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Abstract

We prove that the classic policy-iteration method (Howard 1960), including the
Simplex method (Dantzig 1947) with the most-negative-reduced-cost pivoting rule, is
a strongly polynomial-time algorithm for solving the Markov decision problem (MDP)
with a fixed discount rate. Furthermore, the computational complexity of the policy-
iteration method (including the Simplex method) is superior to that of the only known
strongly polynomial-time interior-point algorithm ([28] 2005) for solving this problem.
The result is surprising since the Simplex method with the same pivoting rule was
shown to be exponential for solving a general linear programming (LP) problem,
the Simplex (or simple policy-iteration) method with the smallest-index pivoting
rule was shown to be exponential for solving an MDP regardless of discount rates,
and the policy-iteration method was recently shown to be exponential for solving a
undiscounted MDP. We also extend the result to solving MDPs with sub-stochastic
and transient state transition probability matrices.

1 Introduction of the Markov decision problem and

its linear programming formulation

Markov decision problems (MDPs), named after Andrey Markov, provide a mathematical
framework for modeling decision-making in situations where outcomes are partly random
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and partly under the control of a decision maker. The MDP is one of the most funda-
mental models for studying a wide range of optimization problems solved via dynamic
programming and reinforcement learning. Today, it has been used in a variety of areas,
including management, economics, bioinformatics, electronic commerce, social networking,
and supply chains.

More precisely, an MDP is a discrete-time stochastic control process. At each time step,
the process is in some state i, and the decision maker may choose any action, say action
j, that is available in state i. The process responds at the next time step by randomly
moving into a new state i′, and giving the decision maker a corresponding immediate cost
cj(i, i′).

Let m denote the total number of states. The probability that the process enters i′ as
its new state is influenced by the chosen state-action j. Specifically, it is given by a state
transition probability distribution pj(i, i′) ≥ 0, i′ = 1, · · · ,m, and

m∑
i′=1

pj(i, i′) = 1, ∀i = 1, · · · ,m.

Thus, the next state i′ depends on the current state i and the decision maker’s chosen
state-action j, but is conditionally independent of all previous states and actions; in other
words, the state transitions of an MDP possess the Markov property.

The key decision of MDPs is to find a (stationary) policy for the decision maker: a
set function π = {π1, π2, · · · , πm} that specifies the action πi that the decision maker will
choose when in state i, for i = 1, · · · ,m. The goal of the problem is to find a (stationary)
policy π that will minimize some cumulative function of the random costs, typically the
expected discounted sum over an infinite horizon:

∞∑
t=0

γtcπit (it, it+1),

where cπit (it, it+1) represents the cost, at time t, incurred to an individual who is in state
it and takes action πit .

Here γ is the discount rate, where γ ≥ 0 and is assumed to be strictly less than 1 in
this paper. This MDP problem is called the infinite-horizon discounted Markov decision
problem (DMDP), which serves as the core model for MDPs. Because of the Markov
property, there is an optimal stationary policy, or policy for short, for the DMDP so that it
can indeed be written as a function of i only; that is, π is independent of time t as described
above.

Let ki be the number of state-actions available in state i, i = 1, · · · ,m, and let

A1 = {1, 2, · · · , k1}, A2 = {k1 + 1, k1 + 2, · · · , k1 + k2}, ...
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or, for i = 1, 2, · · · ,m in general,

Ai :=

{(
i−1∑
s=1

ks

)
+ 1,

(
i−1∑
s=1

ks

)
+ 2, · · · ,

i∑
s=1

ks

}
.

Moreover, let n =
∑m
i=1 ki, and the total n state-actions be ordered such that if j ∈ Ai,

then state-action j is controlled by state i. Note that the cardinality |Ai| = ki.

Suppose we know the state transition probability P and the cost function c, and we
wish to calculate the policy that minimizes the expected discounted cost. Then a policy
π would be associated with another array indexed by state, value vector v ∈ IRm, which
contains cost-to-go values for all states. Furthermore, an optimal policy, (v∗, π∗), is then a
fixed point of the following minimum cost operator,

π∗i := arg minj∈Ai
{∑i′ p

j(i, i′) (cj(i, i′) + γv∗i′)} ;

v∗i :=
∑
i′ p

π∗i (i, i′)
(
cπ
∗
i (i, i′) + γv∗i′

)
, ∀i = 1, · · · ,m. (1)

Let Pπ ∈ IRm×m be the column stochastic matrix corresponding to a policy π, that is,
the ith column of Pπ be the probability distribution pπi(i, i′), i′ = 1, · · · ,m. Then the
equilibrium condition of (1) can be represented by a matrix form

(I − γP T
π∗)v

∗ = cπ∗ ,
(I − γP T

π )v∗ ≤ cπ, ∀π,
(2)

where the ith entry of column vector cπ ∈ IRm equals
∑
i′ p

πi(i, i′)cπi(i, i′).

Due to D’Epenoux [9] (also see Manne [17] and de Ghellinck [8]), the infinite-horizon
discounted MDP can be formulated as a primal linear programming (LP) problem in the
standard form

minimize cTx
subject to Ax = b,

x ≥ 0,
(3)

with the dual
maximize bTy
subject to s = c− ATy ≥ 0,

(4)

where A ∈ IRm×n is a given real matrix with rank m, c ∈ IRn and b ∈ IRm are given real
vectors, 0 denotes the vector of all 0’s, and x ∈ IRn and (y ∈ IRm, s ∈ IRn) are unknown
primal and dual variables, respectively. Vector s is often called the dual slack vector. In
what follows, “LP” stands for any of the following: “linear program”, “linear programs”,
or “linear programming”, depending on the context.

More precisely, the DMDP can be represented by the LP problems (3) and (4) with the
following assignments of (A,b, c). First, the ith entry of the column vector b ∈ IRn is 1 for
all i, representing an initial population of individuals in state i. Secondly, the jth entry of
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the column vector of c ∈ IRn is the (expected) one-time unit cost of action j taken by a
state. In particular, if j ∈ Ai, then action j is controlled by state i and

cj =
∑
i′
pj(i, i′)cj(i, i′). (5)

The LP constraint matrix has the form

A = E − γP ∈ IRm×n. (6)

The jth column of P is the state transition probability distribution when the jth action
is taken by a state. More precisely, for each state-action j ∈ Ai, that is, each action j
controlled by state i,

Pi′j = pj(i, i′), ∀i′ = 1, · · · ,m. (7)

Finally, the ith element of the jth column of E is 1 if action j is controlled by state i and
zero everywhere else:

Eij =

{
1, if j ∈ Ai,
0, otherwise

, ∀i = 1, · · · ,m, j = 1, · · · , n. (8)

Let e be the vector of all ones, where its dimension depends on the context. Then we have
b = e, eTP = e (that is, P is a column stochastic matrix), eTE = e, and eTA = (1− γ)e.

The interpretations of the quantities defining the DMDP primal (3) and the DMDP
dual (4) are as follows: b = e means that there is one unit of the initial number of
individuals in each state i. The jth entry, if j ∈ Ai, of primal variables x ∈ IRn is the
state-action frequency for action j, or the expected present value of the number of times in
which an individual is in state i and takes state-action j when j ∈ Ai. Thus, solving the
DMDP primal entails choosing state-action frequencies that minimize the expected present
value sum, cTx, of total costs subject to the conservation law Ax = e. The conservation
law ensures that for each state i, the expected present value of the number of individuals
entering state i equals the expected present value of the number of individuals leaving i.

The DMDP dual variables y ∈ IRm exactly represent the expected present cost-to-go
values of the m states. Solving the dual entails choosing dual variables y, one for each
state i, together with s ∈ IRn of slack variables, one for each state-action j, that maximizes
eTy subject to ATy + s = c, s ≥ 0 or simply ATy ≤ c. It is well known that there exist
unique optimal y∗ and s∗ where, for each state i, y∗i is the minimum expected present cost
that an individual in state i and its progeny can incur.

A policy π of the original DMDP, containing exactly one action in Ai for each state
i, actually corresponds to m basic variable indexes of a basic feasible solution (BFS) of
the DMDP primal LP formulation. Obviously, we have a total of

∏m
i=1 ki different policies.

Let matrix Aπ ∈ IRm×m (resp., Pπ, Eπ) be the columns of A (resp., P , E) with indexes
in π. Then for a policy π, Eπ = I (where I is the identity matrix), so that Aπ has the
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Leontief substitution form Aπ = I − γPπ. It is also well known that Aπ is nonsingular, has
a nonnegative inverse and is a feasible basis for the DMDP primal. Let xπ be the BFS for
a policy π in the DMDP primal form and let ν contain the rest indexes not in π.

Let xπ and xν be the sub-vectors of x whose indexes are respectively in policy π and ν.
Then the nonbasic variables xπν = 0 and the basic variables xππ are the unique solution to
Aπxπ = e. The corresponding basic solution of the dual is the vector yπ that is the unique
solution to ATπy = cTπ . The basic solution yπ of the dual is feasible if also ATν y

π ≤ cTν or
sν ≥ 0. The basic solution pair xπ and yπ of the DMDP primal and dual are optimal if
and only if both are feasible. If policy π produces optimal xπ and yπ, then π is an optimal
policy π∗ and yπ

∗
is exactly v∗. Note that the constraints ATπ∗y

π∗ = cTπ∗ and ATyπ
∗ ≤ cT

describe the same condition for v∗ in (2) for each policy π or for each state-action j.

2 The Markov decision problem methods and their

complexities

There are several major events in developing methods for solving DMDPs. Bellman (1957)
[1] developed a successive approximate method, called value-iteration, which computes the
optimal total cost function assuming first a one stage finite horizon, then a two-stage finite
horizon, and so on. The total cost functions so computed are guaranteed to converge in the
limit to the optimal total cost function. It should be noted that, even prior to Bellman,
Shapley (1953) [23] used value-iteration to solve DMDPs in the context of zero-sum two-
person stochastic games.

The other best known method is due to Howard (1960) [12] and is known as policy-
iteration, which generates an optimal policy in a finite number of iterations. Policy-iteration
alternates between a value determination phase, in which the current policy is evaluated,
and a policy improvement phase, in which an attempt is made to improve the current
policy. In the policy improvement phase, the policy-iteration method updates possibly
improved actions for every state in one iteration. If the the current policy is improved for
at most one state in one iteration, then it is called simple policy-iteration. We will come
back to the policy-iteration and simple policy-iteration methods later in terms of the LP
formulation.

Since it was discovered in 1960 that the DMDP has an LP formulation, the Simplex
method of Dantzig (1947) [5] can be used to solving DMDPs. It turns out that the Simplex
method, when applied to solving DMDPs, is the simple policy-iteration method. Other
general LP methods, such as the Ellipsoid method and interior-point algorithms are also
capable to solve DMDPs.

As the notion of computational complexity emerged, there were tremendous efforts in
analyzing the complexity of the MDP and its solution methods. On the positive side, since
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it (with or without discount) can be formulated as an linear program, the MDP can be
solved in polynomial time by either the Ellipsoid method (e.g., Khachiyan (1979) [14]) or
the interior-point algorithm (e.g., Karmarkar (1984) [13]). Here, polynomial time means
that the number of arithmetic operations needed to compute an optimal policy is bounded
by a polynomial in the numbers of states, actions, and the bit-size of the input data, which
are assumed to be rational numbers. Papadimitriou and Tsitsiklis [20] then showed in 1987
that an MDP with deterministic transitions (i.e., each entry of state transition probability
matrices is either 0’s or 1’s) can be solved in strongly polynomial-time (i.e., the number
of arithmetic operations is bounded by a polynomial in the numbers of states and actions
only) as a Minimum-Mean-Cost-Cycle problem. Erickson [7] in 1988 showed that successive
approximations suffice to produce: (1) an optimal stationary halting policy, or (2) show
that no such policy exists in strongly polynomial time algorithm, based on the work of
Eaves and Veinott [6] and Rothblum [22].

There were also great research interests and progresses in the value-iteration and policy-
iteration methods for solving the DMDP. Bertsekas [2] in 1987 showed that the value-
iteration method converges to the optimal policy in a finite number of iterations. Tseng [24]
in 1990 showed that the value-iteration method generates an optimal policy in polynomial-
time for the DMDP when the discount rate is fixed. Puterman [21] in 1994 showed that
the policy-iteration method converges no more slowly than the value iteration method,
so that it is also a polynomial-time algorithm for the DMDP with a fixed discount rate.
This fact was actually known to Veinott (and perhaps others) three decades earlier and
used in dynamic programming courses he taught for a number of years well before 1994.
Mansour and Singh [18] in 1994 also gave an upper bound on the number of iterations,
km

m
, for the policy-iteration method in solving the DMDP when each state has k actions.

(Note that the total number of possible policies is km, so that the result is not much better
than that of complete enumeration.) In 2005, Ye [28] developed a strongly polynomial-
time combinatorial interior-point algorithm (CIPA) for the DMDP with a fixed discount
rate, that is, the number of arithmetic operations is bounded by a polynomial in only the
numbers of states and actions.

In terms of the worst-case complexity bound on the number of arithmetic operations,
the current best results (within a constant factor) are summarized in the following table,
when there are exact k actions in each of the m states; see Littman et al. [16], Mansour
and Singh [18], Ye [28], and references therein.

Value-Iteration Policy-Iteration LP-Algorithms CIPA

m2kL(P,c,γ) log(1/(1−γ))
1−γ min

{
m3k·km

m
, m

3kL(P,c,γ) log(1/(1−γ))
1−γ

}
m3k2L(P, c, γ) m4k4 log m

1−γ

Here, L(P, c, γ) is the total bit-size of the DMDP input data in the linear programming
form, given that (P, c, γ) have only rational entries. As one can see from the table, both the
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value-iteration and policy-iteration methods are polynomial-time algorithms if the discount
rate 0 ≤ γ < 1 is fixed. But they are not strongly polynomial, where the running time
needs to be a polynomial only in m and k. The proof of polynomial-time for the value and
policy-iteration methods is essentially due to the argument that, when the gap between
the objective value of the current policy (or BFS) and the optimal one is small than
2−L(P,c,γ), the current policy must be optimal; e.g., see [11]. However, the proof of a
strongly polynomial-time algorithm cannot rely on this argument, since (P, c, γ) may have
irrational entries so that the bit-size of the data can be ∞.

In practice, the policy-iteration method, including the simple policy-iteration or Simplex
method, has been remarkably successful and shown to be a most effective and widely used.
The number of iterations is typically bounded by O(mk). It turns out that the policy-
iteration method is actually the Simplex method with block pivots at each iteration; and
the Simplex method also remains one of the very few extremely effective methods for solving
general LPs; see Bixby [3]. In the past 50 years, many efforts have been made to resolve
the worst-case complexity issue of the policy-iteration method or the Simplex method,
and to answer the question: are the policy-iteration and the Simplex methods strongly
polynomial-time algorithms?

Unfortunately, so far most results have been negative. Klee and Minty [15] showed in
1972 that the classic Simplex method, with Dantzig’s original most-negative-reduced-cost
pivoting rule, necessarily takes an exponential number of iterations to solve a carefully
designed LP problem. Later, a similar negative result of Melekopoglou and Condon [19]
showed that one simple policy-iteration method, where only the action for the state with the
smallest index is updated, needs an exponential number of iterations to compute an optimal
policy for a specific DMDP problem regardless of discount rates (i.e., even when γ < 1 is
fixed). Most recently, Fearnley (2010) [10] showed that the policy-iteration method needs
an exponential number of iterations for an undiscounted but finite-horizon MDP. Thus, it
seems impossible for the policy-iteration method to be a strongly polynomial-time algorithm
for solving general MDPs.

What about DMDP with a fixed discount rate? Is there a pivoting rule to make the
simplex and policy-iteration methods strongly polynomial for the DMDP?

In this paper, we prove that the classic Simplex method, or the simple policy-iteration
method, with the most-negative-reduced-cost pivoting rule, is indeed a strongly polynomial-
time algorithm for the DMDP with a fixed discount rate 0 ≤ γ < 1. The number of its
iterations is bounded by

m2(k − 1)

1− γ
· log

(
m2

1− γ

)
,

and each iteration uses at most O(m2k) arithmetic operations. The result seems surprising,
given the earlier negative results mentioned above.

Since the policy-iteration method with the all-negative-reduced-cost pivoting rule is at
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least as good as the the simple policy-iteration method, we prove that it is also a strongly
polynomial-time algorithm with the same iteration complexity bound. Therefore, the worst-
case operation complexity, O(m4k2 logm), of the Simplex method is actually superior to
that, O(m4k4 logm), of the combinatorial interior-point algorithm [28] for solving DMDPs
when the discount rate is a fixed constant.

If the number of actions varies among the states, our worst-case iteration bound would
be m(n−m)

1−γ · log
(
m2

1−γ

)
, and each iteration uses at most O(mn) arithmetic operations, where

n is again the total number of actions. One can see that the worst-case iteration complexity
bound is linear in the total number of actions, as it is observed in practice.

We remark that, if the discount rate is an input, it remains open whether or not the
policy-iteration method is polynomial for the MDP, or whether or not there exists a strongly
polynomial-time algorithm for MDP or LP in general.

3 DMDP Properties and the Simplex and policy-iteration

methods

We first describe a few general LP and DMDP theorems and the classic Simplex and
policy-iteration methods. We will use the LP formulation (3) and (4) for DMDP and the
terminology presented in the Introduction section. Recall that, for DMDP,

b = e ∈ IRm, A = E − γP ∈ IRm×n,

and c, P and E are defined in (5), (7) and (8), respectively.

3.1 DMDP Properties

The optimality conditions for all optimal solutions of a general LP may be written as follows:

Ax = b,

ATy + s = c,

sjxj = 0, ∀j = 1, · · · , n,
x ≥ 0, s ≥ 0

where the third condition is often referred as the complementarity condition.

Let π be the index set of state-actions corresponding to a policy. Then, as we briefly
mentioned earlier, xπ is a BFS of the DMDP primal and basis Aπ has the form Aπ =
(I − γPπ), and Pπ is a column stochastic matrix , that is, Pπ ≥ 0 and eTPπ = e. In fact,
the converse is also true, that is, the index set π of basic variables of every BSF of the
DMDP primal is a policy for the original DMDP. In other words, π must have exactly one
variable or action index in Ai, for each state i. Thus, we have the following lemma.
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Lemma 1 The DMDP primal linear programming formulation has the following properties:

1. There is a one-to-one correspondence between a (stationary) policy of the original
DMDP and a basic feasible solution of the DMDP primal.

2. Let xπ be a basic feasible solution of the DMDP primal. Then any basic variable, say
xπi , has its value

1 ≤ xπi ≤
m

1− γ
.

3. The feasible set of the DMDP primal is bounded. More precisely,

eTx =
m

1− γ
,

for every feasible x ≥ 0.

Proof. Let π be the basis set of any basic feasible solution for the DMDP primal. Then,
the first statement can be seen as follows. Consider the coefficients of the ith row of A.
From the structure of (6), (7) and (8), we must have aij ≤ 0 for all j 6∈ Ai. Thus, if no
basic variable is chosen from Ai or π ∩ Ai = ∅, then

1 =
∑
j∈π

aijx
π
j =

∑
j∈π,j 6∈Ai

aijx
π
j ≤ 0,

which is a contradiction. Thus, each state must have a state-action in π. On the other
hand, |π| = m. Therefore, π must contain exactly one action index in Ai from each state
i = 1, · · · ,m, that is, π is a policy.

The last two statements of the lemma were given in [28] whose proofs were based on
Dantzig [4, 5] and Veinott [26].

From the first statement of Lemma 1, in what follows we simply call the basis index set
π of any BFS of the DMDP primal a policy. For the basis Aπ = (I − γPπ) of any policy π,
the BFS xπ and the dual can be computed as

xππ = (Aπ)−1e ≥ e, xπν = 0, yπ = (ATπ )−1cπ, s
π
π = 0, sπν = cν − ATν (ATπ )−1cπ,

where again ν contains the rest action indexes not in π. Since xπ and sπ are already
complementary, if sπν ≥ 0, then π would be an optimal policy.

We now present the following strict complementarity result for the DMDP.

Lemma 2 Let both linear programs (3) and (4) be feasible. Then there is a unique partition
P ⊆ {1, 2, · · · , n} and O ⊆ {1, 2, · · · , n}, P ∩ O = ∅ and P ∪ Q = {1, 2, · · · , n}, such that
for all optimal solution pair (x∗, s∗),

x∗j = 0, ∀j ∈ O, and s∗j = 0, ∀j ∈ P ,
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and there is at least one optimal solution pair (x∗, s∗) that is strictly complementary,

x∗j > 0,∀j ∈ P , and s∗j > 0, ∀j ∈ O,

for the DMDP linear program. In particular, every optimal policy π∗ ⊆ P so that |P| ≥ m
and |O| ≤ n−m.

Proof. The strict complementarity result for general LP is well known, where we call
P the optimal (super) basic variable set and O the optimal non-basic variable set. The
cardinality result is from the fact that there is always an optimal basic feasible solution or
optimal policy where the basic variables (optimal state-action frequencies) are all strictly
positive from Lemma 1, so that their indexes must all belong to P .

The interpretation of Lemma 2 is as folows: since there may exist multiple optimal
policies π∗ for a DMDP, P contains those state-actions each of which appears in at least
one optimal policy, and O contains the rest state-actions neither of which appears in any
optimal policy. Let’s call each state-action in O a non-optimal state-action or simply non-
optimal action. Then, any DMDP should have no more than n−m non-optimal actions.

Note that, although there may be multiple optimal policies for a DMDP, the optimal
dual basic feasible solution (y∗, s∗) is unique and invariant among the multiple optimal
policies. Thus, if j is a non-optimal action, its optimal dual slack value, s∗j , must be
strictly greater than 0, and the converse is also true by the lemma.

3.2 The Simplex and policy-iteration Methods

Let π be a policy and ν contain the remaining indexes of the non-basic variables. Then we
can rewrite (3) as

minimize cTπxπ +cTν xν
subject to Aπxπ +Aνxν = e,

x = (xπ;xν) ≥ 0,
(9)

with its dual
maximize eTy
subject to ATπy + sπ = cπ,

ATν y + sν = cν ,
s = (sπ; sν) ≥ 0.

(10)

The (primal) Simplex method rewrites (9) into an equivalent problem

minimize (c̄ν)
Txν +cTπ (Aπ)−1e

subject to Aπxπ +Aνxν = e,
x = (xπ;xν) ≥ 0;

(11)
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where c̄ is called the reduced cost vector:

c̄π = 0 and c̄ν = cν − ATν yπ,

and
yπ = (ATπ )−1cπ.

Note that the fixed quantity cTπ (Aπ)−1e = cTxπ in the objective function of (11) is the
objective value of the current policy π for (9). In fact, problem (9) and its equivalent form
(11) share exactly the same objective value for every feasible solution x.

The Simplex method

If c̄ ≥ 0, the current policy is optimal. Otherwise, let 0 < ∆ = −min(c̄) with j+ =
arg min(c), that is, c̄j+ = −∆ > 0. Then we must have j+ 6∈ π, since c̄j = 0 for all
j ∈ π. Let j+ ∈ Ai, that is, let j+ be a state-action controlled by state i. Then, the classic
Simplex method (Dantzig 1947) takes xj+ as the incoming basic variable to replace the
old one xπi , and the method repeats with the new policy denoted by π+ where πi ∈ Ai
is replaced by j+ ∈ Ai. The method will break a tie arbitrarily, and it updates exactly
one state-action in one iteration, that is, it only updates the state with the most negative
reduced cost. This is the classic Simplex, or the simple policy-iteration, method that uses
the most-negative-reduced-cost updating or pivoting rule.

The policy-iteration method

The original policy-iteration method (Howard 1960 [12]) is to update every state that has
a negative reduced cost. For each state i, let ∆i = −minj∈Ai

(c̄) with j+i = arg minj∈Ai
(c̄).

Then for every state i such that ∆i > 0, let j+i ∈ Ai replace πi ∈ Ai already in the current
policy π. The method repeats with the new policy denoted by π+, where possibly multiple
πi ∈ Ai are replaced by j+i ∈ Ai. The method will also break a tie in each state arbitrarily.

Therefore, both methods would generate a sequence of polices denoted by π0, π1, . . . , πt, . . .,
starting from any initial policy π0. We comment that the Simplex and policy-iteration
methods with the greedy or the most-negative-reduced-cost updating rule are special ver-
sions of generic policy improvement. In what follows, the most-negative-reduced-cost pivot-
ing rule is used as a default for the Simplex and policy-iteration methods, unless otherwise
stated.

4 Proof of strong polynomiality

We first prove our strongly polynomial-time result for the Simplex method. For the im-
provement of new policy π+ over any policy π of the Simplex method, we have
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Lemma 3 Let z∗ be the optimal objective value of (9) . Then, in any iteration of the
Simplex method from current policy π to new policy π+

z∗ ≥ cTxπ − m

1− γ
·∆.

Moreover,

cTxπ
+ − z∗ ≤

(
1− 1− γ

m

) (
cTxπ − z∗

)
.

Therefore, the Simplex method generates a sequence of polices π0, π1, . . . , πt, . . . such that

cTxπ
t − z∗ ≤

(
1− 1− γ

m

)t (
cTxπ

0 − z∗
)
.

Proof. From problem (11), we see that the objective function value for any feasible x is

cTx = cTxπ + c̄Tx ≥ cTxπ −∆ · eTx = cTxπ −∆ · m

1− γ
,

where the first inequality follows from c̄ ≥ ∆·e, by the most-negative-reduced-cost pivoting
rule adapted in the method, and the last equality is based on the third statement of Lemma
1. In particular, the optimal objective value is

z∗ = cTx∗ ≥ cTxπ − m

1− γ
·∆,

which proves the first inequality of the lemma.

Since at the new policy π+, the value of new basic variable xπ
+

j+ is greater than or equal
to 1, from the second statement of Lemma 1, the objective value of the new policy for
problem (11) is decreased by at least ∆. Thus, for problem (9),

cTxπ − cTxπ
+

= ∆ · xπ+

j+ ≥ ∆ ≥ 1− γ
m

(
cTxπ − z∗

)
,

or

cTxπ
+ − z∗ ≤

(
1− 1− γ

m

) (
cTxπ − z∗

)
,

which proves the second inequality.

Replacing π by πt and using the above inequality, for all t = 0, 1, . . . , we have

cTxπ
t+1 − z∗ ≤

(
1− 1− γ

m

) (
cTxπ

t − z∗
)
,

which leads to the third desired inequality by induction.

We now present the following key technical lemma.
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Lemma 4 1. If a policy π is not optimal, then there is a state-action j ∈ π ∩ O (i.e.,
a non-optimal state-action j in the current policy) such that

s∗j ≥
1− γ
m2

(
cTxπ − z∗

)
,

where O, together with P, is the strict complementarity partition stated in Lemma 2,
and s∗ is the optimal dual slack vector of (10).

2. For any sequence of polices π0, π1, . . . , πt, . . . generated by the Simplex method where
π0 is not optimal, let j0 ∈ π0 ∩ O be the state-action index identified above in the
initial policy π0. Then, if j0 ∈ πt, we must have

xπ
t

j0 ≤
m2

1− γ
· c

Txπ
t − z∗

cTxπ0 − z∗
, ∀t ≥ 1.

Proof. Since all non-basic variable of xπ have zero values,

cTxπ − z∗ = cTxπ − eTy∗ = (s∗)Txπ =
∑
j∈π

s∗jx
π
j .

Since the number of non-negative terms in the sum is m, there must be a state-action j ∈ π
such that

s∗jx
π
j ≥

1

m

(
cTxπ − z∗

)
.

Then, from Lemma 1, xπj ≤ m
1−γ , so that

s∗j ≥
1− γ
m2

(
cTxπ − z∗

)
> 0,

which also implies j ∈ O from Lemma 2.

Now, suppose the initial policy π0 is not optimal and let j0 ∈ π0 ∩ O be the index
identified at policy π0 such that the above inequality holds, that is,

s∗j0 ≥
1− γ
m2

(
cTxπ

0 − z∗
)
.

Then, for any policy πt generated by the Simplex method, if j0 ∈ πt, we must have

cTxπ
t − z∗ = (s∗)Txπ

t ≥ s∗j0x
πt

j0 ,

so that

xπ
t

j0 ≤
cTxπ

t − z∗

s∗j0
≤ m2

1− γ
· c

Txπ
t − z∗

cTxπ0 − z∗
.
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These lemmas lead to our key result:

Theorem 1 Let π0 be any given non-optimal policy. Then there is a state-action j0 ∈
π0 ∩ O, i.e., a non-optimal action j0 in policy π0, that would never appear in any of the
policies generated by the Simplex method after T := d m

1−γ · log
(
m2

1−γ

)
e iterations starting

from π0.

Proof. From Lemma 3, after t iterations of the Simplex method, we have

cTxπ
t − z∗

cTxπ0 − z∗
≤
(

1− 1− γ
m

)t
.

Therefore, after t ≥ T + 1 iterations from the initial policy π0, j0 ∈ πt implies, by Lemma
4,

xπ
t

j0 ≤
m2

1− γ
· c

Txπ
t − z∗

cTxπ0 − z∗
≤ m2

1− γ
·
(

1− 1− γ
m

)t
< 1.

The last inequality above comes from the fact log(1− x) ≤ −x for all x < 1 so that

log
m2

1− γ
+ t · log

(
1− 1− γ

m

)
≤ log

m2

1− γ
+ t ·

(
−1− γ

m

)
< 0

if t ≥ 1 + T ≥ 1 + m
1−γ · log

(
m2

1−γ

)
. But xπ

t

j0 < 1 is a contradiction to Lemma 1, which

states that every basic variable value must be greater or equal to 1. Thus, j0 6∈ πt for all
t ≥ T + 1.

The event described in Theorem 1 can be viewed as a crossover event of Vavasis and
Ye [25, 28]: a state-action, although we don’t know which one it is, was in the initial policy
but it will never stay in or return to the policies after a certain number of iterations, during
the iterative process of the Simplex or simple policy-iteration method.

We now repeat the same proof for policy πT+1, if it is not optimal yet, in the policy
sequence generated by the Simplex method. Since policy πT+1 is not optimal, there must
be a non-optimal state-action, j1 ∈ πT+1 ∩ O and j1 6= j0 (because of Theorem 1), that
would never stay in or return to the policies generated by the Simplex method after 2T
iterations starting from π0. Again, we can repeat this process for policy π2T+1 if it is not
optimal yet, and so on.

In each of these cycles of T Simplex iterations, at least one new non-optimal state-action
is eliminated from appearance in any of the future policy cycles generated by the Simplex
method. However, we have at most |O| many such non-optimal state-actions to eliminate,
where |O| ≤ n −m from Lemma 2. Hence, the Simplex method can cycle at most n −m
times, and we reach our main conclusion:

14



Theorem 2 The simplex, or simple policy-iteration, method with the most-negative-reduced-
cost pivoting rule of Dantzig for solving the discounted Markov decision problem with a fixed
discount rate is a strongly polynomial-time algorithm. Starting from any policy, the method
terminates in at most m(n−m)

1−γ · log
(
m2

1−γ

)
iterations, where each iteration uses O(mn) arith-

metic operations.

The arithmetic operations count is well known for the Simplex method: it uses O(m2)
arithmetic operations to update the inverse of the basis (Aπt)−1 of the current policy πt

and the dual basic solution yπ
t
, as well as O(mn) arithmetic operations to calculate the

reduced cost, and then chooses the incoming basic variable.

We now turn our attention to the policy-iteration method, and we have the following
corollary:

Corollary 1 The original policy-iteration method of Howard for solving the discounted
Markov decision problem with a fixed discount rate is a strongly polynomial-time algorithm.
Starting from any policy, it terminates in at most m(n−m)

1−γ · log
(
m2

1−γ

)
iterations.

Proof. First, Lemmas 1 and 2 hold since they are independent of which method is
being used. Secondly, Lemma 3 still holds for the policy-iteration method, since at any
policy π the incoming basic variable j+ = arg min(c) (that is, c̄j+ = −∆ = −min(c̄)) for
the Simplex method is always one of the incoming basic variables for the policy-iteration
method. Thirdly, the facts established by Lemma 4 are also independent of how the policy
sequence is generated as long as the state-action with the most-negative-reduced-cost is
included in the next policy, so that they hold for the policy-iteration method as well.
Thus, we can conclude that there is a state-action j0 ∈ π0 ∩ O, i.e., a non-optimal state-
action j0 in the initial non-optimal policy π0, that would never stay in or return to the
policies generated by the policy-iteration method after T iterations. Thus, Theorem 1 also
holds for the policy-iteration method, which proves the corollary.

Note that, for the policy-iteration method, each iteration could use up to O(m2n) arithmetic
operations.

5 Extensions and Remarks

Our result can be extended to other undiscounted MDPs where every basic feasible matrix
of (9) exhibits the Leontief substitution form:

Aπ = I − P,

for some nonnegative square matrix P with P ≥ 0 and its spectral radius ρ(P ) ≤ γ for
a fixed γ < 1. This includes MDPs with sub-stochastic matrices and transient cases; see
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Veinott [27]. Note that the inverse of (I − P ) has the expansion form

(I − P )−1 = I + P + P 2 + . . .

and

‖(I − P )−1e‖2 ≤ ‖e‖2(1 + γ + γ2 + . . .) =

√
m

1− γ
,

so that
‖(I − P )−1e‖1 ≤

m

1− γ
.

Thus, each basic variable value is still between 1 and m
1−γ , so that Lemma 1 is true with an

inequality (actually stronger for our proof):

eTx ≤ m

1− γ
,

for every feasible solution x. Consequently, Lemmas 2, 3, and 4 all hold, which leads to
the following corollary.

Corollary 2 Let every feasible basis of an MDP have the form I − P where P ≥ 0, with
a spectral radius less than or equal to a fixed γ < 1. Then, the Simplex and policy-iteration
methods are strongly polynomial-time algorithms. Starting from any policy, each of them
terminates in at most m(n−m)

1−γ · log
(
m2

1−γ

)
iterations.

One observation from our worst-case analyses is that there is no iteration-count differ-
ence between the Simplex method and the policy-iteration method that makes block pivots
in each iteration, as long as the most-negative-reduced-cost pivoting rule is adapted. How-
ever, each iteration of the Simplex method is more efficient than that the policy-iteration
method.

Finally, we remark that the pivoting rule seems to make the difference. As we mentioned
earlier, for the DMDP with a fixed discount rate, the simplex or simple policy-iteration
method with the smallest-index pivoting rule (a rule popularly used against cycling in the
presence of degeneracy) was shown to be exponential. This is in contrast to the method
that uses the most-negative-reduced-cost pivoting rule, which is proven to be strongly
polynomial in this paper. On the other hand, the most-negative-reduced-cost pivoting rule
is exponential for solving some other LP problems. Thus, searching for suitable pivoting
rules for solving different LP problems is essential, and one cannot rule out the Simplex
method simply because the behavior of one pivoting rule on one problem is shown to be
exponential.

Further possible research directions may answer the questions: can the Simplex method
or the policy-iteration method be strongly polynomial for solving the MDP regardless of
discount rates? Or, is there any strongly polynomial-time algorithm for solving the MDP
regardless of discount rates?
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