
Defining programming and assessing its cognitive demands is 
problematic because programming is a complex configuration of activities 
that vary according to what is being programmed, the style of program- 
ming, and how rich and supportive the surrounding programming cnvi- 
ronment is (Kurland et al., 1984; Pea & Kurland, 1983). 

One consequence of the fact that programming refers to a configuration 
of  activities is that different combinations of activities may be involved in 
any specific programming project. These activities include, at a general 
level. problem definition, design development and organization, code 
writing. and debugging (Pea & Kurland, 1983). Different combinations of 
activities will entail different cognitive demands. For example, a large 
memory span may facilitate the mental simulations required in designing 
and comprehending programs. Or an;dogical reasoning skill may he 
important for recognizing the similarity of different programming tasks 
and for transferring programming methods or procedures from one con- 
text to another. An adequate assessment of the cognitive demands of 
programming will depend on analyses of the programming activity and 
examination of the demands of different component processes. 

Specifying Levels of Programming Expertise 

I n  assessing the cognitive demands of programming, specifying the in- 
tended level of expertise is essential. Different levels of expertise will 
entail different cognitive demands. In many Logo programming class- 
rooms, we have observed children engaging in what we term brute-force 
paragruph programming, or what Rampy (1984) has termed product- 
oriented programming. This style is analogous to so-called spaghetti 
programming in BASIC. When programming, students decide on desired 
screen effects and then write linear programs, lining up commands that 
will cause the screen to show what they want in the order they want i t  lo 
happen. Students do not engage in problem decomposition or use the 
powerful features of the language to structure a solution to the program- 
ming problem. For example, if a similar shape is required several times in 
a program, students will write new code each time the effect is required, 
rather than writing one general procedure and calling on it repeatedly. 
Programs thus consist of long strings of Logo primitives that are nei~rly 
impossible to read, modify, or debug, even for the students who have 
written them. Although students may eventually achieve their goal, or at 
least end up with a graphics display with which they are content, the only 
"demands" we can imagine for such a linear approach to programming 
are stamina and determination. 

Thus, as a first step in determining what the cognitive demands are for 
learning or doing programming. we need to distinguish between lirreur and 
modular programming (or between learning to program elegantly and 
efficiently, and a style that emphasizes the generation of effects without 
any consideration of how they were generated). 

The beginner's linear style of construcling programs, whether in Logo 
or  BASIC, contrasts with modular programming (a planful process of 
structured problem solving). Here, component elements of a task are 
isolated, procedures for their execution developed, and the parts assem- 
bled into a program and debugged. This type of programming requires a 
relatively high-level understanding of the language. Modular program- 
ming in Logo, where programs consist of organized. reusable subproce- 
dures, requires that students understand the flow of control of the 
language, such powerful control structures as recursion, and the passing 
of values of variables between procedures. The cognitive demands for 
this kind of programming are different from the demands for linear 
programming, as are the potential cognitive benefits that may result from 
the two programming styles. 

Distinguishing Between Product and Process 

In assessing the demands for different levels of expertise, however, it is 
important not to equate level of expertise with the effects the students' 
programs produce. We must distinguish product from process (Werner, 
1937). We have seen very elaborate graphics displays created entirely 
with brute-force programming. One characteristic of highly interactive 
programming languages such as Logo and BASIC is that students can 
often get the effects they want simply by trial and error-without any 
overall plan, without fully understanding how effects are created, without 
the use of sophisticated programming techniques, and without recogniz- 
ing that a more planful program could be used as a building block in future 
programs. 

Furthermore, in school classrooms students borrow code from each 
other and then integrate the code into their programs without bothering to 
understand why the borrowed code does what i t  does. S t ~ ~ t l c ~ l l s  tl1crrfo1.c 
can often satisfy a programming assignment by piecing ~ o ~ c t l i e r  major 
chunks imported from other sources. Although such "code stealing" is an 
important and efficient technique widely employcd by expert program- 
mers, an overreliance on other people's code that is beyond the under- 
standing of the borrower is unlikely to lead to deeper understandings of 
programming. Therefore, if we simply carralals urcrderttci' pnrrhr; q wIFR 
r l u r . .  ryepd~a~~ma t)i~.~ic,d~lnr dcm~hnds or r~ronrtirnrninr~ n r o ~ k ~ c n r v  
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lntroductlon 

Vociferous arguments have been offered for incorporating computer 
progranming into the standard precollege curriculum (Luehrmann, I98 1 :  
Papert, 1980; Snyder, 1984). Many parents and educators believe that 
computer programming is an important skill for all children in our 
technological society. In addition to pragmatic considerations. there is the 
expectation among many educators and psychologists that learning lo 
program can help children develop general high-level thinking skills useful 
in other disciplines, such as mathematics and science. However, there is 
little evidence that current approaches to teaching programming bring 
students to the level of programming competence needed to develop 
general problem-solving skills, or to develop a model of computer func- 
tioning that would enable them to write useful programs. Evidence of 
what children actually do in the early stages of learning to progrdm (Pea & 
Kurland, 1983; Rampy, 1984) suggests that in currerlt prdclices program- 
ming may not evoke the kinds of systematic, analytic, and reflective 
thought that is characteristic of expert adult programmers (Kurland, 
Mawby, & Cahir, 1984). 

As the teaching of progrdmming is initiated at increasingly early grade 
levels, questions concerning the cognitive demands for learning to pro- 
gram are beginning to surface. Of particular interest to both teachers and 
developmental psychologists is whether there are specific cognitive de- 
munds for 1c:irning to program that might inform our tc;rching and tcll us 
what aspects of programming will be difTicult for studcnls at dill'crent 
stages in the learning process. 

In the first part of this chapter, we explore factors that miiy determine 
the cognitive demands of programming. In the second part, we report on 
a study of these cognitive demands conducted with high school students 
learning Logo. The premise for the study was the belief (hat in order for 
programming to help promote the development of certain high-level 
thinking skills. students must attain a relatively sophisticated understand- 
ing of programming. Therefore, we developed two types of measures: 
measures to assess programming proficiency, and measures to assess 
certain key cognitive abilities that wc hypothesized to he inslrumental in 
allowing students to become proficient programmers. The rcli~lionship 
between these two sets of measures was then assessed. 

Issues in Determining the Cognitive Demands of 
Programming 

One of the main issues in conducting research on the cognitive demands 
of progranming is that the tern1 programming is used loosely to refer to 
many different activities involving the computer. These activities range 
from what a young child xa ted  in front of a computer may do easily using 
the immediate command mode in a language such as Logo, to what 
college students struggle over, even after several years of programming 
instruction. Contrary to the popular conception that young children take 
lo programming "naturally" whereas adults do not, what the child and the 
adult novice are actually doing and what is expected of them is radically 
different. Clearly, the cognitive demands for the activities of the young 
child and the college sludcnt will also ditrer. 'Thus, what is meant by 
programming mu41 bc cliirificd before a discussion of demand4 can be 
undertaken. 



Compensatory Strategies 

This point suggests another important factor that complicates the idcntiti- 
cation of cognitivc demands of programming. Any programming problem 
can be solved in many ways. Different programmers can utilize a dilrcrent 
mix of component processes to write a successful program. This allows 
for high levels on some abilities to compensate for low levels on others. 
For example, a programmer may be deficient in the planning skills needed 
for good initial program design but may have high levels of skills needed 
to easily debug programs once drafted. Thus, i t  will not be possible to 
identify the unique set of skills that are necessary for programming. 
Instead, different programmers may possess alternative sets of skills. 
each of which is sufficient for progmmming competence. 

The Programming Environment 

The features of the programming environment may also increase or 
decrease the need for particular cognitive abilities important for program- 
ming. We cannot separate the pure demands for using a programming 
language from the demands and supports provided by the instrumental, 
instructional, and social environments. For example, an interactive lan- 
guage with good trace routines can decrease the need for prcplanning by 
reducing the difficulty of debugging. Similarly, implementations of partic- 
ular languages that display both the student's program and the screen 
effects of the code side by side in separate "windows," such as Interlisp- 
D, can reduce the difficulty in understanding and following flow of 
control. 

In learning to program, the instructional environment can reduce 
certain cognitive demands if i t  offers relevant structure, or i t  can increase 
demands if i t  is so unstructured that learning depends heavily on what the 
students themselves bring to the class. For example, understanding the 
operation of branching statements of the IF-THEN-ELSE type requires 
an appreciation of both conditional logic and the operation of truth tables. 
If students have not yet developed such an appreciation, doing programs 
that require even simple conditional structure can be very confusing. 
However, with appropriate instruction, an understanding of how to use 
conditional commands in some limited contexts (such as conditional stop 
rules to terminate the execution of a loop) can be easily picked up by 
students. Thus. in the absence of instruction, conditional reasoning skill 
can be a major factor in determining who will learn to program. However, 
w i ~ h  instructional intervention, students can pick up enough functional 
knowledge :\bout condition:d comn1;rntls lo take them quite fiw. 

Instruction is important in other ways also. It has been our experience 
that students are very poor at choosing appropriate programming projects 
that are within their current ability, yet which will stretch their under- 
standing and force them to think about new types of problems. They are 
poor at constructing for themselves what Vygotsky would describe as the 
zone ofproximal dcvelopmenr (Rogoff & Wcrtsch, 1984). Consequently, 
too little guidance on the part of the teacher can lead to inefficient or 
highly frustrating programming projects. On the other hand, too much 
teacher-imposed structure can make projects seem arbitrary and uninter- 
esting, with the result that they are less likely to evoke students' full 
attention and involvemenl. Finding the right balance between guidance 
and discovery will have a major impact on the kinds of cognitive abilities 
students will have available to them when engaging in programming tasks. 

Finally. the social context can mediate the demands placed on an 
individual for learning to program because programming-particularly in 
elementary school classrooms-is often a collaborative process 
(Hawkins. 1983). The varying skills of student collaborators might en:ihlc 
them to create programs that any one of them alone could not have 
produced. Although teamwork is typical of expert programmers. i t  raises 
thorny assessment problems in an cducation:~l system that stresses indi- 
vidual accountability. 

In summary, several factors complicate the identification of general 
cognitive abilities that will broadly affect a child's ability to learn to 
program. In asking about demands, we must consider level of expertise, 
the impact of supportive andlor compensatory programming environ- 
ments, and the role of instructional and social factors that interact with 
children's initial abilities for mastering programming. 

ANALYSIS OF T H E  COGNITIVE DEMANDS OF 
MODULAR PROGRAMMING 

Two central motivations for teaching programming to precollege students 
are to provide a tool for understanding mathematical concepts and to 
develop general problem-solving skills. But achieving these goal\ requires 
that students learn to program extremely well (Mawby, 1984). To use a 
language like Logo to develop an understanding of such mathematical 
concepts a5 variable and function requires that \tudents learn to program 
with variables and procedures, generate code that can be reusable, and 
under\tand the control structure of the l;rng,uage, Sf&nka moZ &WY 

become reawmki y good m&& pr'W.MWP &!@'vITrb k?P9 "'* 



Procedural reasoning ability is one of the important skills underlying 
the abili~y to program, because programmers must make explicit the 
anteccdcnts necessary for different ends and must follow all the possible 
consequences of different antecedent conditions. Designing and following 
the flow of control of a progr;im necessitates understanding tlifl'crent 
kinds of relations between antecedent and consequent events. and orga- 
nizing and interrelating the local means-end relations (modules) leading to 
completion of the program. Procedural reasoning thus includes trndcr- 
standing conditional relationships, temporal sequencing, hypothetical 
deduction, and planning. 

Decentration also may be an important skill in programming because 
programmers must distinguish what they know and intend from what the 
computer has been instructed to execute. This is important in both 
program construction and debugging: In the former, the progr:im designer 
must be aware of the level of explicitness required to adequately instruct 
the computer; in the latter, he or she must differentiate between what the 
program "should" do from what i t  in fact did. We have found that such 
decentering is a major hurdle in program understanding at the secondary 
school level (Kurland & Pea. 1985). 

On the basis of this rational analysis, we designed a study to investigate 
the relationship of measures of procedural reasoning and decentering to 
the acquisition of programming skill. 

METHOD 

To investigate the relationship between these cognitive abilities and 
programming competence, we studied novice programmers learning 
Logo. Logo was chosen because of the high interest it has generated 
within the educational community, and because the Logo language has 
specific features that support certain important thinking skills. For exam- 
ple, the strategy of problem decomposition is supported by 1,ogo's 
modular features. Logo procedures may be created for each subpart of a 
task. The procedures may be written, debugged, and saved as indcpen- 
dent, reusable modules and then used in con~bination for the solution of 
the larger problem. Efficient, planful problem decomposition in Logo 
results in flexibly reusable modular procedures with variable inputs. 
Whereas the same can be true of languages such as BASIC. the formal 
properties of Logo appeared to be more likely to encourage students to 
use structured programming. 

Participants and Instructional Setting 

Participants in the study were 79 eighth- to I lth-grade feniale high school 
students enrolled in an intensive 6-week summer program designed to 
improve math skills and introduce programming. The go; the progrim / 
was to improve students' mathematical understanding wherea uilding 0- 

wh 
their sense of control and lessening their anxiety about mat emntics. (See 
Confrey. 1984, and Confrey, Rommney, & Mundy, 1984, for details about 
the affective aspects of learning to program.) Those admitted to the 
program werc generally doing very well in school and had high career 
aspirations, but they werc relatively poor in mathematics and, in some 
cases, experienced a great deal of math-related anxiety. 

Each day the students attended two 90-minute mathematics classes. as 
well as lectures and demonstrations on how mathematics is involved in 
many aspects of art and science. Each student also spent 90 minutes a day 
in a Logo programming course. The teachers hoped that the programming 
experience would enable students to explore mathematical principles and 
thus lead them to new insights into mathematics. The guiding philosophy 
of the program, which influenced both the mathematics and Logo instruc- 
tion, was constructivist. This Piagetian-inspired philosophy of instruction 
holds that a person's knowledge and representation of the world is the 
result of his or her own cognitive activity. Learning will not occur if 
studcnts simply memorize constructions presented by their teachers in 
the form of facts and algorithms. Thus, students were expected to 
construct understandings for themselves through their direct interactions 
with and explorations of the mathematics or programming curricula. 

The Logo instruction was given in small classes, with the students 
working primarily in pairs, that is. two students to a computer. There was 
a 6: 1 student-teacher ratio, and ample access to printers and resource 
materials. In order to provide structure for the students' explorations of 
Logo, the program staff created a detailed curriculum designed to provide 
systematic learning experiences involving the Logo turtle graphics com- 
mands and control structures. Although the curriculum itself was detailed 
and carefully sequenced, the style of classroom instruction was influ- 
enced by the discovery-learning model advocated by Papert (1980). Thus, 
studcnts were allowed to work at their own pace and werc not directly 
accountable for mastery of specific concepts or commands. The instruc- 
tors saw their primary role as helping students to develop a positive 
attitude towards mathemalics and programming. I n  this renpect, lhc 
program sccmcd by our ohservslicinw [cr have keen vary rrtfeeectatitl; 



MEASURES 

We were interested in how the students' level of programming proficiency 
would relate to the specific cognitivc abilities that our earlier analysis had 
indicated to be potentially important. We therefore developed the follow- 
ing measures of cognitive performance and programming proficiency. 

Cognitive Demands Tasks 

' h o  cognitive demands tasks were developed and administered to stu- 
dents at the beginning of the program. The first, proceduraljon~ ofconlrol 
tusk, was designed to assess students' ability to use procedural reasoning 
in ordcr to follow the flow of control determined by conditional relations. 
In this task. students had to negotiate a maze in the form of an inverted 
branching tree ( w c  Fig. 20. I ) .  At the most distant ends of the branches 
were a set oI' lalwled go:ils. To get to :my specific go:d from the top ol'thc 
maze, studcnts I I : ~  to 1x1s~ through "gates" at each of the branching 
nodes. The conditions for passage through (he gates involved satisfying 
either simple or complex logical structures (disjunctive or conjunctive). 
Passage through gates was permitted by a set of geometric tokens with 
which the student was presented at the beginning of each problem. Each 
gate was marked with the type or types of tokens that were required to 
gain passage. For example, a circle token allowed students to pass 
through ii circular gate, but not through a square gate. If they had both a 
square and a triangle token, they could pass through a joint square- 
triangle gate, but not through a joint square-circle gate. 

The task consi5ted of two parts. In the first, students were presented 
with five problems in which they had to find paths through the maze that 
did not violate the conditions for passage through the gates. They were 
given a set of tokens and asked to discover all the pvssible goals that 
could be reached with that set. 

In the second part of the task, we designed two problems, based on a 
more complex maze, to add further constraints and possibilities for 
finding the optimal legal path to the goals. Unlike part one, at a certain 
point in the maze students could choose to trade one kind of token for 
another. As they passed through each gate, they forfeited the token that 
enabled them to get through it. This feature introduced additional plan- 
ning and hypothetical re&oninR requirements hccause thc studcnts hiid to 
foresee the sequential implications for choosing one path over other 
possible paths. This task allowed for severa! possible so!u!ions that met 
the minimum requirements of the task (i.e., reaching a specified goal). 
However, some solutions wcrc morc eleg:mt than others in  that they used 
fewer tokens. Thus, i t  was of interest to see whether students would 
choose to go beyond an adequate solution to find an elegant onc. 

The task was designed using non-English symbolisms so that verbal 
ability and comprehension of the IF-THEN connectives would not be 
confounding factors. In natural langtrage, IF-THEN is ofien ambiguous. 
its interpretation depending on context. We therefore did not include 
standard tests of the IF-THEN connective in propositional logic because 
computing truth values, as these tests require, is not strictly relevant to 
following complex conditional 5tructures in programming. 

The procedural flow of control task, therefore, involved a system of 
reasonable. although arbitrary and artificial, rules, not easily influenced 
by the subjects' prior world knowledge. The nested conditional structure 
of the tree and the logical structures of the nodes were designed to be 
analogous to the logical structures found in computer languages. 

The second cognitive demands task was designed to assess decentering 
as  well as procedural and temporal reasoning. In this dehrrggin~ task 
students were required to detect bugs in a set of driving instructions that 
has supposedly been written for another person to follow. Students were 
given the set of written directions, a map, and local driving rules. They 
were asked to read over the directions and then, by referring to the map, 
catch and correct bugs in the directions so that the driver could success- 
fully reach the destination. In order to follow the instructions and deter- 
mine their accuracy, students had to consider means-ends relationships 
and employ temporal reasoning. They had to decenter by making a 
distinction between their own and the driver's knowledge. The kinds of 
bugs students were asked to find and correct included: 

Inucctrrt~te infortrtntinn hrcx: Instructions were simply incorrect (e.g.. 
telling the driver to make a righthand turn at a corner instead of a left). 

Ambiguous information bug: lnstructions were insufficiently explicit 
to enable the driver to make a correct choice between alternative routes 
(e.g., telling the driver to exit ofTa road without specifying which of two 
possible exits to use). 

7i~ntporul order hug: One line of instruction was given at the wrong 
time (e.g., telling the driver to pay a token to cross a toll bridge before 
indicating where to purchase tokens). 

Bugs due to rrr~rrsrrol input rorrditions, and crnhedd~d hrcxs in which 
obvious corrections failed because they introduced srndoc left. s k%@:p,. . . . A . . . . * .  , . .... '- L .-- - ...a 1- 



Production Task. The production task was a paper-iind-pencil tcst 
dcsigned to assess students' skills in planning, prohlem decomposition. 
and features of programming style such as the conciseness and generiility 
o f  proccd~~rcs.  Students wcre chown ;I sct of scvcn gconlclric ligures. 
rcprescntcd in  Fig. 20.2. 

The students wcre instructed to select live of the seven figures iind 
writc I.ogo progriims to produce them. The task callcd for students lirst to 
indicate the fivc figures thcy would write programs for, ;tnd then to 
number them in the order in which the programs would be written. I t  was 
hoped that this instruction would encourage the students to plan before 
writing their programs. Students were free, however, to alter the choice 
andlor order of their figures once thcy began to code. For etch of their 
fivc programs, they were to write thc codc and give the run cornni;intl 
needed to make the program produce the figure. 

The task sheet included an area labeled workspclce, analogous to the 
Logo workspace, in which students could write the proccdures to be 
called by their programs. The layout of the task sheet, two sample 
problems, and explicit instructions made i t  clear that, once written in the 
workspace, the procedures were available to all programs. 

The task was designed to encourage planning for modular procedures 
that could be reused across programs. In fiict, figures B. C. E. F. and G 
could be programmed by writing three general-purpose proccdures. An 
optimal solution would be to write a procedure with two variable inputs to 
produce rectangles, a "move over" procedure with one input. a "move 
up" procedure with one input, and then to use those thrcc procedures in 
programs to produce figures B,  C, E, I:. and G .  Figures B and G could be 
most cflicicntly produced using recursive programs, although recursion 
was not necessary. 

Figures A and D were included as distractor items. Unlike the other 
five figures, they were designed not to be easily decomposed and could 
not be easily produced with code generated for any of the other figures. 

The task could be solved by planful use of flexible modules of code. It 
could also be solved in many other ways, such as writing low-level. 
inelegant "linear" codc consisting of long sequences of FORWARD, 
LEFT, and RlGHT commands, thereby never reusing modules of code. 
We were particularly interested in this style dimension because a linear 
solution gives no evidence that the student is using the Logo constructs 
that support and embody high level thinking. 

Comprehension Tasks. Each of the two comprehension tasks pre- 
sented four procedures: one superprocedure and three subprocedures. 
The students were asked first to write functional descriptions of each of 
the procedures, thus showing their ability to grasp the meaning of 
commands within the context of a procedure. Then they were iisked to 
draw on graph paper the screen etl'ects of the superprocedurc when 
executed with a specific input. To draw the screen effects, students had to 
hand-simulate the program's excculion, thus providing n strong tcst of 
their ability to follow the precise sequence of instructions dictated by the 
program's flow of control. 

In the first comprehension tasks, the superprocedurc was named 
TWOFLAGS and the subprocedures were CENTER. FLAG, and BOX. 
Figure 20.3 presents the Logo code for the procedures and a correct 
drawing of the screen effect of TWOFLAGS 10. 

The second comprehension task included procedures with two inputs 
and a recursive procedure with a conditional stop rule. The task was 
designed to make the master procedure progressively harder to follow. 
The superprocedure was named ROBOT, and the three subprocedures 
were called BOT, MID. and TOP. Figure 20.4 presents the Logo code and 
correct drawing of the screen effects of ROBOT 30 25. 

Both programming comprehension tasks were designed as paper-and- 
pencil tests that did not require the use of the computer. Students were 
given a sheet that listed the programs, a sheet on which to write their 
descriptions of what each procedure would do, and graph paper on which 
to draw their prediction5 of what the program would do when executed. 

PROCEDURE 

The cognitive demands measures were administered to the students on 
the first day of the program, along with a number of malhematics, 
problem-solving, and attitude measures (see Confrey, 1984, for a discus- 
sion of the attitude men.;i~res). The students were tested together in a 
large auditorium. Instructions for each test wcre read by the experi- 
menters. who monitored the testing and answered all questions. Students 
were given 17 minutes for the procedural reasoning task and I2 minutes 
for the debugging task. 



In the final week of the program. the students were administered the 
Logo proficiency test. Testing was done in groups of approxim:~tcly 30 
students each. Again the experimenters gave all the instructions and were 
present throughout the testing to answer students' questions. Students 
were given 30 minutes for the production task and I5 minutes each for the 
comprehension tasks. 

RESULTS 

Programming Proficiency Tasks 

I b  use 1,ogo as a tool for high-level thinking. onc must enlploy rcliilivcly 
sophisticated Logo constructs, such as procedures with variable inputs 
and superprocedures which call subprocedures. To write and understand 
1-ogo programs using these language constr-ucts, onc needs to underst;rnd 
something about the pragmatics of writing programs and also have a good 
grasp of Logo's control structure, that is, how Logo determines the order 
in which commands are executed. The empirical qucstion ;tddrcssed is 
whether students develop such an understanding as the result of 5 weeks 
(approximately 45 hours) of intensive Logo instruction. 

Comprehension Tasks. The assessments of Logo proficiency given 
at the end of the course indicated that mastery of Logo was limited. On 
the TWOFLAGS task, 48% of the students correctly drew the first flag, 
which required simulating the execution of TWOFLAGS through its call 
to FLAG in line 2. But only 21% correctly drew the second flag. with 19% 
of the students correct on both flags (showing that in almost all cases 
performance was cumulative). 

A third of the students were partially right on the second flag. Analysis 
of errors on this flag indicated that more students had trouble following 
the flow of control than had difficulty keeping track of the values of the 
variables. An error in place on the second flag suggests that the student's 
simulation did not execute all the positioning lines of code, especially the 
call to CENTER in the last line of FLAG. This reveals an error in flow of 
control. An error in  .FI'ZC on the second flag suggests that the stutlent did 
not correctly pass the variable from 'fWO1:LAGS to FLAG to BOX. 

On the ROBOT task,.65% of the students correctly drew the body of 
the robot. which involved simul:iting the execution of R0130T through its 
call to MID. Thirty-seven percent correctly drew the leg. which involved 
following thc execution through ROBOT'S call to HOT in line 4. TGP is a 
recursivc procedure with inputs to ROBOT of 30 25; i t  cxecutcs three 
times. The first time TOP draws the head, the second time it draws the 
nose, and the last time it  draws the mouth and then stops. Sixteen percent 
of the students correctly drew the head. 13% succeeded with the nose, 
and only 2% were able to follow the program execution all the way 
through to the mouth. The cumulative percentages are within 3% of these 
absolute percentages. 

Analysis of the errors of students who were partially correct showed 
that more of them correctly passed the values of variables than followed 
the flow of control. In partially correct drawings, the parts of the robot 
were more often sized correclly than placed correctly. 

The students' written descriptions of the procedures in both the 
TWOFLAGS and ROBOT tasks showed that many had a general, albeit 
vague, understanding of the procedures. Often students understood the 
code in that they gave adequate glosses of individual lines. But when 
tested by the drawing task, many revealed that they did not understand 
Logo's control structure well enough to trace the program's execution. 
This was especially clear when the order of the lines in a listing of the 
program differed from the order in which the lines were executed. 
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Some students failed to grasp thc fact that, because variable values are 
local to the procedure call, values c:in be passed among procedures under 
diliercnt n;rnic.;. Ilvcn more fiiilcd to ~rnclcrstiind the most h;~sic f : ~ t  of 
flow of' control: After a called procedure is executed, control rcturns to 
the next line of the calling procedure. 

Production Tusk. In the production task, students made very little 
use of variables and reusable subprocedures. Although most were able to 
generate the figures, many did so following the linear programming style. 
Only 21% of the students avoided both distractor items. An additional 
35% avoided either A or D singly. Thus. 44% of the students wrote 
programs for both A and D. Given a low level of programming profi- 
ciency, choosing the distractors was reasonable because, by design, 
linear programs for the distractors were easier than linear programs for 
figures B and G (and comparable to C and F). 

Among the possible approaches to the task are arialyric and syrltlletic 
decomposition. By analytic decomposition, we mean analyzing a single 
figure into component parts, writing procedures for the parts, and having 
the program call the procedures. By synthetic decomposition, we mean 
decomposition of the entire problem set into components, writing proce- 
dures for the parts, and then having each of the five programs call the 
appropriate modules of code. Note that although the five nondistractor 
figures contain only rectangles, the rectmgles are of different sizes. Thus, 
high-level synthetic decomposition, unlike analytic decomposition, re- 
quires a general procedure with variable inputs for producing the rectan- 
gles. 

Students were much more likely to use analytic than synthetic decom- 
position. In fact, 88% wrote, used, and reused a procedure at least once, 
giving evidence of some analytic decomposition. However, only 20% of 
the students gave evidence of synthetic decomposition by using a proce- 
dure for more than one program. 

Figure 20.5 and Table 20.1 provide more detail on the features used by 
Logo students to produce the individual figures. In the analysis repre- 
sented by Fig. 20.5, we wished to know, for each figure, whether students 
could write code to produce it and whether they could correctly use 
REPEAT, variables, and recursion. The REPEAT command is the sim- 
plest modular feature in Logo. Variables go further ir, transforming 
procedures into reusablejitnctions, making the procedures more general. 
and hence more useful. Recursion is an extremely powerful Logo con- 
struct in which a procedure can call on copies of itself from within other 
copies. These features of Logo make modular code possible and thus 
support problem decomposition strategies. 

The number of commands used to produce the program is a good 
summary indicator of style. For these tasks, elegant programs use few 
commands. We counted each use of a Logo primitive as one command. 
Each procedure call was counted as one command and, on the first call to 
a procedure, the commands within the procedure were counted. On 
subsequent calls to that procedure. only the call itself was counted. 

The graph at the top of Fig. 20.5 displays several statistics concerning 
the number of commands used: the range, the mean, and the region 
containing the middle 50% of the scores. For comparison, we also include 
the number of commands used in an optimal solution of the task as a 
whole. This particular optimal solution "synthetically" decomposes the 
five rectangular figures with three suhproccdures and produces the pro- 
grams in the order E, f;, C, B, G. 

The figures fall into three groups: the distractors A and D: C, E,  and F: 
and B and G, As noted, nearly half the students chose figures A and D. 
and Wh of the students who chose these figures were able to write a Logo 
program to produce them. As expected from the design of the figures, less 
than 10% of these programs used variables or REPEAT. Most of the code 
was low-level, brute-force style, which could not be reused in other 
programs. Thus, whereas the students wrote programs to produce the 
figure, their programming style gave no indication that they were engaged 
in the high-level thinking that Logo can support. 

The group of figures C, E, and F was chosen by more than 90% of the 
students, and nearly 90% of these students wrote workable programs. 
More than half the students correctly used REPEAT, Logo's simpler. 
within-procedure modular construct. Less than 15% of these programs 
correctly used variables. This more elegant, across-program construct 
was largely ignored. As a result, most students needed more than the 
optimal number of commands to write programs for figures F and C. 

Figures B and G were chosen by the least number of students (6@% and 
31%. respectively) and proved to be the most difficult because only half 
the students wrote workable programs. These programs used REPEAT 
and variables relatively often (REPEAT: 49% in B, 68% in G; variables: 
43% in B, 40% in GI. Thus, i t  seems that the skilled students who chose 
these figures did quite well, Of the other nluJsnls w h  
about hff did W$ ~ Y E C A I ~ ~  fd NV p~i;'*d~y? ~ / ~ 9  i'?ef 



What factors may h:tve kcpt thcsc s t~dcnts  from using tlic powcrful 
and elegant fcuturcs of Logo'? I t  is unlikely that students did not notice the 
gcornc1ric;tl sirnil:tri~y iiliiong, for instance, figures C, E, and F. 13ut in 
order lo do :I syntllctic dccornposition of the tiisk, it is neccssnry to write 
procedures with variables. Moreovcr, coordinating subprocedures in a 
supcrproccdt~re rcquircs a good understanding of Logo flow of control. 
l~crformancc on the comprchcnsion tasks showed that students had :I fair 
understanding of individual lines of Logo code but had difficulty in 
following program flow of control. 

Cognitive Demands Tasks 

There was a fairly broad ritnge of pc~formances on the cognitive dcmands 
tasks. Many students showed moderate or high levels of reasoning skills 
:IS ;~swsscil by thcsc tasks, and :I I'ew fo~rnil the tnsks fairly tlitlicull. 

Procedural Flow of Control Task. The two parts of this task were 
examined individually. The first part included a series of problems for 
students to solve, each of which posed a different set of constraints andlor 
goals for going through the maze. Difficult problems required a more 
exhaustive testing of conditions than did the others (i.c., the givcn lokens 
satisfied many nodes early on). Some problems were best solved using 
alternate strategies, such as searching from the bottom up rather than 
from the top down. Performance was relatively low on the more difficult 
problems (30-40% correct, as opposed to 55-70% correct on the less 
complex problems). This indicated that when many possibilities had to be 
considered, and there werc no easy shortcuts to reduce the number of 
possibilities, students had difficulty testing all conditions. 

In the second part, there were three levels of efficiency among correct 
routes corresponding to the number of tokens required to successfully 
reach the goal. Only 14% of the students on the first problem and 21% on 
the second problem found the most efficient route, whereas 41% of the 
students on the first problem and 79% on the second problem were unable 
to reach the goal at all. Few students tested the hypotheses needed to 
discover the most efficient route. 

Debugging Task. Table 20.2 shows the percentage of students de- 
tecting and correcting each of the four types of bugs in the task. As 
shown, inaccurate information and temporal bugs were easiest to detect 
and correct (72-91% success). Students found it more difficult to success- 
fully correct the ambiguous instructions. Only 48% were able to write 
instructions that were explicit enough for a driver to choose correctly 
among alternate routes. For the lines with embedded bugs, only 21% fully 
corrcctcd the instructions; 40% caught and corrected one bug but no1 lhc 
other. 

Results indicate that students had little difficulty detecting first-order 
bugs and correcting [hem when the corrections wcre simplc: for cxirmplc, 
changing a number or a direction to turn. However, when students had to 
be explicit and exhaustively check for ambiguity and for additional bugs, 
they werc less successful. 

Relationship of the Cognitive Demands Measures to 
Programming Proficiency 

Analysis of the relationship between these cognitive demands tasks and 
the assessments of programming proficicncy yielded an interesting set of 
results. As can be seen in Table 20.3, the cognitive demands measures 
correlated moderately with composite scores on both tests of program- 
ming proficiency. 

Examination of correlations with subscores on the programming pro- 
duction task showed that students' ability to write an adequate, runnable 
program was less highly corrclated with cognitive demands measures than 
were appropriate use of variables, the use of subprocedures within 
programs, or the use of a minimum number of commands to write 
programs (one indication of program elegance). 

Other subcomponents of the production task that we assumed would 
correlate highly with the cognitive demands measures (in particular. 
whether students reused procedures across several programs or used 
recursion) were not highly correlated. However, so few students engaged 
in either of these forms of programming that a floor effect may have 
masked this correlation. Interestingly, although few students used the 
more advanced programming techniques, many seemed to manifest suffi- 
ciently high levcls of reasoning skills on the cognitive demmds measures. 
Perhaps other knowledge specific to the programming domain is required 
in addition to the underlying cognitive capacity to reason in the ways we 
assessed. 



In general, the correlations of the cognitive demands mcasure were 
higher with progr:imming cornprchension than with programming produc- 
tion. 'l'hc design of thc production task may hiivc contributed to thcsc 
findings. Students could write linear programs and still succeed o n  the 
task, and ,nost did so. This was true cvcn for those who at timcs in their 
class projccts had utilized morc advanced programming tcchniqucs. In 
contrast, the comprehension task required studcnts to display their under- 
standing of sophistic:~tcd programming constructs. Thus. :dthough the 
cornprchension task was bctter able to test the limits of programming 
novices' understanding of the language, a production task such as the one 
we employed may prove thc better indicator of programming proficiency 
for students once they attain a more advanced level of ability. 

We examined the relation between math achievement level (assigned 
on the basis of gradc-point average, courses taken in school. :~nd scores 
on math tests administered on the first day of the program) and Logo 
proficiency. Math level was as good a predictor of progrdmming profi- 
ciency as the specific cognitive demands measures taken individually. 
However, when math level was partialled out of the correlations, they all 
remained significant at the .01 level or better, with the exception of the 
correlation bctween part two of the procedural reasoning task and pro- 
gram production proficiency. Thus, our cognitive demands measures 
appear to tap abilities that are independent of those directly tied to 
mathematics achievement. 

When both mathematics achievement and performance on our de- 
mands measures were entered into a multiple regression analysis, with 
Logo proficiency as the dependent variable, the multiple correlations 
were .71 and .52 for programming comprehension and production, respec- 
tively. Thus, a quarter to one half of the variability in tested programming 
proficiency was accounted for by mathematical understanding and spe- 
cific cognitive abilities bearing a rational relationship to programming. 

DISCUSSION 

The present study was aimed at identifying the cognitive demands for 
reaching a relatively sophisticated level of programming proficiency. We 
examined studcnts learning Logo in iin instructional enviro~lmcnt that 
stressed self-discovery within a sequence of structured activities, but 
with no testing or grading. Given this setting and the amount of instruc- 
tion. we found that for the most part studcnts managed to master only the 
basic turtle graphics commands and the simpler aspects of the program 
control structure. Although they gained some understanding of such 
programming concepts as procedures and variables, most students did not 
develop enough understanding of Logo to go beyond the skill level of 
"effects generation." Thus, for example, although they used variables 
within procedures, they seldom passed variables between procedures. 
used recursion, or reused procedures across programs. There was little 
mastery of those aspects of programming requiring a sophisticated under- 
standing of flow of control and the structure of the language. Without this 
understanding, students cannot use the powerful Logo constructs that 
engage and presumably encourage the development of high-level thinking 
skills. 

Nonetheless, we did find moderate relationships between the ability to 
reason in ways that we had hypothesized would be critical for advanced 
programming, and performance on our measures of programming profi- 
ciency. The magnitude of the correlations indicated that the students who 
developed most in programming were also those who tended to perform 
better on tests of logical reasoning. However, our observations of' the 
students during the course of their instruction and their performance on 
the Logo proficiency measures suggest that, for many students. the actual 
writing of programs does nut require that they use formal or systematic 
approaches in their work. Programming can invoke high-level thinking 
skills, but such skills arc not nccess;iry for studcnts to gcncratc dcsircd 
screen effects in  the early stages of writing programs. 

CONCLUSIONS 

The field of computer education is in a period of transition. New Ian- 
guages and more powerful implementations of old ones arc rapidly being 
developed, and more suitable programming environments arc being engi- 
nccrcd for both the new and established languages. 

We can best assess the cognitive demands of programming when we 
are clear about our goals for teaching programming and about how much 
we expect students to learn. Howcver, to understand the cognitive 
demands for achieving a particular level of expertise, we must consider 
the characteristics of a specific language (such as its recursive control 
structure), the quality of its implementation, the sophistication of the 
surrounding programming environment (the tools, utilities, and editors 
available), and the characteristics of  the inotrucrionJ anvircm~NF En 
which it  ;6 h u L ~  m r c - d  aed Luo~'r\@$, 



In conclu(;ion, wc have nrgucd t h ; r ~  uncovcring the cognit ivc dcmands 
of programming is far from sinlple. On the one hand, programming ability 
of one form or another is undoubtedly obtainable regardless of levels of 
particular cognitive skills. On the other- hand. if by "learning to program" 
we  mean developing a level of proficiency that enables programming to 
serve as  a tool for reflecting on the thinking and problem-solving proc- 
esses, then the demands are most certainly complex and will interact with 
particular programming activities and instructional approaches. 

Programming can potentially servc as a fertile domain in which to 
foster the growth and development of a wide range of high-level thinking 
skills. However, if this potential is to be realized, studies are needcd on 
two fronts. 

First, more work is needed to discover what kinds of instructional 
environments and direction are best suited for achieving the many goals 
educators have for teaching programming to children of different ages. We 
are only beginning to undcrstand how to teach programming. Indccd. 
many parents and educators who read Mindstorms (Papert, 1980) too 
literally are surprised that programming has to be taught at all. But the 
unguided. free exploration approach, although effective for some pur- 
poses, does not lead all students to a deeper understanding of the 
structure and operation of a prognmming language and thus does not lead 
thcrn to see or develop high-level thinking skill9 such as problem tlccom- 
position, planning, or systematic elimination of errors. 

Second, our ability to design effcctive instruction will depend in part 
on further cxperimcntal work to tcase apart the roles various cognitive 
abilities play in influencing students' ability to master particular program- 
ming comm;~nds, constructs, and styles. A better understi~nding of the 
cognitive demands of using a programming language should help us to 
focus our instruction and identify those aspects of programming that will 
be difficult for students. Whereas this study demonstrated a relation 
between conditional and procedural reasoning ability and programming, 
we conjecture that, at a more fundamental level, these tasks correlated 
with programming proficiency because they required the ability to reason 
in terms of formal, systematic, rule-governed systems, and to operate 
within the limitations imposed by such systems. This may be the major 
factor in determining whether students will obtain expert levels of profi- 
ciency. What remains to be determined is whether extended program- 
ming, at proficiency levels below that of the expert, require and/or help to 
develop high-level cognitive skills and abilities. 
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TABLE 20.1 
Performance of Students on Program Production Tasks 

Figures 
Performance 
(percentages) A 8 C D E F G 

O/o who did it 73 60 96 5 1 9 1 9 1 31 
workable 
program 86 47 85 90 9 1 80 48 
variables 
used 5 43 10 2 14 12 40 
repeat 
used 8 49 65 2 49 84 78 
recursion 
used 0 4 0 0 0 0 8 



TABLE 20.2 
Debugging Task 

Task 

Catch No Catch Some Catch & 
Bug Type No Change FIX Fix F IX  

"/o of students (n  = 70) 
Wrong 
instruction 3 6 nad 9 1 
Ambiguous 
instruction 11 41 nan 48 
Temporal 
order bug 16 11 nae 73 
Embedded 
bugs 29 10 40 2 1 

m o t  applicable 



TABLE 20.3 
Correlations of Demands Measures with 
Measures of Programming Proficiency 

Measures of Programming 
Prulioency 

Demands Measures A 8 C D E F G 

Procedural 
reasoning part 1 
Procedural 
reasoning part 2 
Debugging task 
Math level 
Production 
proficiency 
Comprehension 
proficiency 
Teacher rating 



FIG. 20.1 Procedural flow of control task to assess students' ability to use procedural 
reasoning. 

FIG. 20.2 Program production task to assess students' skills in  planning, problem 
decomposition, and features of programming styles. 

FIG. 20.3 First Logo comprehension task with correct drawing of the resulting screen 
effects. 

FIG. 20.4 Second Logo comprehension task with correct drawing of the resulting 
screen effects. 

FIG. 20.5 Performance of students on program production task. 




