Machine Learning

Announcements

- Second midterm is tomorrow evening from 7PM 10PM.
- Same locations as last time - just go where you went before!
- Abb - Jon: Go to Hewlett 200
- Jun - Mari: Go to Hewlett 201
- Marq - Mik: Go to Hewlett 101
- Mil - Ogr: Go to Hewlett 102
- Oke - Pat: Go to Hewlett 103
- Pau - Tan: Go to Braun Auditorium
- Tao - Zuc: Go to 320-105

Let's have some fun!

Perceptron Learning

How do we choose good values for $w_{0} \ldots w_{n}$?

One Approach

- Train the perceptron on valid data.
- For each data point:
- Ask the perceptron what it thinks.
- If correct, do nothing.
- Otherwise, nudge wo ... w_{n} in the right direction.
- Repeat until number of errors is "small enough."
- Question: What kind of mistakes can we make?

A Cute Math Trick

- For false positives, set $w_{k}=w_{k}-\alpha \chi_{k}$.
- For false negatives, set $w_{k}=w_{k}+\alpha \chi_{k}$.
- For correct answers, set $w_{k}=w_{k}$.
- Let "YES" be 1 and "NO" be 0 .
- Consider the difference between the actual answer and perceptron guess:
- False positive: Actually NO, we say YES. Difference is -1 .
- False negative: Actually YES, we say NO. Difference is +1 .
- Correct answer: Both YES or both NO. Difference is 0 .
- General update rule: $\boldsymbol{w}_{k}=\boldsymbol{w}_{k}+\boldsymbol{\alpha}\left(\right.$ real - guess) x_{k}.

Perceptron Learning Algorithm

- Start with a random guess of each w_{k}.
- Repeat until perceptron is sufficiently accurate:
- Choose a training example ($\chi_{0}, \chi_{1}, \ldots, \chi_{n}$).
- Let real be the real answer, guess be the perceptron's guess.
- For each k, set $\boldsymbol{w}_{k}=\boldsymbol{w}_{k}+\boldsymbol{\alpha}\left(\right.$ real - guess) \boldsymbol{x}_{k}
- Note: Use batching in practice.
- Update everything all at once.

Application: Handwriting Analysis

- Train a computer to recognize handwritten numbers 0-9.
- Large training and test set available (MNIST Handwritten Digit Database)

Combining Perceptrons

This is called a neural network.

Machine Learning

- Interesting in machine learning? Take CS109 or CS229!
- Many beautiful algorithms:
- Naive Bayes classifiers (used in spam filtering).
- Decision trees (used in hospitals for diagnostics).
- Bayesian networks (used in cancer research and traffic control systems).
- Word embeddings (recent approach for text processing and understanding).

Good Luck on the Exam!

