Passwords

## Outline

- Explaining Password Restrictions
- Password-Free Passwords
- Zero-Knowledge Proofs
- Passwords in Muscle Memory


## General Password Advice:

## Pick Long Passwords Use Different Types Of Characters Don't Pick Simple Passwords

## Pick Long Passwords

- Suppose your password consists only of the uppercase letters A, B, and C.
- How many one-character passwords are there?



## Pick Long Passwords

- Suppose your password consists only of the uppercase letters A, B, and C.
- How many two-character passwords are there?

$$
\begin{array}{c|c|c|c} 
& \text { A } & \text { B } & \text { C } \\
\text { A } & \text { AA } & \text { AB } & \text { AC } \\
\text { B } & \mathrm{BA} & \mathrm{BB} & \mathrm{BC} \\
\text { с } & \mathrm{CA} & \mathrm{CB} & \mathrm{CC}
\end{array}
$$

## Pick Long Passwords

- Suppose your password consists only of the uppercase letters A, B, and C.
- How many two-character passwords are there?

$$
\begin{array}{c|c|c|c} 
& \text { A } & \text { B } & \text { C } \\
\text { A } & \text { AA } & \text { AB } & \text { AC } \\
\text { B } & \mathrm{BA} & \mathrm{BB} & \mathrm{BC} \\
\text { с } & \mathrm{CA} & \mathrm{CB} & \mathrm{CC}
\end{array}
$$

## Pick Long Passwords

- Suppose your password consists only of the uppercase letters A, B, and C.
- How many two-character passwords are there?

$$
\begin{array}{c|c|c|c} 
& \text { A } & \text { B } & \text { C } \\
\text { A } & \text { AA } & \text { AB } & \text { AC } \\
\text { B } & \mathrm{BA} & \mathrm{BB} & \mathrm{BC} \\
\text { с } & \mathrm{CA} & \mathrm{CB} & \mathrm{CC}
\end{array}
$$

## Pick Long Passwords

- Suppose your password consists only of the uppercase letters A, B, and C.
- How many two-character passwords are there?

$$
\begin{array}{c|c|c|c} 
& \text { A } & \text { B } & \text { C } \\
\text { A } & \text { AA } & \text { AB } & \text { AC } \\
\text { B } & \mathrm{BA} & \mathrm{BB} & \mathrm{BC} \\
\text { - } & \mathrm{CA} & \mathrm{CB} & \mathrm{CC}
\end{array}
$$

## Pick Long Passwords

- Suppose your password consists only of the uppercase letters A, B, and C.
- How many two-character passwords are there?

$$
\begin{array}{c|c|c|c} 
& \text { A } & \text { B } & \text { C } \\
\text { A } & \text { AA } & \text { AB } & \text { AC } \\
\text { B } & \mathrm{BA} & \mathrm{BB} & \mathrm{BC} \\
\text { - } & \mathrm{CA} & \mathrm{CB} & \mathrm{CC}
\end{array}
$$

## Pick Long Passwords

- Suppose your password consists only of the uppercase letters A, B, and C.
- How many two-character passwords are there?

$$
\begin{array}{c|c|c|c} 
& \text { A } & \text { B } & \text { C } \\
\text { A } & \text { AA } & \text { AB } & \text { AC } \\
\text { B } & \mathrm{BA} & \mathrm{BB} & \mathrm{BC} \\
\text { с } & \mathrm{CA} & \mathrm{CB} & \mathrm{CC}
\end{array}
$$

## Pick Long Passwords

- Suppose your password consists only of the uppercase letters A, B, and C.
- How many two-character passwords are there?

$$
\begin{array}{c|c|c|c} 
& \text { A } & \text { B } & \text { C } \\
\text { A } & \text { AA } & \text { AB } & \text { AC } \\
\text { B } & \mathrm{BA} & \mathrm{BB} & \mathrm{BC} \\
\text { с } & \mathrm{CA} & \mathrm{CB} & \mathrm{CC}
\end{array}
$$

## Pick Long Passwords

- Suppose your password consists only of the uppercase letters A, B, and C.
- How many three-character passwords are there?



## Pick Long Passwords

- When made from the letters $\mathrm{A}, \mathrm{B}$, and C , there are
- $\mathbf{3}=3^{1}$ passwords of length 1 ,
- $\mathbf{9}=3^{2}$ passwords of length 2 ,
- $27=3^{3}$ passwords of length 3 ,
- 
- $3^{n}$ passwords of length $n$.
- Each added character triples the number of possible passwords!

Suppose your password consists of all upper-case letters. There are $\mathbf{2 6}^{\boldsymbol{n}}$ possible passwords of length $n$.

For perspective...


US Population in 2009: 306.8 Million $26^{6}=308.9$ Million

Number of atoms in the universe: $\approx 10^{80}$ $26^{57} \approx 4.5 \times 10^{80}$

## Attacking Passwords

## Some Math

- Suppose you can try entering $10^{9}$ passwords per second.
- If all passwords are made from uppercase letters (26 options), time to figure out a password of
- length 6: < 1 second
- length 8: 2.5 minutes
- length 10: 1.6 days
- length 15: 53,000 years


## Some Math

- Suppose you can try entering $10^{9}$ passwords per second.
- If all passwords are made from upper and lower-case letters (52 options), time to figure out a password of
- length 6: 19 seconds
- length 8: 15 hours
- length 10: 4.5 years
- length 15: 1.7 billion years


## Some Math

- Suppose you can try entering $10^{9}$ passwords per second.
- If all passwords are made from letters, digits, and punctuation ( 94 options), time to figure out a password of
- length 6: 11 minutes
- length 8: 10 weeks
- length 10: 1707 years
- length 15: 12 trillion years


## General Password Advice:

## Pick Long Passwords Use Different Types Of Characters Don't Pick Simple Passwords

## Random 15-Symbol Passwords

$$
\begin{aligned}
& \text { :t\$bk~jN__akL_B } \\
& \text { xv\&lA\};\$:xV[k^2 } \\
& \text { W;7nFir5|[@/Wfu } \\
& \text { p9Ep[.>w! \c]?DH } \\
& \text { M\$UhvrVm:SA\}!@q }
\end{aligned}
$$

## The RockYou! List

32 Million Accounts 1.4 Million Distinct Passwords

The US nuclear arsenal has passwords to prevent unauthorized missile launches.

## For fifteen years the password was... 00000000

## Redoing the Math

- Approximate size of a college graduate's vocabulary, in words: 15,000.
- Approximate number of common names in the United States: 5,000.
- Total number of passwords that are a common word or name: 20,000.
- Time to brute-force this on a computer: less than one second.
- Trying to guess a password from a list of common passwords is called a dictionary attack.


## Multiword Passwords

- If you choose two totally random common words or names and use it as your password, there are 800 million possibilities.
- Easily attacked by a computer.
- If you choose four totally random common words or names and use them as your password, there are $\mathbf{1 6 0}$ quadrillion possibilities.
- Takes a long time to brute-force.
- If you choose six totally random common words or names and use them as your password, there are 64 septillion possibilities.
- Well beyond the reach of a computer attack.


## A Fun NYTimes Article:

http://www.nytimes.com/2014/11/19/magazine/the-secret-life-of-passwords.html?_r=0

## Fundamental Concerns in Passwords: An Issue of Trust

## Hi! I'm Emma! I'd like to withdraw money from my account!



Sure! But in order to prove that you're Emma, you need to give me your password!

Emma (Bank customer)
Eric (Evil bank employee)

## Sure! It's ILIKEMONEY



Emma (Bank customer)
Eric (Evil bank employee) prove that you're Emma, you need to give me your password!


Eric (Evil bank employee)
Alice (Bank employee)

## Sure! It's ILIKEMONEY



Eric (Evil bank employee)
Alice (Bank employee)

What is a Password?

# Goal: Convince someone (the verifier) that you know a secret without revealing what that secret is. 

## Where's Waldo?



## Where's Waldo?



Source: http://www.findwaldo.com/maps/gluttons/gluttons_small.jpg

Could I convince you I know where Waldo is without revealing his position?






## Applied Kid Cryptography

# Or <br> How To Convince Your Children You Are Not Cheating 

Moni NaOr* ${ }^{*} \quad$ Yael Naor ${ }^{\dagger} \quad$ Omer Reingold ${ }^{\ddagger}$

March, 1999

## Abstract

In this note, we consider a real life cryptographic problem: how to convince people that you know where Waldo is without revealing information about his location. We propose and discuss methods of solving this problem.

## Applied Kid Cryptography

## Or

## How To Convince Your Children You Are Not Cheating <br>  <br> Omer Reingold ${ }^{\ddagger}$

## Abstract

In this note, we consider a real life cryptographic problem: how to convince people that you know where Waldo is without revealing information about his location. We propose and discuss methods of solving this problem.

## Applied Kid Cryptography

or
How To Convince Your Children You Are Not Cheating


Omer Reingold ${ }^{\ddagger}$
note, we consider a real life cryptograp know where Waldo is without revealing informati
methods of solving this problem.

## Zero-Knowledge Proofs

- A zero-knowledge proof (or ZKP) is a system between a prover and a verifier.
- The prover wants to convince the verifier that she knows a secret without revealing the secret to the verifier.
- Replaces passwords: can prove you are who you are to a verifier, who then cannot impersonate you.


## Database: <br> One Puzzle Per Person

Hi! I'm Emma! Ind like to withdraw money from my account!


Emma (Bank customer)
Eric (Evil bank employee)


Emma (Bank customer)
Eric (Evil bank employee)

There he is!
Okay! Here's your money!

Eric (Evil bank employee)

Hi! I'm Emma! Id like to withdraw money from my account!


Eric (Evil bank employee)
Alice (Good bank employee)


Eric (Evil bank employee)

Alice (Good bank employee)


## There he is!



Eric (Evil bank employee)
Alice (Good bank employee)


Eric (Evil bank employee)
Alice (Good bank employee)


Eric (Evil bank employee)

You are a lying liar who lies!


Alice (Good bank employee)

Zero-Knowledge Proofs in Practice

An Issue of Coercion


Figure 1: Screenshot of the SISL task in progress.
(This work was done in 2012)

## Why This Matters

- Cryptography lies at the intersection of several fields:
- Computer Science: How do you implement cryptography in software?
- Mathematics: What mathematical properties ensure a system is safe?
- Social Science: How do human social dynamics influence what to secure against?
- Neuroscience: How does the brain form memories?
- And a lot more!

