
LOCO: Distributing Ridge Regression
with Random Projections

Brian McWilliams†∗ Christina Heinze‡∗ Nicolai Meinshausen‡

Gabriel Krummenacher† Hastagiri P. Vanchinathan†

†Department of Computer Science ‡Seminar für Statistik
ETH Zürich, Switzerland

heinzec@student.ethz.ch
meinshausen@stat.math.ethz.ch

{mcbrian|gabriel.krummenacher|hastagiri}@inf.ethz.ch

Abstract

We propose LOCO, a distributed algorithm which solves large-scale ridge reg-
ression. LOCO randomly assigns variables to different processing units which
do not communicate. Important dependencies between variables are preserved
using random projections which are cheap to compute. We show that LOCO
has bounded approximation error compared to the exact ridge regression solu-
tion in the fixed design setting. Experimentally, in addition to obtaining signif-
icant speedups LOCO achieves the same predictive accuracy as standard ridge
regression.

1 Introduction

In the last few years there has been great interest in solving large-scale optimization and estimation
problems. Since multi-core architectures and powerful computing clusters have become common-
place, parallelization has naturally emerged as a technique to leverage these resources to enable
increasingly large problems to be solved quickly.

Two obvious questions arise: (1) how should the data and processing tasks be distributed among
processing units (workers) and (2) how and what should each worker communicate. The choice
of learning algorithm affects both of these points. Stochastic gradient descent (SGD) methods are
suited to parallelization over the rows (observations) of the data [24]. However, synchronization of
results to ensure each worker is updating the current gradient becomes expensive. This has motivated
recent asynchronous approaches to parallel SGD [8, 15]. Parallelizing over the columns (features)
of the data has been proposed for coordinate descent optimization which is commonly used to solve
`1 penalized problems [7]. To ensure convergence, the inherent dependence between features is
typically assumed to be small between blocks which are operated on in parallel. Fewer methods
have been proposed for distributed optimization on a cluster of machines where communication
costs must be considered [17].

Specifically, we limit our focus to `2 penalized linear regression for large-scale estimation tasks
when the size of the data is such that a single multi-core processor is insufficiently fast. We there-
fore wish to distribute the problem in a way which allows computation to be shared across many
machines which do not share memory. Ideally this is done in such a way that synchronization and

∗Joint first author.

1

communication between workers are kept to a minimum. Another setting which motivates dis-
tributed estimation is one of privacy preservation. In this framework, no single worker may see all
of the features and so even when the data size is not massive, sharing memory and data between
workers is not permitted.

Randomized dimensionality reduction based on the Johnson-Lindenstrauss lemma has emerged as
a way to quickly obtain provably good approximations to a variety of learning tasks [3]. Notably,
structured random projections have been used to speed up approximate kernel expansions [12] and
linear regression. For the latter, it can be shown that the least squares solution computed on a
random projection of either the row [14] or column [11, 13] space of the data matrix results in
a solution which is close to optimal. An obvious downside to dimensionality reduction is that the
solution obtained is no longer in the original space. Therefore, the estimated coefficients are difficult
to interpret with respect to the observed features – a task often as important as prediction accuracy.
Furthermore, in order to compute the projection, a single machine is assumed to have access to the
entire dataset.

In this work we propose and analyze LOCO, a simple, LOw-COmmunication distributed algorithm to
approximately solve `2 penalized least squares which crucially requires no synchronization between
workers. LOCO assigns features to workers by randomly partitioning the data into K blocks (alter-
natively, this may be part of the problem specification). In each block, a small number of cheaply
computed random projections are used to approximate the contribution from the remaining columns
of the data. Each worker then simply optimizes the objective independently on this compressed
dataset, the size of which is proportional to the size of the random projection and the total number
of workers. The solution vector returned by LOCO is constructed by collecting the estimates for the
respective unprojected “raw” features from each worker such that it lies in the original space.

Outline and Contribution. In §2 we formally describe our estimation problem and the distributed
setting which we consider. We also give a brief introduction to random projections, in particular the
Subsampled Randomized Hadamard Transform (SRHT). In §3 we describe LOCO, our algorithm
for distributed ridge regression. In §4 we show in the fixed design setting that the error between
the coefficients estimated by LOCO and the optimal ridge regression coefficients is bounded, under
natural assumptions about the problem setting. Importantly, unlike other approaches to parallelizing
or distributing optimization, we make no assumptions on sparsity in the data. In §5 we place our
contribution in context of recently proposed related approaches to distributed optimization. In §6 we
provide implementation details and empirical evaluation of our algorithm on a large-scale simulated
dataset. LOCO typically exhibits near-linear speedups with the number of workers with little loss in
prediction accuracy.

2 Problem Setting

Given a matrix of features X ∈ Rn×p and a corresponding vector of responses, Y ∈ Rn where the
dimensionality p and sample size n are very large. We consider solving problems of the form

min
β∈Rp

L(β) := min
β∈Rp

f(β) +R(β) (1)

Here, f is a smooth convex loss and R is a convex regularizer which is seperable, i.e. R(β) =∑p
j=1 rj(β). In this work we will concentrate on the case of ridge regression, where f(β) =

n−1‖Y −Xβ‖2 is the squared error loss andR(β) = λ‖β‖2 is the ridge penalty.1 Ridge regression
has a closed-form solution β̂

rr
=
(
X>X + nλI

)−1
X>Y , but clearly when the dimensionality of

the data is large, constructing and inverting the covariance matrix is prohibitively expensive. When
the number of samples is very large, ridge regression is usually solved using stochastic gradient
descent (SGD) or coordinate descent [19].

Distributing ridge regression. We now consider the case where we distribute the features across
K different workers. Formally, let P be the set of indices 1, . . . , p. We partition this into K non-
overlapping subsets P1, . . . ,PK of equal size, τ = p/K so P =

⋃K
k=1 Pk and |P1| = |P2|, . . . ,=

|PK | = τ . This is for simplicity of notation only, in general the partitions can be of different sizes.

1Throughout, ‖·‖ refers to the Euclidean norm for vectors and the spectral norm for matrices.

2

A naive attempt at parallelizing (1) would simply be solving the minimization problem on each sub-
set of features Pk independently. However, without sparsity in the dataset to guide the partitioning
process, important dependencies between features in different blocks would not be preserved.

We can rewrite (1) making explicit the contribution from block k. Letting Xk ∈ Rn×τ be the
sub-matrix whose columns correspond to the coordinates in Pk (the “raw” features of block k) and
X(−k) ∈ Rn×(p−τ) be the remaining columns of X, we have

L(β) = n−1‖Y −Xkβraw −X(−k)β(−k)‖2 + λ‖βraw‖2 + λ‖β(−k)‖2. (2)

The idea behind our approach is to replace X(−k) in each block with a low-dimensional approxi-
mation. Since the regularizer is separable across blocks, we only require that the contribution from
X(−k)β(−k) to f(β) is preserved.

Let X̃k ∈ Rn×(K−1)τsubs be the matrix whose columns are a low-dimensional approximation to
X(−k), i.e. to the columns of X not in Xk, and τsubs � τ . Note that each of the other K− 1 blocks
provides an approximation of its respective τ raw features of size τsubs. We shall call the columns
in X̃k the “random” features of block k. Defining the sub-problem that worker k solves as

Lk(βk) = n−1‖Y −Xkβraw − X̃kβk,rp‖2 + λ‖βraw‖2 + λ‖βk,rp‖2, (3)

we require the approximation X̃k to be such that the risk of the estimator which minimizes eq. (3)
is similar to the risk of the minimizer of eq. (2) (we formalize this in §4). In order to achieve this we
construct the approximation using random projections which we briefly describe below.

Johnson-Lindenstrauss projections. Johnson-Lindenstrauss (J-L) projections are low-
dimensional embeddings Π : Rτ → Rτsubs which preserve – up to a small distortion –
pairwise `2 distances between vectors according to the J-L lemma (see e.g. [3]). Typically,
Π ∈ Rτ×τsubs is constructed to be a nearly-orthogonal matrix with entries drawn at random from a
sub-gaussian distribution [1].

We concentrate on the class of structured random projections, among which the Subsampled Ran-
domized Hadamard Transform (SRHT) has received particular recent attention [6, 20]. The SHRT
consists of a preconditioning step after which τsubs columns of the new matrix are subsampled uni-
formly at random. In more detail, it consists of a projection matrix, Π =

√
τ/τsubsDHS [6,9] with

the definitions:

• S ∈ Rτ×τsubs is a subsampling matrix.
• D ∈ Rτ×τ is a diagonal matrix whose entries are drawn independently from {−1, 1}.
• H ∈ Rτ×τ is a normalized Walsh-Hadamard matrix2 which is defined recursively as

Hτ =

[
Hτ/2 Hτ/2

Hτ/2 −Hτ/2

]
, H2 =

[
+1 +1
+1 −1

]
.

We set H = 1√
τ
Hτ so it has orthonormal columns.

The SRHT has similar `2 distance preserving properties as sub-gaussian random projections but has
the added benefit of a fastO (τ log τ) matrix-vector product due to its recursive definition. Note that
the SRHT can also be combined with an i.i.d. Gaussian random vector to obtain a Gaussian matrix
with approximately independent entries in the same computational time [12].

For moderately sized problems, random projections have been used to reduce the dimensionality
of the data prior to performing OLS [11] and ridge regression [13]. However after projection, the
solution vector is in the compressed space and so interpretability of coefficients is lost. Furthermore,
for large problems the running time of the SRHT presents a large constant overhead.

3 Algorithm

Our procedure LOCO for distributed ridge regression is presented in Algorithm 1. We describe the
steps in more detail below.

2For the Hadamard transform, τ must be a power of two but other transforms exist (e.g. DCT, DFT) with
similar theoretical guarantees and no restriction on τ .

3

Algorithm 1 LOCO

Input: Data: X, Y , Number of blocks: K, Parameters: τsubs, λ
1: Partition P = {1, . . . , p} into K subsets P1, . . . ,PK of equal size, τ .
2: for each worker k ∈ {1, . . .K} in parallel do
3: Compute and send random projection X̂k = XkΠk.
4: Construct X̄k

5: β̄k ← SolveRidge(X̄k, Y, λ)

6: β̂k =
[
β̄k
]
1:τ

7: end for
Output: Solution vector: β̂ =

[
β̂1, . . . , β̂K

]

Input. As well as the usual regularization parameter λ, LOCO requires the specification of the
number of workers K and the random projection dimension τsubs.

Steps 1 & 3. We first randomly partition the coordinates into K subsets. Then each worker com-
putes a random projection, via the SRHT, of its respective block which we denote by X̂k = XkΠk ∈
Rn×τsubs .

Step 4. Each worker k constructs the matrix

X̄k ∈ Rn×(τ+(K−1)τsubs) =

[
Xk,

[
X̂k′

]
k′ 6=k

]
which is the column-wise concatenation of the raw feature matrix Xk and the random approxima-
tions from all other blocks.3 Without loss of generality the raw features will always occupy the first
τ columns of X̄k. The last (K − 1)τsubs columns of X̄k are a good approximation of the (K − 1)
blocks of the full data matrix not in Xk and so solving (1) using X̄k obtains a solution which is
close to the optimal solution using X. We make this explicit in §4.

Steps 5 & 6. The function SolveRidge(X̄k, Y, λ) returns a vector

β̄k ∈ Rτ+(K−1)τsubs = arg min
βk

n−1‖Y − X̄kβk‖2 + λ‖βk‖2 (4)

In practice, any fast algorithm which returns an accurate solution to eq. (4) can be used here. The
final solution vector β̂ is the concatenation of the first τ coordinates of each β̄k and so lives in the
same space as the original data.

Computational, memory and communication costs. The cost of computing a fast ran-
dom projection of the τ features in each block is O (τ log τsubs). Assuming a solver which
scales linearly with the problem dimension (i.e. stochastic gradient descent) is used in
SolveRidge(X̄k, Y, λ), the part of the computational cost which is dependent on the dimension
scales with O (τ log τsubs + τ + (K − 1)τsubs).

Each machine only needs to store a copy of its block of raw features and a random projection of the
remaining features which is O (τ + (K − 1)τsubs). This is substantially smaller than the original
dimensionality p. Each worker must communicate its random projection once to all other workers
(or to a shared location where the other workers can read it). Aside from this there is no further
communication between workers. The small size of the projection ensures that for appropriately
sized problems, each worker is able to store its relevant features in local memory.

4 Analysis

Theorem 1, presented in this section, states that in the fixed design setting the coefficients estimated
by LOCO are close to the full ridge regression solution. This result applies to the case where the

3Alternatively, when Π is defined explicitly, summing the τ → τsubs−dimensional random projections of
K−1 blocks is equivalent to computing the (p−τ)→ τsubs−dimensional random projection in one go which
allows for a much smaller dimensional but also less accurate representation.

4

random features in X̃k result from concatenating the SRHT projections of all other blocks and
throughout we shall assume that the columns of X and X̄k are standardized.

Consider the model
Y = Xβ∗ + ε, (5)

with fixed X ∈ Rn×p and true parameter vector β∗ ∈ Rp. The errors εi, i = 1, . . . , n have zero
mean, are independent and their variances are bounded by σ2 > 0. Let β̂

rr
denote the ridge estimate

for β∗, so β̂
rr

is the solution which results from solving the ridge regression problem in the original
space, stated in eq. (2).

In order to formulate our result, we require the following risk function.

Definition 1 (Risk). Let b̂ be an estimator for β∗ and define the risk of b̂ with fitted values Ŷ =

Xb̂ ∈ Rn as
R(Xb̂) = n−1Eε‖Xβ∗ −Xb̂‖2.

Before we state our main theorem, we make the natural assumption that the main contribution to
the `2 norm of the true parameter vector – i.e. most of the important signal – lies in the direction
of the first J principal components of X. This merely formalizes the conditions under which ridge
regression yields good results. Since ridge regression applies more shrinkage in directions associated
with smaller eigenvalues [10], if this assumption does not hold we might expect a different estimator
to be more appropriate. Furthermore, we shall assume that the ridge constraint is active.

We now present Theorem 1 which states that the expected difference between the coefficients β̂
returned by LOCO and the full ridge regression solution is bounded.

Theorem 1. Under mild assumptions on the problem setting, ∃ n0(ξ) for all ξ > K(δ+(p−τ)/er)
such that for all n ≥ n0 with probability at least 1− ξ

Eε(‖β̂
rr
− β̂‖2) ≤ 5K

cλJ

(
1

(1− ρ)2
− 1

)
R(Xβ̂

rr
)

where ρ = C
√

r log(2r/δ)
(K−1)τsubs

, r = rank(X), λJ denotes the J th largest non-zero eigenvalue of the

covariance matrix and R(Xβ̂
rr

) is the risk of the ridge estimator (see e.g. [13]). The expectation is
conditional on the random projection as the uncertainty coming from the SRHT is captured in the
probability with which the statement holds.

The bound above scales with the number of workers, K and inversely with (1 − ρ)2, which mea-
sures the quality of the random feature representation. The latter is improved (for a fixed τsubs) by
increasing K although this has the additional effect of increasing the computational overhead per
worker which scales as O ((K − 1)τsubs).

5 Related work

Recently, several methods have been proposed for parallelizing convex optimization. Among these,
HOGWILD! [15], ASYNCDA and ASYNCADAGRAD [8] have shown that large speedups are possible
with asynchronous gradient updates when data is sparse. These methods rely on the idea that if
the number of non-zero coordinates in each stochastic gradient evaluation is small compared to p,
workers updating the same solution vector in parallel will rarely propose conflicting updates. As
such each worker is allowed to update the solution asynchronously without the need for locking,
provided the delay of any processor is not too great.

Similar requirements on sparsity have been used to parallelize coordinate descent [17]. Other ap-
proaches rely on alternative, but related conditions which require the spectral norm of the data –
which captures the size of dependencies between features – to be small [7, 18].

Whilst sparsity is a natural and common feature of large datasets, in some fields the data collected is
dense with many correlated features. Furthermore, in the setting where n � p, SGD can converge
slowly. Under these conditions we might expect the performance of the above mentioned approaches
to suffer. Notably, LOCO makes no assumptions about sparsity since each block sees a representation

5

0.25 0.5 1 2 3 4

1

1.2

1.4

1.6

1.8

2

Time (s)

P
re

d
ic

ti
o

n
 e

rr
o

r
(r

e
la

ti
v
e

 t
o

 f
u

ll
)

2 workers

4 workers

8 workers

16 workers

(a)

2 4 6 8 10 12 14 16 18

1

2

3

4

5

6

Number of workers

S
p

e
e

d
u

p

Hogwild

Loco

(b)
Figure 1: (a) relative prediction error against time and (b) relative speedup comparison between
LOCO and HOGWILD! for p = 131, 072.

of the remaining features such that updates to the individual solution vectors are not independent of
the rest of the dataset. LOCO does not require synchronization between workers since each worker
may only update its own part of the solution vector. Although a bound on the maximum delay is
not required or assumed, the total running time of LOCO will naturally be dictated by the slowest
worker.

Most of the above mentioned approaches implement parallelism on a multi-core architecture with
shared memory. For distributed optimization, communicating results between workers introduces
overhead. Several communication strategies for distributed coordinate descent were discussed in
[17]. In contrast, LOCO requires computing random projections for each block and communicating
them once and so no additional synchronization or communication are required until prediction time.

Parallel estimation has also been considered in the case of kernel ridge regression [23]. It has
been shown that randomly splitting and distributing the samples among workers and averaging their
estimates achieves a superlinear speedup whilst retaining optimality up to a number of workers
which is problem dependent. Conceptually, LOCO is perhaps most similar to this approach, although
clearly the usual i.i.d. assumption on the observations does not hold for partitioning the features.

6 Experimental Results

Implementation details. We implemented LOCO in Python making use of fast packages for ran-
dom projections and ridge regression. For the random projection we used the DCT implemented in
FFTW4 and the ridge regression solver is implemented in scikit-learn which outperforms SGD
for p � n. We ran LOCO on the BRUTUS cluster5 where each worker “communicates” by writing
its random projections to a Lustre file system to which each worker is connected via InfiniBand net-
work and as such enables very fast simultaneous reads and writes. We consider each machine to be
a worker and since the cluster is heterogeneous we do not exploit any further local parallelization.
For comparison, we modified the loss and gradient computations of HOGWILD!6 to perform ridge
regression and ran it on a single Xeon E3-1275 V with 32GB of RAM (4 cores with 2× hyper-
threading, a comparable but slightly slower than the test machine of [15]). The difference between
setups makes a comparison of absolute timing inaccurate but relative speedup for each method is
comparable.

Simulated data. We consider a large-scale simulated problem. The data is generated from a Gaus-
sian distribution with mean zero and a block-wise covariance matrix such that the features are not
independent and the block structure is not known to the algorithm a priori. Specifically, the pairwise

4http://www.fftw.org
5http://en.wikipedia.org/wiki/Brutus_cluster
6Code available from: http://hazy.cs.wisc.edu/hazy/victor/Hogwild/

6

http://en.wikipedia.org/wiki/Brutus_cluster
http://hazy.cs.wisc.edu/hazy/victor/Hogwild/

within-block correlation is 0.8. The matrix of simulated data is fully dense, so there is no sparsity
that could be exploited for speedups which directly handicaps HOGWILD!.

The scenario we consider is n = 1000, p = 131, 072 (200M non-zeros, testing set is the same
size as the training set) and has rank r = 20. The purpose of this experiment is to compare LOCO
against HOGWILD! in a setting where memory is not a limiting factor and so HOGWILD! can
comfortably parallelize the problem and run on a single machine. We aim to compare the speedup
of both methods when the data is dense. The behaviour of HOGWILD! should also be similar to the
behaviour of ASYNCDA [8].

According to Theorem 1, increasing τsubs will improve the prediction error but also increase the
computational time. To give a meaningful comparison between the methods we vary τsubs and
report the time spent training the model and the prediction error achieved in figure 1(a). Since
for different number of workers, τ = p/K is different, the random projection dimension, τsubs is
chosen relative to τ , i.e. 0 ≤ τsubs ≤ 0.1τ . These statistics are averaged over 5 trials and are shown
for K = {2, 4, 8, 16}. As a baseline we indicate the results for a standard ridge regression solver
(i.e. K = 1). The prediction error is normalized by this result to obtain relative prediction error.

Figure 1(a) shows that a test error comparable to full ridge regression (horizontal dotted line at 1)
is obtained with very low-dimensional random projections, even for K = 16. The largest error
for each setting occurs when τsubs = 0, i.e. the dataset is partitioned but no random features are
added, and increases as K increases. This highlights the importance of accounting for dependencies
between blocks of features and justifies our random projection approach to distributing features
across workers.

Figure 1(b) compares the relative speedup for increasing K for LOCO and HOGWILD!. HOGWILD!
exhibits linear speedup for up to 4 threads but no speedup when more are added. LOCO exhibits
an almost linear speedup with the number of workers – with K = 16 we obtain a 6× speedup over
K = 2. The absolute running time of LOCO was faster and the timings for HOGWILD! ignore a
large constant overhead for file loading.

We must stress that this experiment is designed so that the theoretical assumptions underpinning
HOGWILD! are violated. Clearly if the data were very sparse, HOGWILD! would exhibit large
speedups as investigated in [8, 15] . However, for very large datasets it would still be limited by the
number of cores and amount of memory available to a single machine. In such scenarios it may be
advantageous to combine LOCO and HOGWILD!.

7 Discussion

In this work we have presented LOCO, a simple algorithm for distributed ridge regression – requiring
minimal communication and no synchronization – based on random projections. We have shown
theoretically and empirically that LOCO achieves small additional error compared with the optimal
ridge regression solution. It obtains near linear speedups with the number of workers without mak-
ing any additional assumptions about sparsity in the data. Furthermore, in principle any fast ridge
regression solver can be used in conjunction with LOCO to further speed up learning in each indi-
vidual worker according to whichever computing architecture or data assumptions apply. It should
be noted that LOCO is a complementary rather than competing approach to methods such as HOG-
WILD!. In particular, a large but sparse problem could be solved on a cluster of multi-core machines
extremely quickly by combining LOCO with HOGWILD!.

Further Work. Although currently our results are specific for ridge regression, we expect that the
same principles can be generalized to other convex optimization problems.

As mentioned in the introduction, distributed optimization – where no single worker sees all of the
data – is a natural paradigm when preserving privacy is required. Additionally, the class of J-L
projections that we use have been shown to preserve differential privacy [5]. We aim to explore the
connection between LOCO and privacy aware learning.

Finally, [22] established bounds on the minimum amount of communication necessary for a dis-
tributed estimation task to achieve minimax optimal risk. It would be interesting investigate how
LOCO fits into this framework.

7

References
[1] D. Achlioptas. Database-friendly random projections: Johnson-Lindenstrauss with binary coins. Journal

of Computer and System Sciences, 2003.

[2] Alekh Agarwal and John C Duchi. Distributed delayed stochastic optimization. In NIPS, pages 873–881,
2011.

[3] Nir Ailon and Bernard Chazelle. The fast johnson-lindenstrauss transform and approximate nearest neigh-
bors. SIAM Journal on Computing, 39(1):302–322, 2009.

[4] Francis Bach. Sharp analysis of low-rank kernel matrix approximations. arXiv preprint arXiv:1208.2015,
2012.

[5] Jeremiah Blocki, Avrim Blum, Anupam Datta, and Or Sheffet. The johnson-lindenstrauss transform itself
preserves differential privacy. In Foundations of Computer Science (FOCS), 2012 IEEE 53rd Annual
Symposium on, pages 410–419. IEEE, 2012.

[6] Christos Boutsidis and Alex Gittens. Improved matrix algorithms via the Subsampled Randomized
Hadamard Transform. 2012. arXiv:1204.0062v4 [cs.DS].

[7] Joseph K. Bradley, Aapo Kyrola, Danny Bickson, and Carlos Guestrin. Parallel coordinate descent for
l1-regularized loss minimization. In International Conference on Machine Learning, 2011.

[8] John C. Duchi, Michael I. Jordan, and H. Brendan McMahan. Estimation, optimization, and parallelism
when data is sparse. In Advances in Neural Information Processing Systems, 2013.

[9] N Halko, P G Martinsson, and J A Tropp. Finding structure with randomness: Probabilistic algorithms
for constructing approximate matrix decompositions. SIAM Review, 53(2):217–288, 2011.

[10] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Statistical Learning. Springer
Series in Statistics. Springer New York Inc., New York, NY, USA, 2009.

[11] Ata Kabán. New bounds on compressive linear least squares regression. In Artificial Intelligence and
Statistics, 2014.

[12] Quoc Le, Tamas Sarlos, and Alex Smola. Fastfood approximating kernel expansions in loglinear time.
In ICML, 2013.

[13] Yichao Lu, Paramveer Dhillon, Dean P Foster, and Lyle Ungar. Faster ridge regression via the subsampled
randomized hadamard transform. In Advances in Neural Information Processing Systems 26, pages 369–
377, 2013.

[14] Michael W Mahoney. Randomized algorithms for matrices and data. April 2011. arXiv:1104.5557v3
[cs.DS].

[15] Feng Niu, Benjamin Recht, Christopher Ré, and Stephen J. Wright. Hogwild!: A lock-free approach to
parallelizing stochastic gradient descent. In NIPS, 2011.

[16] Zhimin Peng, Ming Yan, and Wotao Yin. Parallel and distributed sparse optimization. In Preprint, 2013.

[17] Peter Richtarik and Martin Takac. Distributed coordinate descent method for learning with big data. In
Preprint, 2013.

[18] Chad Scherrer, Ambuj Tewari, Mahantesh Halappanavar, and David Haglin. Feature clustering for ac-
celerating parallel coordinate descent. In Advances in Neural Information Processing Systems (NIPS),
2012.

[19] Shai Shalev-Shwartz and Tong Zhang. Stochastic dual coordinate ascent methods for regularized loss.
The Journal of Machine Learning Research, 14(1):567–599, 2013.

[20] Joel A Tropp. Improved analysis of the subsampled randomized Hadamard transform. November 2010.
arXiv:1011.1595v4 [math.NA].

[21] Joel A Tropp. User-friendly tail bounds for sums of random matrices. April 2010. arXiv:1004.4389v7
[math.PR].

[22] Yuchen Zhang, John Duchi, Michael Jordan, and Martin J Wainwright. Information-theoretic lower
bounds for distributed statistical estimation with communication constraints. In Advances in Neural In-
formation Processing Systems, pages 2328–2336, 2013.

[23] Yuchen Zhang, John C Duchi, and Martin J Wainwright. Divide and conquer kernel ridge regression: A
distributed algorithm with minimax optimal rates. arXiv preprint arXiv:1305.5029, 2013.

[24] Martin Zinkevich, Markus Weimer, Alexander J Smola, and Lihong Li. Parallelized stochastic gradient
descent. In NIPS, volume 4, page 4, 2010.

8

	Introduction
	Problem Setting
	Algorithm
	Analysis
	Related work
	Experimental Results
	Discussion

