San Francisco  
25: Palo Alto -> San Francisco (not needed)  
28: San Rafael -> Vallejo (not needed)  
30: Berkeley -> San Rafael (not needed) 

 
The tricky part of this algorithm is determining whether a given arc should be included or 
excluded.  The strategy you’ll use is based on tracking connected sets.  For each node, 
maintain the set of the nodes that are connected to it.  At the start, each node is connected 
only to itself.  When a new arc is added, merge the sets of the two endpoints into one 
combined set.  When considering an arc, if its two endpoints already belong to the same 
connected set, just skip it.  Repeatedly consider arcs and merge connected sets until all 
nodes are merged into one large set.  The perfect data structure for tracking the connected 
sets is our Set class, since it has the handy high-level operations (e.g. operator+=) that 
are exactly what you need here. 
 
General hints and suggestions  
o Check out the demo.  Run our provided demo to learn how the program should 

operate.  In general, you should emulate the sample application as closely as possible.  
o Careful planning aids reuse. This program has a lot of opportunity for unification and 

code reuse, but it requires some careful planning up front.  You’ll find it much easier to 
do it right the first time than to go back and try to unify common code patches in the 
11th hour.  Sketch out your basic attack before writing anything and look for potential 
reuse opportunities in advance so you can design your functions to be all-purpose from 
the beginning. 

o Test on smaller data first.  There is a Small.txt data file with just four nodes that is 
helpful for early testing.  The larger USA.txt, Stanford.txt, and 
MiddleEarth.txt data files are good for stress testing once you have the basics in 
place. 

 


