
Defining programming and assessing its cognitive demands is
problematic because programming is a complex configuration of activities
that vary according to what is being programmed, the style of program-
ming, and how rich and supportive the surrounding programming cnvi-
ronment is (Kurland et al., 1984; Pea & Kurland, 1983).

One consequence of the fact that programming refers to a configuration
of activities is that different combinations of activities may be involved in
any specific programming project. These activities include, at a general
level. problem definition, design development and organization, code
writing. and debugging (Pea & Kurland, 1983). Different combinations of
activities will entail different cognitive demands. For example, a large
memory span may facilitate the mental simulations required in designing
and comprehending programs. Or an;dogical reasoning skill may he
important for recognizing the similarity of different programming tasks
and for transferring programming methods or procedures from one con-
text to another. An adequate assessment of the cognitive demands of
programming will depend on analyses of the programming activity and
examination of the demands of different component processes.

Specifying Levels of Programming Expertise

I n assessing the cognitive demands of programming, specifying the in-
tended level of expertise is essential. Different levels of expertise will
entail different cognitive demands. In many Logo programming class-
rooms, we have observed children engaging in what we term brute-force
paragruph programming, or what Rampy (1984) has termed product-
oriented programming. This style is analogous to so-called spaghetti
programming in BASIC. When programming, students decide on desired
screen effects and then write linear programs, lining up commands that
will cause the screen to show what they want in the order they want i t lo
happen. Students do not engage in problem decomposition or use the
powerful features of the language to structure a solution to the program-
ming problem. For example, if a similar shape is required several times in
a program, students will write new code each time the effect is required,
rather than writing one general procedure and calling on it repeatedly.
Programs thus consist of long strings of Logo primitives that are nei~rly
impossible to read, modify, or debug, even for the students who have
written them. Although students may eventually achieve their goal, or at
least end up with a graphics display with which they are content, the only
"demands" we can imagine for such a linear approach to programming
are stamina and determination.

Thus, as a first step in determining what the cognitive demands are for
learning or doing programming. we need to distinguish between lirreur and
modular programming (or between learning to program elegantly and
efficiently, and a style that emphasizes the generation of effects without
any consideration of how they were generated).

The beginner's linear style of construcling programs, whether in Logo
or BASIC, contrasts with modular programming (a planful process of
structured problem solving). Here, component elements of a task are
isolated, procedures for their execution developed, and the parts assem-
bled into a program and debugged. This type of programming requires a
relatively high-level understanding of the language. Modular program-
ming in Logo, where programs consist of organized. reusable subproce-
dures, requires that students understand the flow of control of the
language, such powerful control structures as recursion, and the passing
of values of variables between procedures. The cognitive demands for
this kind of programming are different from the demands for linear
programming, as are the potential cognitive benefits that may result from
the two programming styles.

Distinguishing Between Product and Process

In assessing the demands for different levels of expertise, however, it is
important not to equate level of expertise with the effects the students'
programs produce. We must distinguish product from process (Werner,
1937). We have seen very elaborate graphics displays created entirely
with brute-force programming. One characteristic of highly interactive
programming languages such as Logo and BASIC is that students can
often get the effects they want simply by trial and error-without any
overall plan, without fully understanding how effects are created, without
the use of sophisticated programming techniques, and without recogniz-
ing that a more planful program could be used as a building block in future
programs.

Furthermore, in school classrooms students borrow code from each
other and then integrate the code into their programs without bothering to
understand why the borrowed code does what i t does. S t ~ ~ t l c ~ l l s tl1crrfo1.c
can often satisfy a programming assignment by piecing ~ o ~ c t l i e r major
chunks imported from other sources. Although such "code stealing" is an
important and efficient technique widely employcd by expert program-
mers, an overreliance on other people's code that is beyond the under-
standing of the borrower is unlikely to lead to deeper understandings of
programming. Therefore, if we simply carralals urcrderttci' pnrrhr; q wIFR
r l u r . . ryepd~a~~ma t)i~.~ic,d~lnr dcm~hnds or r~ronrtirnrninr~ n r o ~ k ~ c n r v

Mapping the Cognitive
Demands of Learning to 20 Program

D. Midian Kurland
C a t h e r i n e A. Clemen t
Rona ld Mawby
Roy D. P e a
Bank Street College of Education

lntroductlon

Vociferous arguments have been offered for incorporating computer
progranming into the standard precollege curriculum (Luehrmann, I98 1 :
Papert, 1980; Snyder, 1984). Many parents and educators believe that
computer programming is an important skill for all children in our
technological society. In addition to pragmatic considerations. there is the
expectation among many educators and psychologists that learning lo
program can help children develop general high-level thinking skills useful
in other disciplines, such as mathematics and science. However, there is
little evidence that current approaches to teaching programming bring
students to the level of programming competence needed to develop
general problem-solving skills, or to develop a model of computer func-
tioning that would enable them to write useful programs. Evidence of
what children actually do in the early stages of learning to progrdm (Pea &
Kurland, 1983; Rampy, 1984) suggests that in currerlt prdclices program-
ming may not evoke the kinds of systematic, analytic, and reflective
thought that is characteristic of expert adult programmers (Kurland,
Mawby, & Cahir, 1984).

As the teaching of progrdmming is initiated at increasingly early grade
levels, questions concerning the cognitive demands for learning to pro-
gram are beginning to surface. Of particular interest to both teachers and
developmental psychologists is whether there are specific cognitive de-
munds for 1c:irning to program that might inform our tc;rching and tcll us
what aspects of programming will be difTicult for studcnls at dill'crent
stages in the learning process.

In the first part of this chapter, we explore factors that miiy determine
the cognitive demands of programming. In the second part, we report on
a study of these cognitive demands conducted with high school students
learning Logo. The premise for the study was the belief (hat in order for
programming to help promote the development of certain high-level
thinking skills. students must attain a relatively sophisticated understand-
ing of programming. Therefore, we developed two types of measures:
measures to assess programming proficiency, and measures to assess
certain key cognitive abilities that wc hypothesized to he inslrumental in
allowing students to become proficient programmers. The rcli~lionship
between these two sets of measures was then assessed.

Issues in Determining the Cognitive Demands of
Programming

One of the main issues in conducting research on the cognitive demands
of progranming is that the tern1 programming is used loosely to refer to
many different activities involving the computer. These activities range
from what a young child xa ted in front of a computer may do easily using
the immediate command mode in a language such as Logo, to what
college students struggle over, even after several years of programming
instruction. Contrary to the popular conception that young children take
lo programming "naturally" whereas adults do not, what the child and the
adult novice are actually doing and what is expected of them is radically
different. Clearly, the cognitive demands for the activities of the young
child and the college sludcnt will also ditrer. 'Thus, what is meant by
programming mu41 bc cliirificd before a discussion of demand4 can be
undertaken.

Compensatory Strategies

This point suggests another important factor that complicates the idcntiti-
cation of cognitivc demands of programming. Any programming problem
can be solved in many ways. Different programmers can utilize a dilrcrent
mix of component processes to write a successful program. This allows
for high levels on some abilities to compensate for low levels on others.
For example, a programmer may be deficient in the planning skills needed
for good initial program design but may have high levels of skills needed
to easily debug programs once drafted. Thus, i t will not be possible to
identify the unique set of skills that are necessary for programming.
Instead, different programmers may possess alternative sets of skills.
each of which is sufficient for progmmming competence.

The Programming Environment

The features of the programming environment may also increase or
decrease the need for particular cognitive abilities important for program-
ming. We cannot separate the pure demands for using a programming
language from the demands and supports provided by the instrumental,
instructional, and social environments. For example, an interactive lan-
guage with good trace routines can decrease the need for prcplanning by
reducing the difficulty of debugging. Similarly, implementations of partic-
ular languages that display both the student's program and the screen
effects of the code side by side in separate "windows," such as Interlisp-
D, can reduce the difficulty in understanding and following flow of
control.

In learning to program, the instructional environment can reduce
certain cognitive demands if i t offers relevant structure, or i t can increase
demands if i t is so unstructured that learning depends heavily on what the
students themselves bring to the class. For example, understanding the
operation of branching statements of the IF-THEN-ELSE type requires
an appreciation of both conditional logic and the operation of truth tables.
If students have not yet developed such an appreciation, doing programs
that require even simple conditional structure can be very confusing.
However, with appropriate instruction, an understanding of how to use
conditional commands in some limited contexts (such as conditional stop
rules to terminate the execution of a loop) can be easily picked up by
students. Thus. in the absence of instruction, conditional reasoning skill
can be a major factor in determining who will learn to program. However,
w i ~ h instructional intervention, students can pick up enough functional
knowledge :\bout condition:d comn1;rntls lo take them quite fiw.

Instruction is important in other ways also. It has been our experience
that students are very poor at choosing appropriate programming projects
that are within their current ability, yet which will stretch their under-
standing and force them to think about new types of problems. They are
poor at constructing for themselves what Vygotsky would describe as the
zone ofproximal dcvelopmenr (Rogoff & Wcrtsch, 1984). Consequently,
too little guidance on the part of the teacher can lead to inefficient or
highly frustrating programming projects. On the other hand, too much
teacher-imposed structure can make projects seem arbitrary and uninter-
esting, with the result that they are less likely to evoke students' full
attention and involvemenl. Finding the right balance between guidance
and discovery will have a major impact on the kinds of cognitive abilities
students will have available to them when engaging in programming tasks.

Finally. the social context can mediate the demands placed on an
individual for learning to program because programming-particularly in
elementary school classrooms-is often a collaborative process
(Hawkins. 1983). The varying skills of student collaborators might en:ihlc
them to create programs that any one of them alone could not have
produced. Although teamwork is typical of expert programmers. i t raises
thorny assessment problems in an cducation:~l system that stresses indi-
vidual accountability.

In summary, several factors complicate the identification of general
cognitive abilities that will broadly affect a child's ability to learn to
program. In asking about demands, we must consider level of expertise,
the impact of supportive andlor compensatory programming environ-
ments, and the role of instructional and social factors that interact with
children's initial abilities for mastering programming.

ANALYSIS OF T H E COGNITIVE DEMANDS OF
MODULAR PROGRAMMING

Two central motivations for teaching programming to precollege students
are to provide a tool for understanding mathematical concepts and to
develop general problem-solving skills. But achieving these goal\ requires
that students learn to program extremely well (Mawby, 1984). To use a
language like Logo to develop an understanding of such mathematical
concepts a5 variable and function requires that \tudents learn to program
with variables and procedures, generate code that can be reusable, and
under\tand the control structure of the l;rng,uage, Sf&nka moZ &WY

become reawmki y good m&& pr'W.MWP &!@'vITrb k?P9 "'*

Procedural reasoning ability is one of the important skills underlying
the abili~y to program, because programmers must make explicit the
anteccdcnts necessary for different ends and must follow all the possible
consequences of different antecedent conditions. Designing and following
the flow of control of a progr;im necessitates understanding tlifl'crent
kinds of relations between antecedent and consequent events. and orga-
nizing and interrelating the local means-end relations (modules) leading to
completion of the program. Procedural reasoning thus includes trndcr-
standing conditional relationships, temporal sequencing, hypothetical
deduction, and planning.

Decentration also may be an important skill in programming because
programmers must distinguish what they know and intend from what the
computer has been instructed to execute. This is important in both
program construction and debugging: In the former, the progr:im designer
must be aware of the level of explicitness required to adequately instruct
the computer; in the latter, he or she must differentiate between what the
program "should" do from what i t in fact did. We have found that such
decentering is a major hurdle in program understanding at the secondary
school level (Kurland & Pea. 1985).

On the basis of this rational analysis, we designed a study to investigate
the relationship of measures of procedural reasoning and decentering to
the acquisition of programming skill.

METHOD

To investigate the relationship between these cognitive abilities and
programming competence, we studied novice programmers learning
Logo. Logo was chosen because of the high interest it has generated
within the educational community, and because the Logo language has
specific features that support certain important thinking skills. For exam-
ple, the strategy of problem decomposition is supported by 1,ogo's
modular features. Logo procedures may be created for each subpart of a
task. The procedures may be written, debugged, and saved as indcpen-
dent, reusable modules and then used in con~bination for the solution of
the larger problem. Efficient, planful problem decomposition in Logo
results in flexibly reusable modular procedures with variable inputs.
Whereas the same can be true of languages such as BASIC. the formal
properties of Logo appeared to be more likely to encourage students to
use structured programming.

Participants and Instructional Setting

Participants in the study were 79 eighth- to I lth-grade feniale high school
students enrolled in an intensive 6-week summer program designed to
improve math skills and introduce programming. The go; the progrim /
was to improve students' mathematical understanding wherea uilding 0-

wh
their sense of control and lessening their anxiety about mat emntics. (See
Confrey. 1984, and Confrey, Rommney, & Mundy, 1984, for details about
the affective aspects of learning to program.) Those admitted to the
program werc generally doing very well in school and had high career
aspirations, but they werc relatively poor in mathematics and, in some
cases, experienced a great deal of math-related anxiety.

Each day the students attended two 90-minute mathematics classes. as
well as lectures and demonstrations on how mathematics is involved in
many aspects of art and science. Each student also spent 90 minutes a day
in a Logo programming course. The teachers hoped that the programming
experience would enable students to explore mathematical principles and
thus lead them to new insights into mathematics. The guiding philosophy
of the program, which influenced both the mathematics and Logo instruc-
tion, was constructivist. This Piagetian-inspired philosophy of instruction
holds that a person's knowledge and representation of the world is the
result of his or her own cognitive activity. Learning will not occur if
studcnts simply memorize constructions presented by their teachers in
the form of facts and algorithms. Thus, students were expected to
construct understandings for themselves through their direct interactions
with and explorations of the mathematics or programming curricula.

The Logo instruction was given in small classes, with the students
working primarily in pairs, that is. two students to a computer. There was
a 6: 1 student-teacher ratio, and ample access to printers and resource
materials. In order to provide structure for the students' explorations of
Logo, the program staff created a detailed curriculum designed to provide
systematic learning experiences involving the Logo turtle graphics com-
mands and control structures. Although the curriculum itself was detailed
and carefully sequenced, the style of classroom instruction was influ-
enced by the discovery-learning model advocated by Papert (1980). Thus,
studcnts were allowed to work at their own pace and werc not directly
accountable for mastery of specific concepts or commands. The instruc-
tors saw their primary role as helping students to develop a positive
attitude towards mathemalics and programming. I n this renpect, lhc
program sccmcd by our ohservslicinw [cr have keen vary rrtfeeectatitl;

MEASURES

We were interested in how the students' level of programming proficiency
would relate to the specific cognitivc abilities that our earlier analysis had
indicated to be potentially important. We therefore developed the follow-
ing measures of cognitive performance and programming proficiency.

Cognitive Demands Tasks

' h o cognitive demands tasks were developed and administered to stu-
dents at the beginning of the program. The first, proceduraljon~ ofconlrol
tusk, was designed to assess students' ability to use procedural reasoning
in ordcr to follow the flow of control determined by conditional relations.
In this task. students had to negotiate a maze in the form of an inverted
branching tree (w c Fig. 20. I) . At the most distant ends of the branches
were a set oI' lalwled go:ils. To get to :my specific go:d from the top ol'thc
maze, studcnts I I : ~ to 1x1s~ through "gates" at each of the branching
nodes. The conditions for passage through (he gates involved satisfying
either simple or complex logical structures (disjunctive or conjunctive).
Passage through gates was permitted by a set of geometric tokens with
which the student was presented at the beginning of each problem. Each
gate was marked with the type or types of tokens that were required to
gain passage. For example, a circle token allowed students to pass
through ii circular gate, but not through a square gate. If they had both a
square and a triangle token, they could pass through a joint square-
triangle gate, but not through a joint square-circle gate.

The task consi5ted of two parts. In the first, students were presented
with five problems in which they had to find paths through the maze that
did not violate the conditions for passage through the gates. They were
given a set of tokens and asked to discover all the pvssible goals that
could be reached with that set.

In the second part of the task, we designed two problems, based on a
more complex maze, to add further constraints and possibilities for
finding the optimal legal path to the goals. Unlike part one, at a certain
point in the maze students could choose to trade one kind of token for
another. As they passed through each gate, they forfeited the token that
enabled them to get through it. This feature introduced additional plan-
ning and hypothetical re&oninR requirements hccause thc studcnts hiid to
foresee the sequential implications for choosing one path over other
possible paths. This task allowed for severa! possible so!u!ions that met
the minimum requirements of the task (i.e., reaching a specified goal).
However, some solutions wcrc morc eleg:mt than others in that they used
fewer tokens. Thus, i t was of interest to see whether students would
choose to go beyond an adequate solution to find an elegant onc.

The task was designed using non-English symbolisms so that verbal
ability and comprehension of the IF-THEN connectives would not be
confounding factors. In natural langtrage, IF-THEN is ofien ambiguous.
its interpretation depending on context. We therefore did not include
standard tests of the IF-THEN connective in propositional logic because
computing truth values, as these tests require, is not strictly relevant to
following complex conditional 5tructures in programming.

The procedural flow of control task, therefore, involved a system of
reasonable. although arbitrary and artificial, rules, not easily influenced
by the subjects' prior world knowledge. The nested conditional structure
of the tree and the logical structures of the nodes were designed to be
analogous to the logical structures found in computer languages.

The second cognitive demands task was designed to assess decentering
as well as procedural and temporal reasoning. In this dehrrggin~ task
students were required to detect bugs in a set of driving instructions that
has supposedly been written for another person to follow. Students were
given the set of written directions, a map, and local driving rules. They
were asked to read over the directions and then, by referring to the map,
catch and correct bugs in the directions so that the driver could success-
fully reach the destination. In order to follow the instructions and deter-
mine their accuracy, students had to consider means-ends relationships
and employ temporal reasoning. They had to decenter by making a
distinction between their own and the driver's knowledge. The kinds of
bugs students were asked to find and correct included:

Inucctrrt~te infortrtntinn hrcx: Instructions were simply incorrect (e.g..
telling the driver to make a righthand turn at a corner instead of a left).

Ambiguous information bug: lnstructions were insufficiently explicit
to enable the driver to make a correct choice between alternative routes
(e.g., telling the driver to exit ofTa road without specifying which of two
possible exits to use).

7i~ntporul order hug: One line of instruction was given at the wrong
time (e.g., telling the driver to pay a token to cross a toll bridge before
indicating where to purchase tokens).

Bugs due to rrr~rrsrrol input rorrditions, and crnhedd~d hrcxs in which
obvious corrections failed because they introduced srndoc left. s k%@:p,. . . . A * . , '- L .-- - ...a 1-

Production Task. The production task was a paper-iind-pencil tcst
dcsigned to assess students' skills in planning, prohlem decomposition.
and features of programming style such as the conciseness and generiility
o f proccd~~rcs. Students wcre chown ;I sct of scvcn gconlclric ligures.
rcprescntcd in Fig. 20.2.

The students wcre instructed to select live of the seven figures iind
writc I.ogo progriims to produce them. The task callcd for students lirst to
indicate the fivc figures thcy would write programs for, ;tnd then to
number them in the order in which the programs would be written. I t was
hoped that this instruction would encourage the students to plan before
writing their programs. Students were free, however, to alter the choice
andlor order of their figures once thcy began to code. For etch of their
fivc programs, they were to write thc codc and give the run cornni;intl
needed to make the program produce the figure.

The task sheet included an area labeled workspclce, analogous to the
Logo workspace, in which students could write the proccdures to be
called by their programs. The layout of the task sheet, two sample
problems, and explicit instructions made i t clear that, once written in the
workspace, the procedures were available to all programs.

The task was designed to encourage planning for modular procedures
that could be reused across programs. In fiict, figures B. C. E. F. and G
could be programmed by writing three general-purpose proccdures. An
optimal solution would be to write a procedure with two variable inputs to
produce rectangles, a "move over" procedure with one input. a "move
up" procedure with one input, and then to use those thrcc procedures in
programs to produce figures B, C, E, I:. and G . Figures B and G could be
most cflicicntly produced using recursive programs, although recursion
was not necessary.

Figures A and D were included as distractor items. Unlike the other
five figures, they were designed not to be easily decomposed and could
not be easily produced with code generated for any of the other figures.

The task could be solved by planful use of flexible modules of code. It
could also be solved in many other ways, such as writing low-level.
inelegant "linear" codc consisting of long sequences of FORWARD,
LEFT, and RlGHT commands, thereby never reusing modules of code.
We were particularly interested in this style dimension because a linear
solution gives no evidence that the student is using the Logo constructs
that support and embody high level thinking.

Comprehension Tasks. Each of the two comprehension tasks pre-
sented four procedures: one superprocedure and three subprocedures.
The students were asked first to write functional descriptions of each of
the procedures, thus showing their ability to grasp the meaning of
commands within the context of a procedure. Then they were iisked to
draw on graph paper the screen etl'ects of the superprocedurc when
executed with a specific input. To draw the screen effects, students had to
hand-simulate the program's excculion, thus providing n strong tcst of
their ability to follow the precise sequence of instructions dictated by the
program's flow of control.

In the first comprehension tasks, the superprocedurc was named
TWOFLAGS and the subprocedures were CENTER. FLAG, and BOX.
Figure 20.3 presents the Logo code for the procedures and a correct
drawing of the screen effect of TWOFLAGS 10.

The second comprehension task included procedures with two inputs
and a recursive procedure with a conditional stop rule. The task was
designed to make the master procedure progressively harder to follow.
The superprocedure was named ROBOT, and the three subprocedures
were called BOT, MID. and TOP. Figure 20.4 presents the Logo code and
correct drawing of the screen effects of ROBOT 30 25.

Both programming comprehension tasks were designed as paper-and-
pencil tests that did not require the use of the computer. Students were
given a sheet that listed the programs, a sheet on which to write their
descriptions of what each procedure would do, and graph paper on which
to draw their prediction5 of what the program would do when executed.

PROCEDURE

The cognitive demands measures were administered to the students on
the first day of the program, along with a number of malhematics,
problem-solving, and attitude measures (see Confrey, 1984, for a discus-
sion of the attitude men.;i~res). The students were tested together in a
large auditorium. Instructions for each test wcre read by the experi-
menters. who monitored the testing and answered all questions. Students
were given 17 minutes for the procedural reasoning task and I2 minutes
for the debugging task.

In the final week of the program. the students were administered the
Logo proficiency test. Testing was done in groups of approxim:~tcly 30
students each. Again the experimenters gave all the instructions and were
present throughout the testing to answer students' questions. Students
were given 30 minutes for the production task and I5 minutes each for the
comprehension tasks.

RESULTS

Programming Proficiency Tasks

I b use 1,ogo as a tool for high-level thinking. onc must enlploy rcliilivcly
sophisticated Logo constructs, such as procedures with variable inputs
and superprocedures which call subprocedures. To write and understand
1-ogo programs using these language constr-ucts, onc needs to underst;rnd
something about the pragmatics of writing programs and also have a good
grasp of Logo's control structure, that is, how Logo determines the order
in which commands are executed. The empirical qucstion ;tddrcssed is
whether students develop such an understanding as the result of 5 weeks
(approximately 45 hours) of intensive Logo instruction.

Comprehension Tasks. The assessments of Logo proficiency given
at the end of the course indicated that mastery of Logo was limited. On
the TWOFLAGS task, 48% of the students correctly drew the first flag,
which required simulating the execution of TWOFLAGS through its call
to FLAG in line 2. But only 21% correctly drew the second flag. with 19%
of the students correct on both flags (showing that in almost all cases
performance was cumulative).

A third of the students were partially right on the second flag. Analysis
of errors on this flag indicated that more students had trouble following
the flow of control than had difficulty keeping track of the values of the
variables. An error in place on the second flag suggests that the student's
simulation did not execute all the positioning lines of code, especially the
call to CENTER in the last line of FLAG. This reveals an error in flow of
control. An error in .FI'ZC on the second flag suggests that the stutlent did
not correctly pass the variable from 'fWO1:LAGS to FLAG to BOX.

On the ROBOT task,.65% of the students correctly drew the body of
the robot. which involved simul:iting the execution of R0130T through its
call to MID. Thirty-seven percent correctly drew the leg. which involved
following thc execution through ROBOT'S call to HOT in line 4. TGP is a
recursivc procedure with inputs to ROBOT of 30 25; i t cxecutcs three
times. The first time TOP draws the head, the second time it draws the
nose, and the last time it draws the mouth and then stops. Sixteen percent
of the students correctly drew the head. 13% succeeded with the nose,
and only 2% were able to follow the program execution all the way
through to the mouth. The cumulative percentages are within 3% of these
absolute percentages.

Analysis of the errors of students who were partially correct showed
that more of them correctly passed the values of variables than followed
the flow of control. In partially correct drawings, the parts of the robot
were more often sized correclly than placed correctly.

The students' written descriptions of the procedures in both the
TWOFLAGS and ROBOT tasks showed that many had a general, albeit
vague, understanding of the procedures. Often students understood the
code in that they gave adequate glosses of individual lines. But when
tested by the drawing task, many revealed that they did not understand
Logo's control structure well enough to trace the program's execution.
This was especially clear when the order of the lines in a listing of the
program differed from the order in which the lines were executed.

140%-pgs. 576-581-Contributors to Thinking I'rogrcss in Research &
'Ikac hing-pw-7130186

Some students failed to grasp thc fact that, because variable values are
local to the procedure call, values c:in be passed among procedures under
diliercnt n;rnic.;. Ilvcn more fiiilcd to ~rnclcrstiind the most h;~sic f : ~ t of
flow of' control: After a called procedure is executed, control rcturns to
the next line of the calling procedure.

Production Tusk. In the production task, students made very little
use of variables and reusable subprocedures. Although most were able to
generate the figures, many did so following the linear programming style.
Only 21% of the students avoided both distractor items. An additional
35% avoided either A or D singly. Thus. 44% of the students wrote
programs for both A and D. Given a low level of programming profi-
ciency, choosing the distractors was reasonable because, by design,
linear programs for the distractors were easier than linear programs for
figures B and G (and comparable to C and F).

Among the possible approaches to the task are arialyric and syrltlletic
decomposition. By analytic decomposition, we mean analyzing a single
figure into component parts, writing procedures for the parts, and having
the program call the procedures. By synthetic decomposition, we mean
decomposition of the entire problem set into components, writing proce-
dures for the parts, and then having each of the five programs call the
appropriate modules of code. Note that although the five nondistractor
figures contain only rectangles, the rectmgles are of different sizes. Thus,
high-level synthetic decomposition, unlike analytic decomposition, re-
quires a general procedure with variable inputs for producing the rectan-
gles.

Students were much more likely to use analytic than synthetic decom-
position. In fact, 88% wrote, used, and reused a procedure at least once,
giving evidence of some analytic decomposition. However, only 20% of
the students gave evidence of synthetic decomposition by using a proce-
dure for more than one program.

Figure 20.5 and Table 20.1 provide more detail on the features used by
Logo students to produce the individual figures. In the analysis repre-
sented by Fig. 20.5, we wished to know, for each figure, whether students
could write code to produce it and whether they could correctly use
REPEAT, variables, and recursion. The REPEAT command is the sim-
plest modular feature in Logo. Variables go further ir, transforming
procedures into reusablejitnctions, making the procedures more general.
and hence more useful. Recursion is an extremely powerful Logo con-
struct in which a procedure can call on copies of itself from within other
copies. These features of Logo make modular code possible and thus
support problem decomposition strategies.

The number of commands used to produce the program is a good
summary indicator of style. For these tasks, elegant programs use few
commands. We counted each use of a Logo primitive as one command.
Each procedure call was counted as one command and, on the first call to
a procedure, the commands within the procedure were counted. On
subsequent calls to that procedure. only the call itself was counted.

The graph at the top of Fig. 20.5 displays several statistics concerning
the number of commands used: the range, the mean, and the region
containing the middle 50% of the scores. For comparison, we also include
the number of commands used in an optimal solution of the task as a
whole. This particular optimal solution "synthetically" decomposes the
five rectangular figures with three suhproccdures and produces the pro-
grams in the order E, f;, C, B, G.

The figures fall into three groups: the distractors A and D: C, E, and F:
and B and G, As noted, nearly half the students chose figures A and D.
and Wh of the students who chose these figures were able to write a Logo
program to produce them. As expected from the design of the figures, less
than 10% of these programs used variables or REPEAT. Most of the code
was low-level, brute-force style, which could not be reused in other
programs. Thus, whereas the students wrote programs to produce the
figure, their programming style gave no indication that they were engaged
in the high-level thinking that Logo can support.

The group of figures C, E, and F was chosen by more than 90% of the
students, and nearly 90% of these students wrote workable programs.
More than half the students correctly used REPEAT, Logo's simpler.
within-procedure modular construct. Less than 15% of these programs
correctly used variables. This more elegant, across-program construct
was largely ignored. As a result, most students needed more than the
optimal number of commands to write programs for figures F and C.

Figures B and G were chosen by the least number of students (6@% and
31%. respectively) and proved to be the most difficult because only half
the students wrote workable programs. These programs used REPEAT
and variables relatively often (REPEAT: 49% in B, 68% in G; variables:
43% in B, 40% in GI. Thus, i t seems that the skilled students who chose
these figures did quite well, Of the other nluJsnls w h
about hff did W$ ~ Y E C A I ~ ~ fd NV p~i;'*d~y? ~ / ~ 9 i'?ef

What factors may h:tve kcpt thcsc s t~dcnts from using tlic powcrful
and elegant fcuturcs of Logo'? I t is unlikely that students did not notice the
gcornc1ric;tl sirnil:tri~y iiliiong, for instance, figures C, E, and F. 13ut in
order lo do :I syntllctic dccornposition of the tiisk, it is neccssnry to write
procedures with variables. Moreovcr, coordinating subprocedures in a
supcrproccdt~re rcquircs a good understanding of Logo flow of control.
l~crformancc on the comprchcnsion tasks showed that students had :I fair
understanding of individual lines of Logo code but had difficulty in
following program flow of control.

Cognitive Demands Tasks

There was a fairly broad ritnge of pc~formances on the cognitive dcmands
tasks. Many students showed moderate or high levels of reasoning skills
:IS ;~swsscil by thcsc tasks, and :I I'ew fo~rnil the tnsks fairly tlitlicull.

Procedural Flow of Control Task. The two parts of this task were
examined individually. The first part included a series of problems for
students to solve, each of which posed a different set of constraints andlor
goals for going through the maze. Difficult problems required a more
exhaustive testing of conditions than did the others (i.c., the givcn lokens
satisfied many nodes early on). Some problems were best solved using
alternate strategies, such as searching from the bottom up rather than
from the top down. Performance was relatively low on the more difficult
problems (30-40% correct, as opposed to 55-70% correct on the less
complex problems). This indicated that when many possibilities had to be
considered, and there werc no easy shortcuts to reduce the number of
possibilities, students had difficulty testing all conditions.

In the second part, there were three levels of efficiency among correct
routes corresponding to the number of tokens required to successfully
reach the goal. Only 14% of the students on the first problem and 21% on
the second problem found the most efficient route, whereas 41% of the
students on the first problem and 79% on the second problem were unable
to reach the goal at all. Few students tested the hypotheses needed to
discover the most efficient route.

Debugging Task. Table 20.2 shows the percentage of students de-
tecting and correcting each of the four types of bugs in the task. As
shown, inaccurate information and temporal bugs were easiest to detect
and correct (72-91% success). Students found it more difficult to success-
fully correct the ambiguous instructions. Only 48% were able to write
instructions that were explicit enough for a driver to choose correctly
among alternate routes. For the lines with embedded bugs, only 21% fully
corrcctcd the instructions; 40% caught and corrected one bug but no1 lhc
other.

Results indicate that students had little difficulty detecting first-order
bugs and correcting [hem when the corrections wcre simplc: for cxirmplc,
changing a number or a direction to turn. However, when students had to
be explicit and exhaustively check for ambiguity and for additional bugs,
they werc less successful.

Relationship of the Cognitive Demands Measures to
Programming Proficiency

Analysis of the relationship between these cognitive demands tasks and
the assessments of programming proficicncy yielded an interesting set of
results. As can be seen in Table 20.3, the cognitive demands measures
correlated moderately with composite scores on both tests of program-
ming proficiency.

Examination of correlations with subscores on the programming pro-
duction task showed that students' ability to write an adequate, runnable
program was less highly corrclated with cognitive demands measures than
were appropriate use of variables, the use of subprocedures within
programs, or the use of a minimum number of commands to write
programs (one indication of program elegance).

Other subcomponents of the production task that we assumed would
correlate highly with the cognitive demands measures (in particular.
whether students reused procedures across several programs or used
recursion) were not highly correlated. However, so few students engaged
in either of these forms of programming that a floor effect may have
masked this correlation. Interestingly, although few students used the
more advanced programming techniques, many seemed to manifest suffi-
ciently high levcls of reasoning skills on the cognitive demmds measures.
Perhaps other knowledge specific to the programming domain is required
in addition to the underlying cognitive capacity to reason in the ways we
assessed.

In general, the correlations of the cognitive demands mcasure were
higher with progr:imming cornprchension than with programming produc-
tion. 'l'hc design of thc production task may hiivc contributed to thcsc
findings. Students could write linear programs and still succeed o n the
task, and ,nost did so. This was true cvcn for those who at timcs in their
class projccts had utilized morc advanced programming tcchniqucs. In
contrast, the comprehension task required studcnts to display their under-
standing of sophistic:~tcd programming constructs. Thus. :dthough the
cornprchension task was bctter able to test the limits of programming
novices' understanding of the language, a production task such as the one
we employed may prove thc better indicator of programming proficiency
for students once they attain a more advanced level of ability.

We examined the relation between math achievement level (assigned
on the basis of gradc-point average, courses taken in school. :~nd scores
on math tests administered on the first day of the program) and Logo
proficiency. Math level was as good a predictor of progrdmming profi-
ciency as the specific cognitive demands measures taken individually.
However, when math level was partialled out of the correlations, they all
remained significant at the .01 level or better, with the exception of the
correlation bctween part two of the procedural reasoning task and pro-
gram production proficiency. Thus, our cognitive demands measures
appear to tap abilities that are independent of those directly tied to
mathematics achievement.

When both mathematics achievement and performance on our de-
mands measures were entered into a multiple regression analysis, with
Logo proficiency as the dependent variable, the multiple correlations
were .71 and .52 for programming comprehension and production, respec-
tively. Thus, a quarter to one half of the variability in tested programming
proficiency was accounted for by mathematical understanding and spe-
cific cognitive abilities bearing a rational relationship to programming.

DISCUSSION

The present study was aimed at identifying the cognitive demands for
reaching a relatively sophisticated level of programming proficiency. We
examined studcnts learning Logo in iin instructional enviro~lmcnt that
stressed self-discovery within a sequence of structured activities, but
with no testing or grading. Given this setting and the amount of instruc-
tion. we found that for the most part studcnts managed to master only the
basic turtle graphics commands and the simpler aspects of the program
control structure. Although they gained some understanding of such
programming concepts as procedures and variables, most students did not
develop enough understanding of Logo to go beyond the skill level of
"effects generation." Thus, for example, although they used variables
within procedures, they seldom passed variables between procedures.
used recursion, or reused procedures across programs. There was little
mastery of those aspects of programming requiring a sophisticated under-
standing of flow of control and the structure of the language. Without this
understanding, students cannot use the powerful Logo constructs that
engage and presumably encourage the development of high-level thinking
skills.

Nonetheless, we did find moderate relationships between the ability to
reason in ways that we had hypothesized would be critical for advanced
programming, and performance on our measures of programming profi-
ciency. The magnitude of the correlations indicated that the students who
developed most in programming were also those who tended to perform
better on tests of logical reasoning. However, our observations of' the
students during the course of their instruction and their performance on
the Logo proficiency measures suggest that, for many students. the actual
writing of programs does nut require that they use formal or systematic
approaches in their work. Programming can invoke high-level thinking
skills, but such skills arc not nccess;iry for studcnts to gcncratc dcsircd
screen effects in the early stages of writing programs.

CONCLUSIONS

The field of computer education is in a period of transition. New Ian-
guages and more powerful implementations of old ones arc rapidly being
developed, and more suitable programming environments arc being engi-
nccrcd for both the new and established languages.

We can best assess the cognitive demands of programming when we
are clear about our goals for teaching programming and about how much
we expect students to learn. Howcver, to understand the cognitive
demands for achieving a particular level of expertise, we must consider
the characteristics of a specific language (such as its recursive control
structure), the quality of its implementation, the sophistication of the
surrounding programming environment (the tools, utilities, and editors
available), and the characteristics of the inotrucrionJ anvircm~NF En
which it ;6 h u L ~ m r c - d aed Luo~'r\@$,

In conclu(;ion, wc have nrgucd t h ; r ~ uncovcring the cognit ivc dcmands
of programming is far from sinlple. On the one hand, programming ability
of one form or another is undoubtedly obtainable regardless of levels of
particular cognitive skills. On the other- hand. if by "learning to program"
we mean developing a level of proficiency that enables programming to
serve as a tool for reflecting on the thinking and problem-solving proc-
esses, then the demands are most certainly complex and will interact with
particular programming activities and instructional approaches.

Programming can potentially servc as a fertile domain in which to
foster the growth and development of a wide range of high-level thinking
skills. However, if this potential is to be realized, studies are needcd on
two fronts.

First, more work is needed to discover what kinds of instructional
environments and direction are best suited for achieving the many goals
educators have for teaching programming to children of different ages. We
are only beginning to undcrstand how to teach programming. Indccd.
many parents and educators who read Mindstorms (Papert, 1980) too
literally are surprised that programming has to be taught at all. But the
unguided. free exploration approach, although effective for some pur-
poses, does not lead all students to a deeper understanding of the
structure and operation of a prognmming language and thus does not lead
thcrn to see or develop high-level thinking skill9 such as problem tlccom-
position, planning, or systematic elimination of errors.

Second, our ability to design effcctive instruction will depend in part
on further cxperimcntal work to tcase apart the roles various cognitive
abilities play in influencing students' ability to master particular program-
ming comm;~nds, constructs, and styles. A better understi~nding of the
cognitive demands of using a programming language should help us to
focus our instruction and identify those aspects of programming that will
be difficult for students. Whereas this study demonstrated a relation
between conditional and procedural reasoning ability and programming,
we conjecture that, at a more fundamental level, these tasks correlated
with programming proficiency because they required the ability to reason
in terms of formal, systematic, rule-governed systems, and to operate
within the limitations imposed by such systems. This may be the major
factor in determining whether students will obtain expert levels of profi-
ciency. What remains to be determined is whether extended program-
ming, at proficiency levels below that of the expert, require and/or help to
develop high-level cognitive skills and abilities.

ACKNOWLEDGMENT

The work reported here was supported by the National Institute of Education
(Contrnct No. 400-83-0016). The opinions cxprcssed do not nccess;~rily rcflccl
the position or policy of the National Institute of Education and no official
endorsement should be inferred.

REFERENCES

Confrey. J. (1984. April). An exuminurion of rhe conceprions of murhrn~aric.r of young
women in high sc~hool. Paper presented at the meeting o f the American Educational
Research Association. New Orleans.

Confrey, J.. Hommney, P.. & Mundy, J. (1984, April). ,Murh~wrciric.r un.rirry: A pvrson-
conrexr-uduprarion model. Pltper pre~ented at the meeting o f the American Educational
Research Association. New Orleans.

Hawkins, J. (1983). L c w r ~ i n g 1,ogo ~ogc.fhc.r: The social contexr (Tech. Kep. No. 1.1). New
York: Bank Street College o f Education, Center for Children and Technology.

Kurland. D. M.. Mawby. R., & Cahir. N . (1984. April). The developmenr of programming
experrisc. Paper pre~ented at the meeting o f the American Research E d ~ ~ c i ~ t i o n i ~ l
A.isociution, New Orleans.

Kurland. D. M., & Pea, R. D. (1985). Children's mental models of recursive Logo pro-
grams. Jorimal of ~ d u c o r i o f ~ n l Compuring Re.rearch.

I.uchrmi~nn, A. (IVHI). Computer l i tcri~cy: Wh i~ t should il hc'! M~trlrert~trric~s 7i~trc~lrc~r. 74.
Mawby, K. (1984, April). Delcrmining . t t i tdms' rrndi.r.r~trnding r,/pmgrcrrnmin~ c~~nc.cpl.r.

Papcr presented at the meeting o f the American Educational Research Association, New
Orleans.

Mawby, R. Clement. C., Pea, R. D., & Hawkins. J. (1984). Slriic~urcd inlrrvicws on
children's conceprions of computers (Tech. Rep. No. 19). New York: Bank Street
College o f Education. Center for Children and Technology.

Papert, S. (1980). Mind.rlorm.r: Children. con1puter.r. crnd pou'erful idem. New York: Hi~sic
Books.

Pea. R. D.. & Kurland, D. M. (1983). On the cognitive prerequisites of learning computer
proyrumminy (Tech. Rep. No. 18). New York: Hank Street College o f Education. Ccnter
for Children and Technology.

Rampy, L. M . (1984, April). The problcm solving style offifih graders using Logo. Paper
presented at the meeling of the American Ed~lcational Research Association. New
Or l can~ .

Hogoff, B.. & Wertsch. J. V. (Eds.). (1984). Children's learning is the "zone o f proximal
development." New Directions for Child Developmenl (No. 23). San Francisco: Jossey-
Bass.

Snyder, T. (1984. June). Tom Snyder: Interview. inCidcr (pp. 42-48).
Werner. H. (1937). Process and achievement. Hunwrd Educarional Review. 7, 353-3f&

TABLE 20.1
Performance of Students on Program Production Tasks

Figures
Performance
(percentages) A 8 C D E F G

O/o who did it 73 60 96 5 1 9 1 9 1 31
workable
program 86 47 85 90 9 1 80 48
variables
used 5 43 10 2 14 12 40
repeat
used 8 49 65 2 49 84 78
recursion
used 0 4 0 0 0 0 8

TABLE 20.2
Debugging Task

Task

Catch No Catch Some Catch &
Bug Type No Change FIX Fix F IX

"/o of students (n = 70)
Wrong
instruction 3 6 nad 9 1
Ambiguous
instruction 11 41 nan 48
Temporal
order bug 16 11 nae 73
Embedded
bugs 29 10 40 2 1

m o t applicable

TABLE 20.3
Correlations of Demands Measures with
Measures of Programming Proficiency

Measures of Programming
Prulioency

Demands Measures A 8 C D E F G

Procedural
reasoning part 1
Procedural
reasoning part 2
Debugging task
Math level
Production
proficiency
Comprehension
proficiency
Teacher rating

FIG. 20.1 Procedural flow of control task to assess students' ability to use procedural
reasoning.

FIG. 20.2 Program production task to assess students' skills in planning, problem
decomposition, and features of programming styles.

FIG. 20.3 First Logo comprehension task with correct drawing of the resulting screen
effects.

FIG. 20.4 Second Logo comprehension task with correct drawing of the resulting
screen effects.

FIG. 20.5 Performance of students on program production task.

