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ABSTRACT
Wtf (“Who to Follow”) is Twitter’s user recommendation
service, which is responsible for creating millions of connec-
tions daily between users based on shared interests, common
connections, and other related factors. This paper provides
an architectural overview and shares lessons we learned in
building and running the service over the past few years.
Particularly noteworthy was our design decision to process
the entire Twitter graph in memory on a single server, which
significantly reduced architectural complexity and allowed
us to develop and deploy the service in only a few months.
At the core of our architecture is Cassovary, an open-source
in-memory graph processing engine we built from scratch
for Wtf. Besides powering Twitter’s user recommenda-
tions, Cassovary is also used for search, discovery, promoted
products, and other services as well. We describe and evalu-
ate a few graph recommendation algorithms implemented in
Cassovary, including a novel approach based on a combina-
tion of random walks and SALSA. Looking into the future,
we revisit the design of our architecture and comment on its
limitations, which are presently being addressed in a second-
generation system under development.

Categories and Subject Descriptors: H.2.8 [Database
Management]: Database applications—Data mining

General Terms: Algorithms, Design

Keywords: graph processing, link prediction, Hadoop

1. INTRODUCTION
The lifeblood of a vibrant and successful social media ser-

vice is an active and engaged user base. Therefore, maintain-
ing and expanding the active user population is a top prior-
ity, and for Twitter, this is no exception. At the core, Twit-
ter is an platform remarkably simple in concept: a user “fol-
lows” other users to subscribe to their 140-character tweets,
which may be received on a variety of clients (e.g., the twit-
ter.com website, mobile clients on iPhones and Android de-
vices, etc.). The vibrancy of the service, whether in in-
forming users of relevant breaking news or connecting them
to communities of interest, derives from its users—all 200
million of them, collectively posting over 400 million tweets
every day (as of early 2013).

One important way to sustain and grow Twitter is to help
users, existing and new, discover connections. This is the
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goal of Wtf (“Who to Follow”),1 the Twitter user recom-
mendation service. In the current interface, the Wtf box is
prominently featured in the left rail of the web client as well
as in many other contexts across multiple platforms. Wtf
suggests Twitter accounts that a user may be interested in
following, based on shared interests, common connections,
and a number of other factors. Social networking sites such
as Facebook and LinkedIn have comparable offerings as well.
We identify two distinct but complementary facets to the
problem, which we informally call “interested in” and “simi-
lar to”. For example, a user interested in sports might follow
@espn, but we probably wouldn’t consider that user similar
to @espn. On the other hand, two users might be considered
similar based on their shared interest in, say, basketball, or
if they follow many of the same users. Twitter also exposes
profile similarity as a product feature, visible when visiting a
user’s profile page. Throughout this paper, our discussion of
user recommendations covers both these aspects. Based on
the homophily principle, similar users also make good sug-
gestions. Besides powering user recommendations, Wtf is
also used for search relevance, discovery, promoted products,
and other services as well.

This paper provides an overview of Twitter’s Wtf service,
a project that began in spring 2010 and went into production
the same summer.2 Quite explicitly, our goal here is not to
present novel research contributions, but to share the overall
design of a system that is responsible for creating millions
of connections daily and lessons that we have learned over
the past few years.

We view this paper as having the following contributions:

• First, we explain and justify our decision to build the ser-
vice around the assumption that the entire graph will fit
in memory on a single machine. This might strike the
reader as an odd assumption, especially in the era of “big
data”, but our approach has worked well and in retrospect
we believe the decision was correct in the broader context
of being able to launch the product quickly.

• Second, we describe the complete end-to-end architecture
of the Wtf service. At the core is Cassovary, our open-
source in-memory graph processing engine.

1The confusion with the more conventional expansion of the
acronym is intentional and the butt of many internal jokes. Also,
it has not escaped our attention that the name of the service is
actually ungrammatical; the pronoun should properly be in the
objective case, as in “whom to follow”.
2http://blog.twitter.com/2010/07/discovering-who-to-
follow.html



• Third, we present a user recommendation algorithm for di-
rected graphs based on SALSA [17], which has performed
well in production. We have not seen the algorithm used
in this manner before, to the best of our knowledge.

• Finally, recognizing the limitations of the Wtf architec-
ture, we outline a second generation user recommendation
service based on machine-learning techniques we are cur-
rently building as an eventual replacement.

In our view, there remains a large gap between, on the one
hand, the academic study of recommender systems, social
networks, link prediction, etc., and, on the other hand, the
production engineering aspects of these systems and algo-
rithms operating “in the wild”, outside controlled laboratory
conditions, especially at large scale. It is our goal to bridge
this gap by sharing our experiences with the community.

2. THE TWITTER GRAPH
The Twitter graph consists of vertices representing users,

connected by directed edges representing the “follow” rela-
tionship, i.e., followers of a user receive that user’s tweets. A
key feature of Twitter is the asymmetric nature of the follow
relationship—a user can follow another without reciproca-
tion. This is unlike, for example, friendship on Facebook,
which can only be formed with the consent of both vertices
(users) and is usually understood as an undirected edge. Al-
though in some cases follow relationships are formed based
on social ties (kinship, friendships, etc.), in most cases a
user follows another based on shared interests—for example,
John follows Mary because John is interested in Hadoop and
big data, on which Mary is an expert. Thus, it is more ac-
curate to speak of the Twitter graph as an “interest graph”,
rather than a “social graph”.

To provide the reader better context, we share some statis-
tics about the Twitter graph. As of August 2012, the graph
contains over 20 billion edges when considering only active
users. As expected, we observe power law distributions of
both vertex in-degrees and out-degrees. There are over 1000
users with more than one million followers, and more than
25 users with more than 10 million followers.

The Twitter graph is stored in a graph database called
FlockDB,3 which uses MySQL as the underlying storage en-
gine. Sharding and replication are handled by a framework
called Gizzard.4 Both are custom solutions developed in-
ternally, but have been open sourced. FlockDB is the sys-
tem of record, holding the “ground truth” for the state of
the graph. It is optimized for low-latency, high-throughput
reads and writes, as well as efficient intersection of adja-
cency lists (needed to deliver @-replies, or messages targeted
specifically to a user and are received only by the intended
recipient as well as mutual followers of the sender and recip-
ient). The entire system sustains hundreds of thousands of
reads per second and tens of thousands of writes per second.

FlockDB and Gizzard are, unfortunately, not appropri-
ate for the types of access patterns often seen in large-scale
graph analytics and algorithms for computing recommenda-
tions on graphs. Instead of simple get/put queries, many
graph algorithms involve large sequential scans over many

3http://engineering.twitter.com/2010/05/introducing-
flockdb.html
4http://engineering.twitter.com/2010/04/introducing-gizzard-
framework-for.html

vertices followed by self-joins, for example, to materialize
egocentric follower neighborhoods. For the most part, these
operations are not time sensitive and can be considered
batch jobs, unlike graph manipulations tied directly to user
actions (adding a follower), which have tight latency bounds.
It was clear from the beginning that Wtf needed a process-
ing platform that was distinct from FlockDB/Gizzard.

This architecture exactly parallels the OLTP (online trans-
action processing) vs. OLAP (online analytical processing)
distinction that is well-known in databases and data ware-
housing. Database researchers have long realized that mix-
ing analytical workloads that depend on sequential scans
with short, primarily seek-based workloads that provide a
user-facing service is not a recipe for high performance sys-
tems that deliver consistent user experiences. Database ar-
chitectures have evolved to separate OLTP workloads and
OLAP workloads on separate systems, connected by an ETL
process (extract–transform–load) that transfers data period-
ically from the OLTP to OLAP components. This analogy
also holds for the Twitter architecture: FlockDB and Giz-
zard serve the “OLTP” role, handling low-latency user ma-
nipulations of the graph. Our first design decision was to
select the most appropriate processing platform for Wtf:
we discuss this in the next section.

3. DESIGN CONSIDERATIONS
The Wtf project began in spring 2010 with a small team

of three engineers. The lack of a user recommendation ser-
vice was perceived both externally and internally as a criti-
cal gap in Twitter’s product offerings, so quickly launching
a high-quality product was a top priority. In this respect the
Wtf team succeeded: the service was built in a few months
and the product launched during the summer of 2010. This
section recaps some of our internal discussions at the time,
leading to what many might consider an odd design choice
that has proved in retrospect to be the right decision: to
assume that the graph fits into memory on a single server.

3.1 To Hadoop or not to Hadoop?
Given its popularity and widespread adoption, the Hadoop

open-source implementation of MapReduce [6] seemed like
an obvious choice for building Wtf. At the time, the Twit-
ter analytics team had already built a production data ana-
lytics platform around Hadoop (see [21, 15] for more details).

Although MapReduce excels at processing large amounts
of data, iterative graph algorithms are a poor fit for the
programming model. To illustrate, consider PageRank [28],
illustrative of a large class of random-walk algorithms that
serve as the basis for generating graph recommendations.
Let’s assume a standard definition of a directed graph G =
(V,E) consisting of vertices V and directed edges E, with
S(vi) = {vj |(vi, vj) ∈ E} and P (vi) = {vj |(vj , vi) ∈ E} con-
sisting of the set of all successors and predecessors of vertex
vi (outgoing and incoming edges, respectively). PageRank is
defined as the stationary distribution over vertices by a ran-
dom walk over the graph. For non-trivial graphs, PageRank
is generally computed iteratively over multiple timesteps t
using the power method:

Pr(vi; t) =

{
1/|V | if t = 0
1−d
|V | + d

∑
vj∈P (vi)

Pr(vj ;t−1)

|S(vj)|
if t > 0

(1)

where d is the damping factor, which allows for random
jumps to any other node in the graph. The algorithm it-



erates until either a user defined maximum number of iter-
ations is reached, or the values sufficiently converge.

The standard MapReduce implementation of PageRank
is well known and is described in many places (see, for ex-
ample, [20]). The graph is serialized as adjacency lists for
each vertex, along with the current PageRank value. Map-
pers process all vertices in parallel: for each vertex on the
adjacency list, the mapper emits an intermediate key-value
pair with the destination vertex as the key and the partial
PageRank contribution as the value (i.e., each vertex dis-
tributes its present PageRank value evenly to its successors).
The shuffle stage performs a large “group by”, gathering all
key-value pairs with the same destination vertex, and each
reducer sums up the partial PageRank contributions.

Each iteration of PageRank corresponds to a MapReduce
job.5 Typically, running PageRank to convergence requires
dozens of iterations. This is usually handled by a control
program that sets up the MapReduce job, waits for it to
complete, and then checks for convergence by reading in
the updated PageRank vector and comparing it with the
previous. This cycle repeats until convergence. Note that
the basic structure of this algorithm can be applied to a
large class of “message-passing” graph algorithms [22, 25]
(e.g., breadth-first search follows exactly the same form).

There are many shortcoming to this algorithm:

• MapReduce jobs have relatively high startup costs (in
Hadoop, on a large, busy cluster, can be tens of seconds).
This places a lower bound on iteration time.

• Scale-free graphs, whose edge distributions follow power
laws, create stragglers in the reduce phase. The highly
uneven distribution of incoming edges to vertices creates
significantly more work for some reduce tasks than oth-
ers (take, for example, the reducer assigned to sum up
the incoming PageRank contributions to google.com in the
webgraph). Note that since these stragglers are caused by
data skew, speculative execution [6] cannot solve the prob-
lem. Combiners and other local aggregation techniques
alleviate but do not fully solve this problem.

• At each iteration, the algorithm must shuffle the graph
structure (i.e., adjacency lists) from the mappers to the
reducers. Since in most cases the graph structure is static,
this represents wasted effort (sorting, network traffic, etc.).

• The PageRank vector is serialized to HDFS, along with
the graph structure, at each iteration. This provides ex-
cellent fault tolerance, but at the cost of performance.

To cope with these shortcomings, Lin and Schatz [22] pro-
posed a few optimization “tricks” for graph algorithms in
MapReduce. Most of these issues can be addressed in a more
principled way by extending the MapReduce programming
model, for example, HaLoop [3], Twister [7], and PrIter [33].
Beyond MapReduce, Google’s Pregel [25] system implements
the Bulk Synchronous Parallel model [29]: computations re-
side at graph vertices and are able to dispatch “messages” to
other vertices. Processing proceeds in supersteps with syn-
chronization barriers between each. Finally, GraphLab [23]
and its distributed variant [24] implement an alternative
graph processing framework where computations can be per-
formed either through an update function which defines local

5This glosses over the treatment of the random jump factor,
which is not important for the purposes here, but see [20].

computations or through a sync mechanism which defines
global aggregation in the context of different consistency
models. While these systems are interesting, we adopted
a different approach (detailed in the next section).

Finally, the Wtf project required an online serving com-
ponent for which Hadoop does not provide a solution. Al-
though user recommendations, for the most part, can be
computed as offline batch jobs, we still needed a robust,
low-latency mechanism to serve results to users.

3.2 How Much Memory?
An interesting design decision we made early in the Wtf

project was to assume in-memory processing on a single
server. At first, this may seem like an odd choice, run-
ning counter to the prevailing wisdom of “scaling out” on
cheap, commodity clusters instead of “scaling up” with more
cores and more memory. This decision was driven by two
rationales: first, because the alternative (a partitioned, dis-
tributed graph processing engine) is significantly more com-
plex and difficult to build, and, second, because we could!
We elaborate on these two arguments below.

Requiring the Twitter graph to reside completely in mem-
ory is in line with the design of other high-performance
web services that have high-throughput, low-latency require-
ments. For example, it is well-known that Google’s web
indexes are served from memory; database-backed services
such as Twitter and Facebook require prodigious amounts of
cache servers to operate smoothly, routinely achieving cache
hit rates well above 99% and thus only occasionally require
disk access to perform common operations. However, the
additional limitation that the graph fits in memory on a
single machine might seem excessively restrictive.

To justify this design decision, consider the alternative:
a fully-distributed graph processing engine needs to parti-
tion the graph across several machines and would require
us to tackle the graph partitioning problem. Despite much
work and progress (e.g., [12, 11, 26, 4], just to name a few)
and the existence of parallel graph partitioning tools such
as ParMETIS [12], it remains a very difficult problem [18],
especially in the case of large, dynamically changing graphs.
A näıve approach such as hash partitioning of vertices is
known to be suboptimal in generating excessive amounts of
network traffic for common operations and manipulations of
the graph (for example, in the context of MapReduce, see
experimental results presented in [22]).

Distributed GraphLab [24] implements a two-stage graph
partitioning algorithm that attempts to minimize the num-
ber of edges that cross partitions (machines). This is ac-
complished by first over-partitioning the graph into k clus-
ters (where k is much larger than the number of machines
m), and then mapping those k small clusters onto m par-
titions. For the Twitter graph, or any graph that exhibits
power law distribution of vertex degrees, this partitioning
algorithm (or any similar approach) would yield unsatisfac-
tory partitions. For example, consider Barack Obama, who
has over 28 million followers—any placement of that vertex
would necessarily result in many edges crossing partitions
(machines). This means that graph operations would in-
volve network communication, with latencies measured in
the hundreds of microseconds at best.

One proposed solution to reduce network traffic for graph
processing is to provide an n-hop guarantee (e.g., [11]). In
this approach, the graph is selectively replicated such that



neighbors within n hops of every vertex are guaranteed to
reside on the same machine. For example, a 2-hop neigh-
bor guarantee ensures that all graph random walks within
two steps from any source vertex would not require network
communication. While an attractive property, there are two
major challenges: First, since some vertices and edges need
to be replicated, graph algorithms that mutate the graph
require some mechanism to enforce consistency. Second, the
presence of vertices with large out-degrees makes the n-hop
guarantee very costly to maintain in terms of storage, since
large portions of the subgraph connected to those vertices
would need to be replicated in every partition.

Beyond the challenges of graph partitioning, building a
production distributed graph processing engine would have
required tackling a whole host of engineering issues related
to distributed systems in general. For example, to achieve
fault tolerance, replication (of partitions) is a common strat-
egy. But this requires mechanisms for load balancing, coor-
dinating the layout (i.e., which machines serve which parti-
tions), as well as dynamic failover and recovery. Although
complex, these are solvable problems (e.g., see our discus-
sion in [16]), but various solutions introduce a layer of (per-
haps unneeded) complexity. Architecturally, fitting the en-
tire graph on a single machine means that replication is
sufficient for fault tolerance and scale-out in a production
environment—we simply need a fleet of servers, each with
an identical copy of the complete graph. Load balancing and
failover in this context would be much simpler to handle.

As plans were being made for building Wtf, speed of exe-
cution was an important concern. The lack of a follower rec-
ommendation service created an excessive burden on users
to curate an interesting timeline by themselves. Comparable
functionalities existed in sites such as LinkedIn and Face-
book, and the lack of such a service in Twitter was viewed
both internally and externally as an important missing prod-
uct feature. While building a distributed graph processing
engine would have been technically interesting, it would have
no doubt substantially delayed the product launch. Our goal
was to deliver a high-quality product that would scale with a
growing user base, and to accomplish this as quickly as pos-
sible. Thus, the entire-graph-on-one-machine design choice
boiled down to two questions: could we actually fit the graph
in memory on a single server, and could we realistically ex-
pect to continue doing so moving forward?

Our design targeted higher-end commodity servers. In
terms of hardware configurations, there is a region where
memory cost rises roughly linearly with memory capacity.
Beyond that, costs start rising super-linearly as one ap-
proaches the realm of “exotic” hardware, characterized by
low volume chips and custom memory interconnects. We
aimed for servers at the higher end of that linear cost re-
gion. Additional constraints were imposed by the opera-
tional staff, based on the form factor of the servers, which
determined the number of DIMM slots available, and the
staff’s preference for homogeneous system configurations to
simplify management.

During the development of the system, we targeted servers
with dual quad core processors with 72 GB of RAM and
later moved to servers with 144 GB of RAM. We ran some
back-of-the-envelope calculations to determine the size of the
graph such a server could manage. The simplest represen-
tation of a graph consists of an enumeration of edges, with
source vertex and destination vertex per edge. Allowing for

2 billion users, one could storing each vertex id as a 32-bit
(signed) integer, in which case each edge would require eight
bytes. On a machine with 72 GB memory, we could reason-
ably expect to handle graphs with approximately eight bil-
lion edges: 64 GB to hold the entire graph in memory, and 8
GB for the operating system, the graph processing engine,
and memory for actually executing graph algorithms. Of
course, storing the source and destination vertices of each
edge in the manner described above is quite wasteful; the
graph could be much more compactly stored as adjacency
lists, so these estimates are quite conservative. In practice,
we observe a memory requirement of about five bytes per
edge. Note that these calculations do not take into account
the possibility of graph compression [5], which would reduce
storage requirements substantially, although at the cost of
slower access and restrictions on the types of graph opera-
tions supported.

This analysis does not account for metadata that we might
wish to store for each edge, such as an edge weight. Even
with standard“tricks”such as quantization to represent float-
ing point numbers in a small numbers of bits, edge data can
rapidly blow up the memory requirements, since each da-
tum is a multiplicative factor. We recognized this weakness
in the design, and that it could limit the sophistication of the
algorithms we could use, but ultimately decided the risk was
acceptable, considering that the graph-on-a-single-server de-
sign significantly reduced the amount of engineering effort
necessary to build the product.

In 2010, our calculations showed that storing the entire
Twitter graph in memory on a single machine was feasi-
ble. The other important question was, of course, whether
it would continue being feasible given anticipated growth.
This question was fairly easy to answer, since we had access
to historic data on which we could build models and ex-
trapolate. Different growth models and assumptions about
the increased memory capacity of future servers suggested
anywhere between 24 to 36 months of lead time before any
serious concerns about insufficient memory (which roughly
corresponds to the natural lifespan of a large-scale produc-
tion system anyway). In other words, we had a fair bit
of headroom before the growth of the Twitter graph out-
paces the increase in memory on a commodity server due
to Moore’s Law. This gave us the confidence to proceed
with our plans, quickly launch a much-needed product, and
iterate on an improved solution.

4. OVERALL ARCHITECTURE
The overall Wtf architecture is shown in Figure 1. This

section describes our Cassovary graph processing engine and
how it fits into production workflows.

4.1 Cassovary
The heart of Twitter’s Wtf service is the Cassovary in-

memory graph processing engine,6 written in Scala, a lan-
guage that targets the Java Virtual Machine (JVM). The
system was open sourced in March 2012.7 As previously
discussed, Cassovary assumes that there is sufficient mem-
ory to hold the entire graph. The graph is immutable once
loaded into memory, and therefore the system does not pro-

6http://engineering.twitter.com/2012/03/cassovary-big-graph-
processing-library.html
7https://github.com/twitter/cassovary
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Figure 1: Overall architecture of Twitter’s “Who to
Follow” user recommendation service.

vide any persistence mechanisms. Fault tolerance is pro-
vided by replication, i.e., running many instances of Casso-
vary, each holding a complete copy of the graph in memory.
Immutability is a useful property that allows us to stati-
cally optimize the layout of in-memory data structures at
startup. Cassovary provides access to the graph via vertex-
based queries such as retrieving the set of outgoing edges
for a vertex and sampling a random outgoing edge. We
have found that vertex-based queries are sufficient for a wide
range of graph algorithms, including breadth-first search,
random graph traversals, and components needed in a wide
variety of link predictions algorithms. Efficient access is
provided by storing outgoing edges for each vertex in an
adjacency list, implemented as primitive arrays of integers
(more details below). Cassovary is multi-threaded, where
each query is handled by a separate thread.

Cassovary stores the graph as optimized adjacency lists. A
näıve implementation would store the adjacency list of each
vertex in a separate object, but for the JVM this is problem-
atic since it yields a proliferation of many objects, most of
which are small and all of which consume memory overhead
(e.g., for object headers). We wished to minimize overhead
so that as much memory can be devoted to storing the actual
graph data as possible. In our implementation, Cassovary
stores the adjacency lists of all vertices in large shared ar-
rays and maintains indexes into these shared arrays. The
vertex data structure holds a pointer to the portion of the
shared array that comprises its adjacency list in the form
of a start index and length. These shared arrays are simply
primitive 32-bit integer arrays, stored in uncompressed form
for fast, random lookup. Because of this data organization
we are able to quickly fetch all outgoing edges of a vertex
and also sample random outgoing edges efficiently. We have
experimented with compressing edge data, but ultimately
decided that the tradeoff was not worthwhile: not only was
it unnecessary from a capacity standpoint, but the need for
decompression increased query latencies substantially and
complicated the sampling of random outgoing edges.

A random walk, which lies at the core of a wide vari-
ety of graph recommendation algorithms, is implemented in
Cassovary using the Monte-Carlo method, where the walk
is carried out from a vertex by repeatedly choosing a ran-

dom outgoing edge and updating a visit counter. It is well-
known that this Monte-Carlo approach will approximate
the stationary distribution of random walk algorithms such
as personalized PageRank [8, 2]. The convergence rate is
slower than a standard matrix-based implementation, but
the memory overhead per individual walk is very low since
we only need to maintain the visit counters for vertices that
are actually visited. This low runtime memory overhead
also allows Cassovary to take advantage of multi-threading
to perform many random walks in parallel.

Due to the entire-graph-on-one-machine design, algorithms
run quickly on Cassovary, which allowed us to rapidly ex-
periment with different approaches to user recommendation.
This is facilitated by a dynamic class-loading mechanism
that allow us to run new code without having to restart
Cassovary (and reload the entire graph).

4.2 Production Flow
Daily snapshots of the Twitter graph from FlockDB are

imported into our Hadoop data warehouse as part of the
analytics import pipeline [15]. Once the import completes,
the entire graph is loaded into memory onto the fleet of
Cassovary servers, each of which holds a complete copy of
the graph in memory. Because of the entire-graph-on-a-
machine assumption (Section 3.2), we have no need to parti-
tion the graph. Furthermore, providing fault tolerance and
scaling out for increased query throughput can both be ac-
complished in an embarrassingly parallel manner.

Cassovary servers are constantly generating recommenda-
tions for users, consuming from a distributed queue contain-
ing all Twitter users sorted by a “last refresh” timestamp.
Typically, it takes less than 500 ms per thread to gener-
ate approximately 100 recommendations for a user; Sec-
tion 5 discusses a few recommendation algorithms in more
detail. Output from the Cassovary servers are inserted into
a sharded MySQL database, called, not surprisingly, the
Wtf DB. There is no specific time target for the Cassovary
servers to cycle through the entire user base, only to pro-
cess the queue as quickly as possible. Note that our design
allows throughput to scale linearly by simply adding more
Cassovary servers and thus user refresh latency is a resource
allocation (not engineering) issue. Once recommendations
have been computed for a user, the user is enqueued once
again with an updated timestamp. Active users who con-
sume (or are estimated to soon exhaust) all their recommen-
dations are requeued with much higher priority; typically,
these users receive new suggestions within an hour.

Due to the size of the Twitter graph and the load incurred
on the frontend databases by the snapshot and import pro-
cess into HDFS, it is not practical to update the in-memory
Cassovary graphs much more frequently than once a day.
This, however, is problematic for new users, since recom-
mendations will not be immediately available upon joining
Twitter. In general, making high-quality recommendations
for new users is very challenging, since their egocentric net-
works are small and not well connected to the rest of the
graph—this data sparsity issue is generally known as the
“cold start” problem in the recommender systems commu-
nity. Converting new users into active users is an immensely
important problem for social media services, since user re-
tention is strongly affected by the user’s ability to find a
community with which to engage. Furthermore, any system
intervention is only effective within a relatively short time



window. Quite simply, if users are unable to find value in a
service, they are unlikely to return.

We address this challenge in two ways: First, new users
are given high priority in the Cassovary queue, so that rec-
ommendations based on whatever information is available
since the last snapshot will be generated with only a brief
delay. In the common case, the delay is smaller than the
amount of time it takes a new user to go through the steps
in the new user welcome flow, thus allowing the user to see
some follow recommendations as soon as account setup is
complete. Second, we have implemented a completely in-
dependent set of algorithms for real-time recommendations,
specifically targeting new users. The real-time recommen-
dation module takes advantage of both Cassovary as well as
FlockDB to ensure that the most up-to-date graph informa-
tion is available (in this case, FlockDB load is minimal).

At the front end of the Wtf architecture is a service end-
point known as the “Blender”, which is responsible for inte-
grating results from the Wtf DB and real-time recommen-
dation code paths (via“Fetchers”that, as the name suggests,
fetch the recommendations). The Blender service endpoint
is called by Twitter clients (e.g., the twitter.com site, iPhone
and Android mobile apps, etc.), which handle the final ren-
dering of recommendations. The Blender is also responsible
for handling A/B testing and recording feedback data that
allow us to analyze the quality of deployed algorithms.

5. RECOMMENDATION ALGORITHMS
In this section, we describe a few of the user recommenda-

tion algorithms implemented in Cassovary and discuss our
general approach to evaluation.

5.1 Circle of Trust
A useful “primitive” that underlies many of our user rec-

ommendation algorithms is what we call a user’s “circle of
trust”, which is the result of an egocentric random walk (sim-
ilar to personalized PageRank [8, 2]). Cassovary computes
the circle of trust in an online fashion given a set of param-
eters: the number of random walk steps to take, the reset
probability, pruning settings to discard low probability ver-
tices, parameters to control sampling of outgoing edges at
vertices with large out-degrees, etc.

A user’s circle of trust provides the basis for our SALSA-
based recommendation algorithm (described below). Casso-
vary also provides the circle of trust “as a service” for any
user (or a set of users) given a set of parameters. This
provides a flexible network-based personalization mechanism
used in a variety of Twitter products. For example, in search
and discovery, content from users that are in one’s circle of
trust are upweighted in the relevance algorithms.

Note that Cassovary dynamically computes a user’s cir-
cle of trust by performing the random walk from scratch
every time. This provides two main advantages: we’re guar-
anteed to have fresh results (to within the most recent daily
snapshot of the graph) and we can dynamically adjust the
random walk parameters and the target of personalization
based on the particular application. For example, it is just
as easy to compute the circle of trust for a set of users as it
is for a single user. One application of this is in generating
real-time recommendations: for example, if a user u has just
followed v1 and v2, one possible online algorithm for gener-
ating recommendation candidates would be to simply pick
among the circle of trust computed for the set {u, v1, v2}.

“hubs” 

“authorities” 

“Circle of Trust”  
of user 

users LHS follow 

Figure 2: Illustration of our SALSA-based algorithm
for generating user recommendations.

5.2 SALSA for User Recommendations
One unique aspect of Twitter is the asymmetric nature of

the follow relationship—a user can receive messages from an-
other without reciprocation or even the expectation thereof.
This differs substantially from other social networks such as
Facebook or LinkedIn, where social ties can only be estab-
lished with the consent of both participating members. For
the purposes of user recommendation, these graph edges are
usually treated as undirected; this is also the assumption in
most academic studies. As a result, much of the literature
on user recommendation assumes undirected edges, though
a straightforward observation is that the directed edge case
is very similar to the user–item recommendations problem
where the ‘item’ is also a user.

After much experimentation, we have developed a user
recommendation algorithm that has proven to be effective
in production (see evaluation in the next section), based
on SALSA (Stochastic Approach for Link-Structure Analy-
sis) [17], an algorithm originally developed for web search
ranking. SALSA is in the same family of random-walk al-
gorithms as PageRank [28] and HITS [13]. The algorithm
constructs a bipartite graph from a collection of websites of
interest (“hubs” on one side and “authorities” on the other).
Unlike in a “conventional” random walk, each step in the
SALSA algorithm always traverses two links—one forward
and one backward (or vice-versa). That is, starting on the
left-hand side of the bipartite graph, the random walk will
always end up back on the left-hand side; similarly, when
starting on the right-hand side, the random walk will always
end up back on the right-hand side.

We have adapted SALSA for user recommendations in
the manner shown in Figure 2. The “hubs” (left) side is
populated with the user’s circle of trust, computed based
on the egocentric random walk described in the previous
section. In our implementation, we use approximately 500
top-ranked nodes from the user’s circle of trust. The “au-
thorities” (right) side is populated with users that the“hubs”
follow. After this bipartite graph is constructed, we run
multiple iterations of the SALSA algorithm, which assigns
scores to both sides. The vertices on the right-hand side are
then ranked by score and treated as standard (“interested



in”) user recommendations. The vertices on the left-hand
side are also ranked, and this ranking is interpreted as user
similarity. Based on the homophily principle, we can also
present these as suggested recommendations, although they
are qualitatively different. We also use these as one source
of candidates for Twitter’s “similar to you” feature.

Why has this algorithm proven to be effective in produc-
tion? It is difficult to say with absolute certainty, but note
that our application of SALSA mimics the recursive nature
of the problem itself. A user u is likely to follow those who
are followed by users that are similar to u. These users
are in turn similar to u if they follow the same (or similar)
users. The SALSA iterations seem to operationalize this
idea—providing similar users to u on the left-hand side and
similar followings of those on the right-hand side. The ran-
dom walk ensures equitable distribution of scores out of the
nodes in both directions. Furthermore, the construction of
the bipartite graph ensures that similar users are selected
from the circle of trust of the user, which is itself the prod-
uct of a reasonably good user recommendation algorithm
(personalized PageRank).

5.3 Evaluation
A robust framework for continuous evaluation is critical

to the long term success of any recommender system, or
web service for that matter. We need to continuously mon-
itor core metrics of deployed algorithms to ensure that they
are performing as expected, but maintaining smooth oper-
ations is not sufficient. We must also constantly tweak old
algorithms and experiment with new ones to improve out-
put quality. This process of empirical, data-driven refine-
ment is well-accepted in the community, and benefits from
accumulated experience of previous successful (and not-so-
successful) algorithms.

Broadly speaking, we conduct two types of evaluations:

1. Offline experiments on retrospective data. A typical eval-
uation would use a graph snapshot from, say, a month
ago, on which an algorithm is run. Relevant metrics such
as precision and recall (more on metrics below) would be
computed against the current graph, using the edges that
have been added since the graph snapshot as the ground
truth. This is the experimental approach adopted by most
academic researchers.

2. Online A/B testing on live traffic, which has emerged
as the gold standard evaluation for web-based products.
In the typical setup, a small fraction of live users are
subjected to alternative treatments (e.g., different algo-
rithms). Prospectively (i.e., after the evaluation has be-
gun), relevant metrics are gathered to assess the efficacy
of the treatments, as compared to a control condition.
While simple in concept, proper A/B testing is as much
an art as it is a science; see, e.g., [14] for more discussion.

Early on after the initial launch of the Wtf service, we relied
almost exclusively on A/B testing, but have since added of-
fline retrospective experiments to our evaluation repertoire.
The initial focus on online A/B testing made sense because
we wanted experiments to match production conditions as
much as possible, and placing an experimental algorithm in
a live setting allowed us to evaluate the entire context of de-
ployment, not only the algorithm itself. The context is crit-
ical because user recommendations appear in a wide variety
of settings across many different platforms (e.g., on the web,

on mobile devices, etc.), each of which may evoke different
user behaviors. For example, different types of users such
as new vs. old might react differently to a new experimental
algorithm. As another example, a user’s decision to accept
a recommendation might be influenced by how the results
are rendered—specifically, cues that we provide to “explain”
why the suggestion was made. The only way to evaluate the
end-to-end pipeline, from algorithm to user interface, is by
online testing.

Online A/B testing, however, is time-consuming because
we must wait for sufficient traffic to accumulate in order to
draw reliable conclusions, which limits the speed at which
we can iterate. Over time, as we have developed better in-
tuitions for the deployment contexts of the algorithms, we
have augmented A/B testing with offline retrospective ex-
periments, which are much faster to conduct. Thus, they
are invaluable for rapid formative evaluations, before decid-
ing whether it is worthwhile to deploy a full online A/B test.

In our evaluation framework, each experimental condition
is identified by a unique algorithm id, which specifies not
only the algorithm-under-test, but also the set of associ-
ated parameters. Each recommendation carries with it the
unique algorithm id through the compute, storage, and serv-
ing stages of the pipeline, all the way to the user’s client (web
browser, mobile phone, etc.). When rendering recommen-
dations, the client logs impression details, which include the
recommended user, rank in the list, display context, and the
algorithm id. These log data are gathered and automatically
post-processed to derive relevant metrics, which are broken
down across various display contexts and also aggregated
in various ways to provide high-level overviews. The algo-
rithm id enables fine-grained measurements of the algorithm
under various test buckets with different user and context
scenarios. We maintain an internal dashboard where we can
monitor and explore the performance of various algorithms
and algorithm ensembles.

Most of our experiments fall into three categories: First,
we can vary the recommendation algorithm (including fusion
algorithms that combine results from different algorithms).
Second, we can vary algorithm parameters. Finally, we can
selectively target the result of a particular algorithm, for
example, showing recommendations only to a particular user
population or in a specific context.

A key question in any evaluation is the metric or the set
of metrics to be tracked. The simplest metric we use to
compare different algorithms is“follow-through rate”(FTR),
which is calculated by dividing the number of generated fol-
lows by the number of impressions of the recommendations
attributed to a particular condition. Although useful and
easy to understand, we stress that FTR is not sufficient, and
far from being the final word on evaluating recommendation
engines. While it is a reasonable measure of precision, it fails
to adequately capture recall. Furthermore, users’ follow-
ing behavior is subjected to natural lifecycle effects—newer
users, who are still exploring Twitter, are more receptive
to following additional accounts. On the other hand, since
attention is a limited quantity, an experienced user who al-
ready receives information [32] from many accounts will be
hesitant to follow additional users. Unfortunately, FTR does
not adequately capture these effects.

However, the biggest issue with FTR is that it does not
measure the quality of the recommendations, since all fol-
low edges are not equal. For Twitter, the primary goal of
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Figure 3: Comparing the relative effectiveness of
various follower recommendation algorithms.

user recommendations is to help the user create a quality
timeline and increase overall engagement. We approximate
this notion using a metric called “engagement per impres-
sion” (EPI). After a user has accepted a recommendation,
we measure and quantify the amount of engagement by the
user on that recommendation in a specified time interval
called the observation interval. From this we derive a metric
that attempts to capture the impact of a recommendation.
The downside of this metric is that it is available only after
the observation interval, which slows the speed at which we
can assess deployed algorithms.

To give the reader a sense of the effectiveness of specific
user recommendation algorithms, we present some evalua-
tion results in Figure 3, which shows normalized FTR over
a small fraction of traffic in a controlled experiment lasting
several months, for a few of the algorithms we have tried.
The algorithms in this experiment are:

• SALSA, the algorithm described in Section 5.2.

• Personalized PageRank [8, 2].

• Sim(Followings): In order to generate recommendation
candidates for a user u, we consider F , the set of users
that u follows. For each f ∈ F , the set of users that
are similar to f are considered and these sets are then
combined into a multi-set with members ranked by their
cardinality (or a score) in the multi-set.

• Most common neighbors: This algorithm seeks to maxi-
mize the number of followings of the user u that in turn
follow the recommendation candidate. In other words, it
picks those users ci as candidates from the second degree
neighborhood of the user u (i.e., followings of followings
of u) to maximize the number of paths of length two that
exist between u and ci.

• Closure: If u follows v, v follows w and w follows u, w is
a recommendation candidate produced by this algorithm.
Note that all follows produced by this algorithm produce
bidirectional (i.e., reciprocated) edges.

Since we need to serve many different types of users across
different contexts and on different clients, the actual algo-
rithms deployed in production tend to be ensembles that
integrate results from different approaches. For example,
the “standard” production algorithm blends results from ap-
proximately 20 different algorithms.

6. ONGOING WORK
The Wtf architecture built around the graph-on-a-single-

server assumption was never meant to be a long term solu-
tion. As mentioned before, it was part of a deliberate plan
to rapidly deploy a high-quality but stopgap measure, and
then iterate to build a better replacement, incorporating all
the lessons we learned with the Cassovary architecture.

At the outset, we were well aware of two significant weak-
nesses in the original design. The first is the scalability
bottleneck, where the growth of the graph would exhaust
the memory capacity of individual servers. The second,
and more important, is the limitation on the richness and
variety of features that could be exploited by graph algo-
rithms due to memory limitations. For example, we wish
to attach metadata to vertices (e.g., user profile informa-
tion such as bios and account names) and edges (e.g., edge
weights, timestamp of edge formation, etc.), and make these
features available to the recommendation algorithms. In
addition, we have thus far exclusively focused on the fol-
lower graph, but interaction graphs (e.g., graphs defined in
terms of retweets, favorites, replies, and other user interac-
tions) provide a wealth of valuable signals as well. A user
recommendation algorithm should have access to all these
features, but this is very difficult to accomplish given the
memory constraints. For example, edge metadata become
multiplicative factors on memory consumption: in the näıve
encoding of edges as (source vertex, destination vertex) pairs
(two 32-bit integers = 8 bytes), augmenting each edge with a
single 8-bit quantized weight would increase memory usage
by 12.5%. Available memory severely limits the diversity
and sophistication of algorithms that could be brought to
bear on the problem.

6.1 Hadoop Reconsidered
We have been developing a completely new architecture

for Wtf that addresses the above two limitations. This sec-
tion discusses our general approach, and we hope to share
more details in a future paper. Instead of relying on Casso-
vary for in-memory graph processing, the new architecture
is completely based on Hadoop—specifically, all algorithms
are implemented in Pig [27, 9], a high-level dataflow lan-
guage for manipulating large, semi-structured datasets that
compiles into physical plans that are executed on Hadoop.
Pig (via a language called Pig Latin) provides concise prim-
itives for expressing common operations such as projection,
selection, group, join, etc. This conciseness comes at low
cost: Pig scripts approach the performance of programs di-
rectly written in Hadoop Java. Yet, the full expressiveness
of Java is retained through a library of custom UDFs that
expose core Twitter libraries (e.g., for extracting and ma-
nipulating parts of tweets). The other noteworthy aspect of
our new approach is its reliance on machine-learned models
to exploit a wealth of relevance signals (more below).

The first decision, to adopt the Hadoop stack, is worth
discussing. At the outset of the Wtf project in early 2010,
we had specifically considered, and then ruled out, an archi-
tecture based on Hadoop. What’s changed?

The numerous issues discussed in Section 3.1 that make
iterative algorithms inefficient in MapReduce still remain.
However, the primary difference is that we have accumu-
lated substantial intuition about the problem domain and
experience with various types of algorithms. Thus, we can
begin by reimplementing effective Cassovary algorithms in



Pig, and then focus on optimizing the efficiency of the com-
ponent MapReduce jobs. Since we have already explored
substantial portions of the solution space with Cassovary,
we are less engaged in exploratory algorithm development,
which makes long-running algorithms tolerable.

Indeed, the initial Pig implementation of the user recom-
mendation pipeline was quite slow, generated terabytes of in-
termediate data in a mostly brute-force fashion, and ranked
among the most resource-intensive jobs on Twitter’s central
Hadoop cluster. However, over time, we have substantially
increased the efficiency of the pipeline through careful soft-
ware engineering (e.g., adopting Pig best practices for join
optimizations where possible) and clever optimizations. One
example is a sampling-based solution to finding all pairs of
similarities between D vectors, each of dimension N , where
the algorithmic complexity is independent of N [30, 31].

There have been substantial developments in large-scale
graph processing frameworks since the Wtf project began.
Notably, Giraph began as an open-source implementation of
Pregel [25]; GraphLab [23] and distributed GraphLab [24]
were presented in 2010 and 2012, respectively. Why did we
favor Hadoop over these frameworks specifically designed for
graph processing? For one, we did not feel that these sys-
tems were sufficiently mature to run in production. Graph-
Lab has the additional disadvantage in that it is imple-
mented in C++, whereas Twitter is built primarily around
the Java Virtual Machine (JVM); of course, JNI bindings are
possible, but that adds a layer of unnecessary complexity.

Even if there existed a production-quality graph process-
ing framework, it would not be clear if adopting a separate
specialized framework would be better than using Hadoop.
Building a production service is far more than efficiently
executing graph algorithms. For example: the production
pipeline must run regularly, thus we need a scheduler; the
algorithms necessarily depend on upstream data (e.g., im-
ports from FlockDB), thus we need a mechanism to manage
data dependencies; processes need to be monitored and fail-
ures handled, or otherwise an on-call engineer needs to be
notified, thus we need a monitoring framework. All of these
components already exist on Hadoop, since productionizing
Pig scripts is a commonplace task with well-developed pro-
cesses (see [21, 15] for more details). In fact, moving Wtf to
Pig simplified its architecture, as we simply plugged into ex-
isting analytics hooks for job scheduling, dependency man-
agement, and monitoring. In contrast, introducing another
computational framework (for graph processing) would re-
quire building parallel infrastructure from scratch—it is not
entirely clear that the gains from adopting an efficient graph
processing framework outweigh the additional engineering
effort required to fully productionize the processing pipeline.
This is similar to the “good enough” argument that Lin [19]
made in a recent paper.

6.2 From Real Graph to Recommendations
In the new Wtf architecture, user recommendations be-

gin with the “Real Graph”, which integrates a multitude
of user and behavior features into a common graph repre-
sentation. Since the Real Graph is not intended to reside
in memory, but rather on HDFS (Hadoop Distributed File
System), there are few limitations on the richness or num-
ber of features that we can include. Vertices in the graph
still represent users, but now we can attach arbitrary profile
information (number of tweets, number of followers, number

of followings, etc.). Edges represent relationships between
users, and have been expanded to include not only follow-
ing relationships, but also retweets, favorites, mentions, and
other user behaviors. Edges can also be associated with
arbitrary metadata such as weights. The data structures
underlying the Real Graph are extensible so that additional
vertex or edge features can be added at any time.

The Real Graph itself is constructed on a periodic basis
through a series of Pig scripts that run on Hadoop, join-
ing together data from disparate sources. From the Real
Graph, recommendations are computed with a new gener-
ation of algorithms that reflect a distillation of experiences
with Cassovary. They can be divided into two phases: can-
didate generation and rescoring.

• Candidate generation involves producing a list of promis-
ing recommendations for each user, with algorithms rang-
ing widely in sophistication. For example, (selectively)
materializing users’ two-hop neighborhoods is a simple,
but very inefficient approach to candidate generation. A
more refined approach would be to compute the top n
nodes from personalized PageRank or the SALSA-based
algorithm described in Section 5.2.

• Rescoring involves applying a machine-learned model to
the initial recommendations generated by the previous
stage. We adopt a standard formulation of user recom-
mendation as a binary classification problem [10, 1]. Since
it is impractical to classify all possible non-existent edges,
this stage requires a working set of edges to serve as clas-
sifier input, hence the candidate generation stage. The
models are learned using the Pig-based framework de-
scribed in [21]. We train logistic regression classifiers using
stochastic gradient descent in a single pass.

The two-stage approach provides a nice abstraction that al-
lows engineers to work on either component alone. Note
that these two stages have complementary goals and chal-
lenges. The candidate generation stage is primarily focused
on recall and diversity, whereas the rescoring stage must
deliver high precision while retaining diversity. Efficiency
is a key concern for candidate generation, since topological
properties of the graph render näıve algorithmic implemen-
tations impractical—for example, while technically feasible,
it is hugely inefficient to selectively materialize users’ two-
hop neighborhoods—they are surprisingly large due to the
presence of supernodes, or vertices with extremely large out-
degrees. Every candidate generation algorithm must con-
tend with topological features of the Twitter graph, which
require clever optimizations and sometimes approximations.
In contrast, efficiency is less of a concern in rescoring since
our use of linear models means that classification ultimately
boils down to inner products between feature and weight
vectors (which are fast operations).

In our design, the Real Graph is useful beyond generat-
ing user recommendations. It is intended to be a general
resource at Twitter for any project or product that involves
the graph or requires graph features, for example, search
personalization, content discovery, static priors for ranking,
etc. Since the complete Real Graph is very large, we ma-
terialize compact views that are customized to the specific
application—these materialized graphs might, for example,
be pruned to fit the memory profile of the target application.

The second generation of the Wtf architecture is the fo-
cus of ongoing efforts at Twitter. Compared to the original



design, we have eliminated the scalability bottleneck and are
building a flexible infrastructure to enable future exploration
of graph- and content-based recommendation algorithms.

7. CONCLUSIONS
This paper shares the story of Twitter’s “Who to Follow”

user recommendation product. We consider the project a
big success: the service was built and deployed within a
short amount of time, and has been driving a substantial
amount of engagement on Twitter over the past few years.
In addition, the Wtf architecture has allowed other Twit-
ter products such as search and promoted products to take
advantage of graph algorithms on demand. We hope this
case study provides the community a fresh perspective on
the “practical” aspects of building and running a large-scale
recommendation service. Most academic studies focus on al-
gorithms, but the success of a service is dependent on many
additional factors such as having the right architecture and
the right evaluation framework for iterative refinement. Our
account fills a gap in the literature by providing a “big pic-
ture” view in the context of a large-scale production service.
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