

Randomness and Returns

Announcements

● Assignment 2 (Welcome to Java!) was due
today at 3:15PM.

● Assignment 3 (Problem-Solving in Java)
goes out now and is due next Monday at
3:15PM.
● Play around with while loops, methods, random

numbers, and variable assignment!

● CS for Social Good:
● cs-for-social-good@lists.stanford.edu
● Facebook: Stanford CS for Social Impact.

mailto:cs-for-social-good@lists.stanford.edu

Outline for Today

● Random Numbers
● Randomness meets computing.

● The Loop-and-a-Half Idiom
● A particularly clever loop structure.

● Returning Values
● Communicating information out of methods.

Randomness and Computing

Random Number Generators

RandomGenerator

● The class RandomGenerator acts as a random number
generator. To use it, you'll need to import acm.util.*;

● To generate random numbers, start by getting a
random generator:

RandomGenerator rgen = RandomGenerator.getInstance();

● Then, use the nextX functions to get the random
values you want:
● rgen.nextInt(low, high)
● rgen.nextDouble(low, high)
● rgen.nextBoolean(probability)
● rgen.nextColor() // Ooh, shiny!

Looping Forever

● while loops iterate as long as their condition
evaluates to true.

● A loop of the form while (true) will loop forever
(unless something stops it).

● You can immediately exit a loop by using the
break statement.

while (true) {
 …
 if (…) break;
}

Looping Forever

● while loops iterate as long as their condition
evaluates to true.

● A loop of the form while (true) will loop forever
(unless something stops it).

● You can immediately exit a loop by using the
break statement.

while (true) {
 …
 if (…) break;
}

The “Loop-and-a-Half” Idiom

● Often you will need to

● read a value from the user,
● decide whether to continue, and if so
● process the value.

● Technique: The loop-and-a-half idiom:

while (true) {
 /* … get a value from the user … */

 if (condition) {
 break;
 }

 /* … process the value … */
}

Methods that Return Values

import acm.program.*;

public class AddTwoIntegers extends ConsoleProgram {
public void run() {

println("This program adds two integers.");

// Read two values from the user.
int n1 = readInt("Enter first integer: ");
int n2 = readInt("Enter second integer: ");

// Compute their sum.
int sum = n1 + n2;

// Print out the summation
println("The sum of those numbers is " + sum);

}
}

import acm.program.*;

public class AddTwoIntegers extends ConsoleProgram {
public void run() {

println("This program adds two integers.");

// Read two values from the user.
int n1 = readInt("Enter first integer: ");
int n2 = readInt("Enter second integer: ");

// Compute their sum.
int sum = n1 + n2;

// Print out the summation
println("The sum of those numbers is " + sum);

}
}

Returning Values

● Methods can return values that can be used
elsewhere in the program.

● Examples:
● The getWidth and getHeight methods return the

width and height of the window.
● The readInt and readDouble methods return

values entered by the user.

● You can write your own methods that return
values!

Return Syntax

● To make a method that communicates a value to
the outside world, you need to do two things.

● First, say what kind of value you want to
communicate back by specifying a return type.
Declare your method as

private returnType methodName(parameters)

● Then, include a return statement in your method
saying what value to hand back.

return value;

Factorials!

● The number n factorial, denoted n!, is

1 × 2 × 3 × … × (n – 1) × n
● For example:

● 3! = 1 × 2 × 3 = 6.
● 5! = 1 × 2 × 3 × 4 × 5 = 120
● 0! = 1 (by definition)

● Factorials arise surprisingly frequently in computer
science:
● Determining how quickly computers can sort a list of

values.
● Analyzing the efficiency of various algorithms.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

