
A Comparison of Lasso-type Algorithms on
Distributed Parallel Machine Learning Platforms

Jichuan Zeng, Haiqin Yang, Irwin King and Michael R. Lyu
Shenzhen Key Laboratory of Rich Media Big Data Analytics and Applications

Shenzhen Research Institute, The Chinese University of Hong Kong
Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong

{hqyang, king, lyu}@cse.cuhk.edu.hk

Abstract

Due to tremendous increase of data, scalability becomes a challenging issue for
many modern machine learning algorithms. Various distributed machine learn-
ing platforms, e.g., GraphLab, Spark and Petuum, are proposed to tackle this is-
sue. Lasso algorithm, as its effectiveness in performing regression tasks while
selecting the important features simultaneously, has become a benchmark ma-
chine learning method deployed in these platforms. However, rare work discusses
the performance of the Lasso algorithm systematically and many other lasso-type
algorithms are not well-studied yet. In addition, how to relieve the “Ninja perfor-
mance gap” between optimized code and most of these frameworks is a difficult
task. To resolve the above tasks, we present a detailed deployment of the lasso-
type algorithms in several state-of-the-art distributed machine learning platforms.
We characterize the performance of the native implementation and identify the po-
tential parts to reduce the performance gap. We give a comprehensive comparison
on running time, easy-of-deployment and capability of handling big data, which
will enable end-users to choose platforms based on their goals.

1 Introduction

Regression via Least Absolute Shrinkage and Selection Operator (Lasso) is a well-known statistical
machine learning method [19]. This method aims to tackle the regression tasks while selecting the
important features where the dimension of the data is highly larger than the number of samples.
A motivating example comes from gene selection where the number of samples is in the order of
103 − 104 due to the high cost of experimental treatment while the number of dimensions can be
up to 109. Lasso regression has provided an effective solution to seek a linear effect of the most
informative gene while discarding those irrelevant ones. Due to its effectiveness, Lasso has been
extended widely. Many lasso-type algorithms such as elastic net [25], group lasso [22], sparse
group lasso [6], and so on have been proposed and attained successfully in the applications, where
data contain similar features, group features, and sparse group features.

As the number of data in application domains increases radically, computation scalability becomes
a challenging issue of many machine learning algorithms, including lasso-type algorithms. To meet
the requirements of real-world applications, various algorithms are proposed in the literature. One
family of methods is to stream the examples to an online-learning algorithms [1]. Typical online
learning algorithms for lasso-type models include truncation method [11], forward-backward split-
ting method [5], dual averaging method [20, 21], and etc. These methods may be insufficient and
limited when the data are stored distributedly. Hence, parallelizing the batch-trained algorithms and
executing distributively become another family of solutions. Currently, many platforms have been
proposed and claimed to provide programming and runtime support for distributed/parallel machine
learning algorithms, including GraphLab [12], Mahout [15], MLBase [10], and Petuum [4]. Other

1



systems such as Pregel [13], Giraph [3], Hama [18], Spark [24], Twitter Storm and Dryad [9] have
been designed for general-purpose distributed platforms, but treat it as an important component.
Now, Lasso regression has become a benchmark method deployed in these platforms.

However, there is no clear and complete comparison for the Lasso regression in these platforms.
Moreover, many other lasso-type algorithms are not implemented and well-studied in these plat-
forms yet. How to borrow the implementation idea of lasso and transfer it to other lasso-type algo-
rithms is still non-trivial. In addition, the “Ninja performance gap” [17] between natively written
graph code and well-tuned hand-optimized code is common and scales to be multiple orders of mag-
nitude. How to relieve the “Ninja performance gap” in Lasso-type algorithms implementation is a
challenging task. To this end, we start from Lasso and group Lasso, which are two representative
lasso-type algorithms and test them in three distributed parallel platforms, Graphlab, Spark, Petuum.
We select these platforms because they are currently popularly distributed parallel machine learning
platforms which are easily deployed and very promising for iterative algorithm updating. We char-
acterize the performance of the native implementation and identify the potential parts to reduce the
performance gap. We give a comprehensive comparison on running time, convergence, and easy-
of-deployment. We hope our efforts will grow into a widely used, standard benchmark for this sort
of platforms. In the future, a implementor of a new or existing platform need only implement these
codes and compare with our numbers.

The rest of the paper is organized as follows. Section 2 outlines the general framework of Lasso-type
models, especially the solutions for Lasso and Group Lasso, respectively. Section 3 depicts how to
separate the data in distributed machines. Section 4 summarizes three popular distributed parallel
platforms and how to implement Lasso and Group Lasso accordingly. Section 5 provides a detailed
comparison and discussion on the results. Finally, Section 6 concludes the whole investigation with
brief discussion on future work.

2 Lasso-type Models

Suppose we are given a set of identically distributed samples {(xi, yi)}Ni=1, where xi ∈ Rd is the
feature for the i-th sample and yi is the i-th response, we try to find a linear model as follows:

y = xTw + ε (1)

where w ∈ Rd is the regression weight vector to be learned and ε is the error term, or noise, usually
taking the gaussian distribution.

To seek the optimal solution in Eq. (1), one usually turn to the following regularized minimization
framework:

min
w∈Rd

F(w) =

N∑
i=1

L(xTi w, yi) + Ωλ(w) (2)

where L(·) is a non-negative, usually convex loss function. Ωλ(w) is a regularization term to control
the model complexity while achieving a certain property. λ ≥ 0 is a constant to trade-off the loss
and the regularization.

In the following, we mainly focus on Lasso and Group Lasso as they are two typical lasso-type
algorithms and widely applied in many real-world applications.

2.1 Lasso

The Lasso model [19] is an instance of `1 regularized loss minimization model which minimize the
residual squared loss with a constraint on `1 norm of the regression coefficient, or equivalently, min-
imizing the following sum of the residual squared loss and the `1 norm of the regression coefficient:

min
w∈Rd

FL(x) =
1

2
‖Xw − y‖22 + λ‖w‖1 (3)

where X = [x1,x2, . . . ,xN ]T ∈ RN×d concatenates the features row-by-row. It should be noted
that the key of Lasso is to encourage sparsity by the `1-norm on the weight, i.e., ‖w‖1. We follow

2



the parallel coordinate descent method in [2] to solve the Lasso problem. That is, we choose a subset
of coordinates Pt from {1, 2, . . . , d} uniformly at random and update the weight parallelly by

wj ← wj +4wj ,

where4wj is calculated by the following equation:

4wj = max{−wj ,−(∇FL(w))j/β},

where β > 0 is a loss-dependent constant.

After that, we compute the collective update by

∆w =
∑

i∈Pt
4wi.

It is noted that under a certain condition, the above updating can be converged [2].

2.2 Group Lasso

The Group Lasso [22] is an extension of Lasso to select factors in a group manner. Suppose the
data consist of K groups, i.e., X = [X1, . . . ,XK ], where Xk ∈ Rn×dk denotes the feature vectors
corresponding to the k-th group and dk denotes the size of the feature in the k-th group. We have,∑K
k=1 dk = d. The goal of Group Lasso is to seek the weight by minimizing the following objective

function:

min
w∈Rd

FG(x) =
1

2
‖
K∑
k=1

Xkwk − y‖22 + λ

K∑
k=1

√
dk‖wk‖2 (4)

where wk ∈ Rdk , k = 1, . . . ,K. We can see that if dk = 1 for all groups, it reduce to the original
Lasso model. Hence Group Lasso acts like a group-level Lasso, which selects a group of factors for
producing accurate prediction.

Here, we adopt the Nesterov’s methods [14] to evaluate the objective value and (sub)gradients at
each iteration. The Nesterov’s method updates two sequences of variables, sj and wj , alternatively,
where sj is the sequence of search points, and wj is the sequence of approximate solution points.
sj can can be computed through affine transformation of wj−1 and wj . Base on the (sub)gradient
of sj , the approximate points wj can be acquired by

sj = wj − αj(wj −wj−1) (5)
wj+1 = PG(sj − β∇L(sj)) (6)

where αi ∈ (−1, 1) is the affine coefficient, β > 0 is the gradient step size, PG is the Euclidean
projection of gradient search step v on the convex set G, that is, PG(v) = min

w∈G
1
2‖w − v‖2.

3 Data Splitting

A key issue of large scale datasets is that the data is too large to store centrally, or when it is collected
in a distributed manner. Hence, usually there are three ways to split the data distributedly [16]:

• row block splitting: the data X is partitioned into row blocks X(1),X(2), . . . ,X(M). Stack-
ing them forms X.

• column block splitting: the data X is partitioned into column blocks X =
[X1,X2, . . . ,XN ].

• general block splitting: the data X is partitioned into MN sub-blocks, where the rows
are divided by M blocks and the columns are divided by N blocks. The (i, j)-th block is
denoted by Xi,j .

By taking into account the property of Lasso-type algorithms, we adopt the second strategy, i.e.,
column block, to split the data. Figure 1 gives an illustrated example of the splitting strategy of
Lasso and Group Lasso, where in Lasso, the d columns of data are uniformly distributed in different
nodes. While in Group Lasso, similar splitting is conducted, but data in a group will be resided only
in one node, and each node will contain the same number of groups.

3



...

...

X 1X 2X 3X 4X X dX1d

1dw 1w 2w 3w 4w w dw

Machine 1 Machine 2 Machine B

(a) Lasso

...

...

X 1X

1w

2X 3X 4X 5X X dX1d

1dw 2w 3w 4w 5w w dw

Machine 1 Machine B

(b) Group Lasso

Figure 1: Data splitting strategy. Fig. 1(a) shows the splitting strategy of Lasso, where the d
columns/dimensions of data are uniformly distributed in different nodes. Fig. 1(b) illustrates split-
ting strategy of Group Lasso. Similarly, the K columns/groups of data are uniformly separated in
different nodes, where in each group, the data will be resided in one node.

Hence, we can separate the objective function block-wisely, i.e., F(w) =
∑B
b=1 Fb(wb), where

wb is the b-th block of w. More specifically, the regularization term is expressed as Ωλ(w) =∑B
b=1 Ωλ(wb) while the loss function is expressed as L(Xw,y) = 1

2

∑B
b=1 ‖Xbwb − yb‖2. We

can then execute and obtain wb parallelly. Algorithm 1 depicts the implementation of a distributed
solver for the Lasso-type models.

Algorithm 1 Distributed solver for Lasso-type models
1: Parameters: T, λ, n, d,B
2: Input: Observed matrix X, and response vector y
3: Output: The coefficient vector w.
4: Initialize Xb is stored in node b, set w = 0 ;
5: for t = 1, 2, ...T do
6: Update Xw by Reduce all nodes
7: random sample s selected blocks from B blocks;
8: for b = {1, . . . , s} parallelly do
9: for each j in block b do

10: gj ← ∇L(Xw,y)

11: wt+1
j ← proxΩλ(·)(w

t
j − δgj)

12: end for
13: end for
14: end for

4 Distributed Parallel Machine Learning Platforms and Implementation

In the following, we present three popular distributed parallel machine learning platforms and depict
how to implement Lasso and Group Lasso on them.

4.1 GraphLab

GraphLab [12] is a graph-based distributed parallel machine learning platform, which started from
a project at Carnegie Mellon University in 2009. It consists of the following unique features:

• It provides a parallel-programming abstraction that is targeted for sparse iterative graph al-
gorithms through a high-level programming interface, that is ”vertex programming”. Each
GraphLab process is multi-threaded to fully use multi-core resources available on modern
cluster nodes.

• It includes asynchronicity and allows for very appealing computational models, since when
writing the code associated with a vertex, one need only consider the computation required
to update the state of that vertex; one can more or less ignore the remainder of the compu-
tation.

• It supports reading from and writing to both Posix and HDFS file systems.

4



• It is unique in that its computational model is pull-based and asynchronous. Each vertex in
the graph constantly requests data from its neighbors in order to update its own state.

Implementation of Lasso. We define the data vertices as the the storage of X. Each data ver-
tex stores one column of the data matrix Xi and the response y with the corresponding coef-
ficient wi, which consists of a triple 〈Xi, wi,Xiy〉. We then utilize graph.load to paral-
lelly load data into distributed machines. The GraphLab computation begins with an initializa-
tion by performing transform vertices over all the data vertices. And then we also use
graph.transform vertices to apply Shoot in each vertex (column), and update the wi
in it. At the end of one iteration, we gather the information of all the data vertices we need to
compute collective objective.

In order to make the computation more efficient, we do not take the edges between the data vertices
into account. Instead, we use a broadcast way to traverse all data vertices and use an aggregate
method to record running states. By this way, we can reduce the memory consumption significantly.

Implementation of Group Lasso. We define two types of vertices: data vertices and group vertices.
Again, the i-th data vertices are used to store a triple 〈Xi, wi,Xiy〉. The group vertices collect
Euclidean projection PG and other required statistics. A group vertex is associated with each data
vertices.

We initialize eachXi by performing a transform vertices operation over all the data vertices.
Next, we use GraphLab’s gather-apply-scatter abstraction to implement Nesterov’s method. In
gathering phase, the i-th group vertex collects the gradient search step vGi

from the data vertices
belong to the Gi. The data vertex collects the Euclidean projection PGi from corresponding group
vertex. In the applying phase, the data vertex update its regression coefficient with new wi value.
The group vertices compute PG based on vG.

4.2 Spark

Spark [24] is an open-source Hadoop MapReduce alike general-purpose cluster computing system
which was developed by the AMP lab at University of California, Berkeley. Spark utilizes an ab-
straction called Resilient Distributed Datasets (RDDs) [23] to do in-memory data-processing under
the framework of MapReduce. RDD is a read-only collection of objects providing a restricted form
of shared memory, based on coarse-grained transformations (e.g., map, filter and join) over a set of
data or existing RDDs. RDD also provides fault tolerance through its lineage (the transformation
log). With the help of RDD’s in-memory operations, Spark allows users to write parallel computa-
tions using a set of high-level operators, without concerning work distribution and fault tolerance.

Spark is written in Scala, which makes it feasible for nearly all JVM-based platforms such as Hadoop
Yarn, Apache Mesos. Another excellent feature of Spark lays on the imitation of Scala’s collections
API and functional style, which providing beautiful codes and good support for statistical comput-
ing.

Implementation of Lasso. We begin by creating a RDD named data, which is read and parsed
from data in disk storage. We split the data into X x rdd and y y rdd via data.map. The ini-
tialization of matrix is completed by x rdd.map. Next we enter the main loop and perform Shoot
algorithm which is the coordinate descent by x rdd.map(p=>Shoot).reduce. In Shoot, wj

are updated, and broadcast to all Worker nodes through sc.broadcast. Most of the code of
Lasso is run locally in Driver, except the initialization and shoot algortihm.

Implementation of Group Lasso. In our implantation of group Lasso, Spark is asked to manage
and aggregate data at the group level, instead of the column level. Therefore, the difference from
Lasso is this Spark implementation begins by creating a RDD g x rdd. This RDD stores, the group
identifier and its associated list of columns of data. Then the initialization is applied to g x rdd
similar to Lasso implementation. Now it comes to the main loop of Nesterov’ method, we will
employ two steps to in this process. Firstly, we compute the Euclidean projection PG, which denoted
as g proj rdd for each target group by a simple g x rdd.map. Then, the aggregates are used to
update the value of w via g x rdd.map(p=>update(g proj rdd)).reduce.

5



4.3 Petuum

Petuum [8] is a framework for iterative-convergent distributed machine learning. Currently, they
are parameter server for global parameters and variable scheduler for local variables. Petuum-PS
supports novel consistency models such as bounded staleness, which achieve provably good results
on iterative-convergent ML algorithms, that is Stale Synchronous Parallel (SSP) [8].

The most attractive aspect of Petuum is the SSP, SSP is a soft synchronization, which blocks the
worker thread until all worker threads are within a specified window of the current iteration. SSP
is a middle ground of Bulk Synchronous Parallel (BSP) which block until thread catch up, and
Asynchronous, in which thread will go to next iteration without waiting. SSP can reduce the network
waiting time as it purported.

Implementation of Lasso. We define a SSPtable which is a table-based interface of SSP parameter
server, and used to store w in the parameter servers, which only contain one row, and the dimension
of the SSPtable is the dimension of the predictor X. And then, we initialize threads to process the
coordinate descent. In one iteration, a thread will implement Shoot, and then check the objective, at
the end of the iteration followed by a TableGroup.Iteration step to mark the clock increment
of this thread.

Implementation of Group Lasso. In Group Lasso, we utilize a SSPtable to store w as we did in
Lasso. Different from Lasso implementation, the groups in each node are process by worker threads
alternatively. In each worker thread, it will compute current group’s Euclidean projection PG and
update the corresponding wG belongs to the group.

5 Experiments

In the following, we will evaluate the capability of processing large scale Lasso-type algorithms
among the three platforms, Graphlab [12], Spark [24], and Petuum [4]. In order to give the reader
a guide of how to write distributed parallel codes under big data platform, In addition to give a
performance comparison, we will also focus on the easy-of-use among the platforms, we will show
the differences and difficulties while implementing Lasso-type algorithms on platforms, and treat
programmability as an important merit for the performance of platforms.

5.1 Datasets

Since the available real-world datasets are usually relative small, we generate several synthetic
datasets to evaluate in the experiment. The datasets are generated as follows [7]: constructing differ-
ent pairs (N, d) for data matrix X based on the sparsity and assigning the values of X following the
standard Gaussian distribution. The original weight vector wo is generated by randomly sampling
non-zero features, where the values of the elements of the sampled entities are generated following
the standard Gaussian distribution. The final response y is computed by y = Xwo + ε. For group
Lasso, we construct the group index before sampling the original weight vector wo, and conduct
samples according to the group index. Table 1 summarizes the statistics of the generated datasets
for Lasso and Group Lasso.

5.2 Experimental Setup

All algorithms are run in multi-core servers with VMware ESXi on each server. For each virtual
machine, we configured 4 cores (2.5 GHz) and 8 GB RAM running on Ubuntu 14.04. There are 8
VMs in our experimental cluster. All nodes are connected with each other by 1 Gigabit Ethernet.
The version of the GCC is 4.8, and the version of JDK is 1.7. The version of Petuum is 0.21 and the
parameter of staleness is set to 8. The version of GraphLab is 2.2. The version of Spark is 1.0. They
are downloaded from their github repositories.

5.3 Experimental Results

Table 2 records the execution time in seconds required in the compared platforms. We have the
following observations:

6



Table 1: Statistics of the synthetic datasets
Dataset Lasso Datasets Group Lasso Datasets

Type SD1 SD2 SD3 SD4 SD5 GD1 GD2 GD3 GD4 GD5
Size 5K*10K 5K*100K 5K*100K 5K*1M 5K*1M 5K*10K 5K*10K 5K*100K 5K*100K 5K*100K

Density 2% 2% .2% 20% 100% .2% .2% .2% 2% 20%
Groups 100 1K 1K 1K 10K

Table 2: Execution time in seconds for the three compared platforms
Lasso Group Lasso

Platform SD1 SD2 SD3 SD4 SD5 GD1 GD2 GD3 GD4 GD5
GraphaLab 62.3 242.7 354.3 1023.2 1632.9 16.3 62.3 109.7 157.3 579.2

Petuum 26.3 89.5 127.2 785.4 967.6 14.9 26.4 62.0 109.2 231.7
Spark 482.0 565.8 1563.6 2453.9 4512.6 417.4 489.4 529.4 709.9 1781.9

• The execution time in the three platforms increases gradually as the size of the datasets in-
creases. All the compared platforms can handle these huge datasets, e.g., with one thousand
samples, one million features, and five billion non-zero entities.
• Petuum is the most efficient as on average it only takes about half of the time consuming

by Graphlab in Lasso and Group Lasso, while the time required by Spark is about three
to seven times of that of Graphlab for Lasso and it is about three to twenty five times for
Group Lasso. The reason lies that the parameter-server model of Petuum and memory-
based storage are well suited for Stochastic Coordinate Descent (SCD), which repeatedly
update the shared parameters in high frequency. In addition, the Stable Synchronous Paral-
lel (SSP) can significantly accelerate the iteration speed. One thing to remain that, with the
staleness or even the parallel threads increase, the convergence might not be guaranteed,
since accumulation of the deviation brought from inconsistent updates.
• Graphlab’s performance depends largely on your code design. Generally, Graphlab is quite

sensitive to the number of groups as the time required can be increased dramatically. The
increase of group vertex will bring a significant increase of the edges, which may increase
the burden of computation.
• The maintenance of high dimension shared variables cost too much communication effort

in Spark. Moreover, SCD only update a small portion of shared variables, which is also
inefficient in Spark’s iteration, because it could be the same cost as to update the whole
variables for Spark. As a result, Spark’s performance is unsatisfactory in our experiment.
We also observe that Spark is not suitable to solve small scale datasets as communica-
tion time between drivers and workers dominates the computation time. Spark is not very
sensitive to the dimension of datasets because of the support of sparse data in Spark v1.0.

Fig. 2 shows the convergence curve of Lasso and Group Lasso on the three compared platforms.
This again verifies that Petuum is much efficient than Graphlab while Spark is the lowest among
three compared platforms.

Convenience of implementation. We evaluate the easy of implementation by examining the num-
ber of codes written for Lasso and Group Lasso for the compared platforms. From Table 3, we know
that Spark enjoys much less code and is much convenient in deployment than that of Petuum and
GraphLab. This owes to the implementation of scala-based functional style and the Driver-Worker
runtime pattern. Because Petuum is still in early-stage development, you have to cope with lots of
scripts to deploy your program on a cluster. What’s worse, you need to distribute your complied
code manually to the rest of your nodes in the cluster.

Table 3: Lines of codes written to implement Lasso and Group Lasso in the 3 compared platforms
Platform Lasso Group Lasso

GraphLab 389 465
Petuum 433 529
Spark 129 158

7



Ninja performance gap. Ninja performance gap is the performance gap between naively written
parallelism unaware code and best-optimized code on modern multi-/many-core processors [17].
When we implement the first version of Lasso in GraphLab, we use edge in the data matrix, it
works when the data size is not large, but it quickly runs out of memory when we load a relative big
graph. We then redesign the implantation and find a another method to store the data, i.e., storing
each column of the data as a vertex. This can significantly reduce the memory consumption and
successfully load the entire graph. For Petuum, as it is developed in very early staged, there are
lots of optimizations you can involve in your code, such as caching your update value for SSPtable
to perform batch update or caching them until it meets some conditions, which could reduce SSPt-
able operation frequency. In Spark the Ninja performance can be effectively avoided, because the
Map-Reduce programming model is quite straightforward, and the abstract data structure RDD is
collection alike which are familiar to the developers.

(a) Lasso in SD3 (b) Group Lasso in GD3

Figure 2: Convergence comparison of Lasso and Group Lasso on Graphlab, Spark, and Petuum.

6 Conclusion

In this paper, we choose Lasso and Group Lasso, two typical and famous Lasso-type algorithms
and compare the performance on three merited machine learning platforms, GraphLab, Spark, and
Petuum, through generated huge-large datasets. The extensive results demonstrate that Petuum is a
very efficient machine learning platform for executing Lasso and Group Lasso while Spark is quite
slow in the execution. However, Spark has the advantages of easy implementation, which can avoid
the Ninja performance gap.

We will continue our effort in the following interesting directions. First, we plan to deploy the
implementation on truly big data real-world applications. Second, we intend to implement more
Lasso-type algorithms and release the codes for advancing the development of the research commu-
nity. Third, we will consider how to dispatch the data based on the status of machines to further
improve different platforms.

Acknowledgment

The work described in this paper was fully supported by the National Grand Fundamental Research
973 Program of China (No. 2014CB340401 and No. 2014CB340405), the Research Grants Council
of the Hong Kong Special Administrative Region, China (Project No. CUHK 413212 and CUHK
415113), and Microsoft Research Asia Regional Seed Fund in Big Data Research (Grant No. FY13-
RES-SPONSOR-036).

References
[1] Léon Bottou. Online algorithms and stochastic approximations. In David Saad, editor, Online Learning

and Neural Networks. Cambridge University Press, Cambridge, UK, 1998.

8



[2] Joseph K. Bradley, Aapo Kyrola, Danny Bickson, and Carlos Guestrin. Parallel coordinate descent for
l1-regularized loss minimization. In ICML, pages 321–328, 2011.

[3] Avery Ching. Large-scale graph processing infrastruction on hadoop. In Hadoop Summit, Santa Clara,
USA:[sn], 2011.

[4] Wei Dai, Jinliang Wei, Xun Zheng, Jin Kyu Kim, Seunghak Lee, Junming Yin, Qirong Ho, and Eric P.
Xing. Petuum: A framework for iterative-convergent distributed ml. CoRR, abs/1312.7651, 2013.

[5] John Duchi and Yoram Singer. Efficient learning using forward-backward splitting. Journal of Machine
Learning Research, 10:2873–2898, 2009.

[6] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. A note on the group lasso and a sparse group
lasso, 2010.

[7] Laurent El Ghaoui, Vivian Viallon, and Tarek Rabbani. Safe feature elimination in sparse supervised
learning. CoRR, abs/1009.3515, 2010.

[8] Qirong Ho, James Cipar, Henggang Cui, Seunghak Lee, Jin Kyu Kim, Phillip B. Gibbons, Garth A.
Gibson, Gregory R. Ganger, and Eric P. Xing. More effective distributed ml via a stale synchronous
parallel parameter server. In NIPS, pages 1223–1231, 2013.

[9] Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell, and Dennis Fetterly. Dryad: distributed data-
parallel programs from sequential building blocks. In EuroSys, pages 59–72, 2007.

[10] Tim Kraska, Ameet Talwalkar, John C. Duchi, Rean Griffith, Michael J. Franklin, and Michael I. Jordan.
Mlbase: A distributed machine-learning system. In CIDR, 2013.

[11] John Langford, Lihong Li, and Tong Zhang. Sparse online learning via truncated gradient. Journal of
Machine Learning Research, 10:777–801, 2009.

[12] Yucheng Low, Joseph Gonzalez, Aapo Kyrola, Danny Bickson, Carlos Guestrin, and Joseph M. Heller-
stein. Graphlab: A new framework for parallel machine learning. In UAI, pages 340–349, 2010.

[13] Grzegorz Malewicz, Matthew H. Austern, Aart J. C. Bik, James C. Dehnert, Ilan Horn, Naty Leiser, and
Grzegorz Czajkowski. Pregel: a system for large-scale graph processing. In PODC, page 6, 2009.

[14] Yu Nesterov. Introductory lectures on convex optimization: A basic course. Kluwer Academic Publishers,
2003.

[15] Sean Owen, Robin Anil, Ted Dunning, and Ellen Friedman. Mahout in action. In Manning. 2011.

[16] Zhimin Peng, Ming Yan, and Wotao Yin. Parallel and distributed sparse optimization. In ACSSC, pages
659–646, 2013.

[17] Nadathur Satish, Changkyu Kim, Jatin Chhugani, Hideki Saito, Rakesh Krishnaiyer, Mikhail Smelyan-
skiy, Milind Girkar, and Pradeep Dubey. Can traditional programming bridge the ninja performance gap
for parallel computing applications? In ISCA, pages 440–451, 2012.

[18] Sangwon Seo, Edward J. Yoon, Jae-Hong Kim, Seongwook Jin, Jin-Soo Kim, and Seungryoul Maeng.
Hama: An efficient matrix computation with the mapreduce framework. In CloudCom, pages 721–726,
2010.

[19] Robert Tibshirani. Regression shrinkage and selection via the lasso. J. Roy. Statist. Soc. Ser. B, 58(1):267–
288, 1996.

[20] Lin Xiao. Dual averaging method for regularized stochastic learning and online optimization. Journal of
Machine Learning Research, 11:2543–2596, October 2010.

[21] Haiqin Yang, Zenglin Xu, Irwin King, and Michael R. Lyu. Online learning for group lasso. In ICML,
pages 1191–1198, Haifa, Israel, 2010.

[22] M. Yuan and Y. Lin. Model selection and estimation in regression with grouped variables. Journal of the
Royal Statistical Society, Series B, 68(1):49–67, 2006.

[23] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Murphy McCauly,
Michael J. Franklin, Scott Shenker, and Ion Stoica. Resilient distributed datasets: A fault-tolerant ab-
straction for in-memory cluster computing. In NSDI, pages 15–28, 2012.

[24] Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott Shenker, and Ion Stoica. Spark: Cluster
computing with working sets. In HotCloud, 2010.

[25] Hui Zou and Trevor Hastie. Regularization and variable selection via the elastic net. Journal of the Royal
Statistical, Society B, 67:301–320, 2005.

9


	Introduction
	Lasso-type Models
	Lasso
	Group Lasso

	Data Splitting
	Distributed Parallel Machine Learning Platforms and Implementation
	GraphLab
	Spark
	Petuum

	Experiments
	Datasets
	Experimental Setup
	Experimental Results

	Conclusion

