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ABSTRACT
We propose FrogWild, a novel algorithm for fast approxi-
mation of high PageRank vertices, geared towards reducing
network costs of running traditional PageRank algorithms.
Our algorithm can be seen as a quantized version of power
iteration that performs multiple parallel random walks over
a directed graph. One important innovation is that we in-
troduce a modification to the GraphLab framework that
only partially synchronizes mirror vertices. This partial
synchronization vastly reduces the network traffic generated
by traditional PageRank algorithms, thus greatly reducing
the per-iteration cost of PageRank. On the other hand,
this partial synchronization also creates dependencies be-
tween the random walks used to estimate PageRank. Our
main theoretical innovation is the analysis of the correla-
tions introduced by this partial synchronization process and
a bound establishing that our approximation is close to the
true PageRank vector.

We implement our algorithm in GraphLab and compare
it against the default PageRank implementation. We show
that our algorithm is very fast, performing each iteration in
less than one second on the Twitter graph and can be up to
7× faster compared to the standard GraphLab PageRank
implementation.

1. INTRODUCTION
Large-scale graph processing is becoming increasingly im-

portant for the analysis of data from social networks, web
pages, bioinformatics and recommendation systems. Graph
algorithms are difficult to implement in distributed com-
putation frameworks like Hadoop MapReduce and Spark.
For this reason several in-memory graph engines like Pregel,
Giraph, GraphLab and GraphX [14, 13, 20, 18] are being
developed. There is no full consensus on the fundamental
abstractions of graph processing frameworks but certain pat-

terns such as vertex programming and the Bulk Synchronous
Parallel (BSP) framework seem to be increasingly popular.

PageRank computation [15], which gives an estimate of
the importance of each vertex in the graph, is a core compo-
nent of many search routines; more generally, it represents,
de facto, one of the canonical tasks performed using such
graph processing frameworks. Indeed, while important in
its own right, it also represents the memory, computation
and communication challenges to be overcome in large scale
iterative graph algorithms.

In this paper we propose a novel algorithm for fast approx-
imate calculation of high PageRank vertices. Note that even
though most previous works calculate the complete PageR-
ank vector (of length in the millions or billions), in many
graph analytics scenarios a user wants a quick estimation of
the most important or relevant nodes – distinguishing the
10th most relevant node from the 1, 000th most relevant is
important; the 1, 000, 000th from the 1, 001, 000th much less
so. A simple solution is to run the standard PageRank algo-
rithm for fewer iterations (or with an increased tolerance).
While certainly incurring less overall cost, the per-iteration
cost remains the same; more generally, the question remains
whether there is a more efficient way to approximately re-
cover the heaviest PageRank vertices.

In this paper we address this problem. Our algorithm
(called FrogWild for reasons that will become subsequently
apparent) significantly outperforms the simple reduced iter-
ations heuristic in terms of running time, network communi-
cation and scalability. We note that, naturally, we compare
our algorithm and reduced-iteration-PageRank within the
same framework: we implemented our algorithm in GraphLab
PowerGraph and compare it against the built-in PageRank
implementation. A key part of our contribution also involves
the proposal of what appears to be simply a technically mi-
nor modification within the GraphLab framework, but nev-
ertheless results in significant network-traffic savings, and
we believe may nevertheless be of more general interest be-
yond PageRank computations.

Contributions: We consider the problem of fast and
efficient (in the sense of time, computation and communica-
tion costs) computation of the high PageRank nodes, using
a graph engine. To accomplish this we propose and ana-
lyze an new PageRank algorithm specifically designed for
the graph engine framework, and, significantly, we propose
a modification of the standard primitives of the graph en-
gine framework (specifically, GraphLab PowerGraph), that
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enables significant network savings. We explain in further
detail both our objectives, and our key innovations.

Rather than seek to recover the full PageRank vector, we
aim for the top k PageRank vertices (where k is considered
to be approximately in the order of 10 − 1000). Given an
output of a list of k vertices, we define two natural accuracy
metrics that compare the true top-k list with our output.
The algorithm we propose, FrogWild operates by start-
ing a small (sublinear in the number of vertices n) number
of random walkers (frogs) that jump randomly on the di-
rected graph. The random walk interpretation of PageRank
enables the frogs to jump to a completely random vertex
(teleport) with some constant probability (set to 0.15 in our
experiments, following standard convention). After we al-
low the frogs to jump for time equal to the mixing time of
this non-reversible Markov chain, their positions are sam-
pled from the invariant distribution π which is normalized
PageRank. The standard PageRank iteration can be seen as
the continuous limit of this process (i.e., the frogs become
water), which is equivalent to power iteration for stochastic
matrices.

The main algorithmic contributions of this paper are com-
prised of the following three innovations. First, we argue
that discrete frogs (a quantized form of power iteration) is
significantly better for distributed computation when one is
interested only in the large entries of the eigenvector π. This
is because each frog produces an independent sample from
π. If some entries of π are substantially larger and we only
want to determine those, a small number of independent
samples suffices. We make this formal using standard Cher-
noff bounds (see also [17, 8] for similar arguments). On the
contrary, during standard PageRank iterations, vertices pass
messages to all their out-neighbors since a non-zero amount
of water must be transferred. This tremendously increases
the network bandwidth especially when the graph engine is
over a cluster with many machines.

One major issue with simulating discrete frogs in a graph
engine is teleportations. Graph frameworks partition ver-
tices to physical nodes and restrict communication on the
edges of the underlying graph. Global random jumps would
create dense messaging patterns that would increase com-
munication. Our second innovation is a way of obtaining
an identical sampling behavior without teleportations. We
achieve this by initiating the frogs at uniformly random posi-
tions and having them perform random walks for a life span
that follows a geometric random variable. The geometric
probability distribution depends on the teleportation prob-
ability and can be calculated explicitly.

Our third innovation involves a simple proposed modifica-
tion for graph frameworks. Most modern graph engines (like
GraphLab PowerGraph [10]) employ vertex-cuts as opposed
to edge-cuts. This means that each vertex of the graph is
assigned to multiple machines so that graph edges see a local
vertex mirror. One copy is assigned to be the master and
maintains the master version of vertex data while remaining
replicas are mirrors that maintain local cached read–only
copies of the data. Changes to the vertex data are made to
the master and then replicated to all mirrors at the next syn-
chronization barrier. This architecture is highly suitable for
graphs with high-degree vertices (as most real-world graphs
are) but has one limitation when used for a few random
walks: imagine that vertex v1 contains one frog that wants
to jump to v2. If vertex v1 has very high degree, it is very

likely that multiple replicas of that vertex exist, possibly
one in each machine in the cluster. In an edge-cut scenario
only one message would travel from v1 → v2, assuming v1
and v2 are located in different physical nodes. However,
when vertex-cuts are used, the state of v1 is updated (i.e.,
contains no frogs now) and this needs to be communicated
to all mirrors. It is therefore possible that a single random
walk can create a number of messages equal to the number
of machines in the cluster.

We modify PowerGraph to expose a scalar parameter ps
per vertex. By default, when the framework is running, in
each super-step all masters synchronize their programs and
vertex data with their mirrors. Our modification is that
for each mirror we flip an independent coin and synchronize
with probability ps. Note that when the master does not
synchronize the vertex program with a replica, that replica
will not be active during that super-step. Therefore, we can
avoid the communication and CPU execution by performing
limited synchronization in a randomized way.

FrogWild is therefore executed asynchronously but re-
lies on the Bulk Synchronous execution mode of PowerGraph
with the additional simple randomization we explained. The
name of our algorithm is inspired by HogWild [16], a lock-
free asynchronous stochastic gradient descent algorithm pro-
posed by Niu et al.. We note that PowerGraph does support
an asynchronous execution mode [10] but we implemented
our algorithm by a small modification of synchronous execu-
tion. As discussed in [10], the design of asynchronous graph
algorithms is highly nontrivial and involves locking proto-
cols and other complications. Our suggestion is that for the
specific problem of simulating multiple random walks on a
graph, simply randomizing synchronization can give signifi-
cant benefits while keeping design simple.

While the parameter ps clearly has the power to signifi-
cantly reduce network traffic – and indeed, this is precisely
born out by our empirical results – it comes at a cost: the
standard analysis of the Power Method iteration no longer
applies. The main challenge that arises is the theoretical
analysis of the FrogWild algorithm. The model is that
each vertex is separated across machines and each connec-
tion between two vertex copies is present with probability ps.
A single frog performing a random walk on this new graph
defines a new Markov Chain and this can be easily designed
to have the same invariant distribution π equal to normal-
ized PageRank. The complication is that the trajectories
of frogs are no longer independent: if two frogs are in ver-
tex v1 and (say) only one mirror v′1 synchronizes, both frogs
will need to jump through edges connected with that par-
ticular mirror. Worse still, this correlation effect increases,
the more we seek to improve network traffic by further de-
creasing ps. Therefore, it is no longer true that one obtains
independent samples from the invariant distribution π. Our
theoretical contribution is the development of an analytical
bound that shows that these dependent random walks still
can be used to obtain π̂ that is provably close to π with high
probability. We rely on a coupling argument combined with
an analysis of pairwise intersection probabilities for random
walks on graphs. In our convergence analysis we use the
contrast bound [6] for non-reversible chains.

1.1 Notation
Lowercase letters denote scalars or vectors. Uppercase

letters denote matrices. The (i, j) element of a matrix A
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is Aij . We denote the conjugate transpose of a matrix A
by A† and the transpose by A′. For a time-varying vector
x, we denote its value at time t by xt. When not otherwise
specified, ‖x‖ denotes the l2-norm of vector x. We use ∆n−1

for the probability simplex in n dimensions, and and ei ∈
∆n−1 for the indicator vector for item i. For example, e1 =
[1, 0, ...0]. For the set of all integers from 1 to n we write [n].

2. PROBLEM AND MAIN RESULTS
We now make precise the intuition and outline given in

the introduction. We first define the problem, giving the
definition of PageRank, the PageRank vector, and therefore
its top elements. We then define the algorithm, and finally
state our main analytical results.

2.1 Problem Formulation
Consider a directed graph G = (V,E) with n vertices

(|V | = n) and let A denote its adjacency matrix. That is,
Aij = 1 if there is an edge from j to i. Otherwise, the value is
0. Let dout(j) denote the number of successors (out-degree)
of vertex j in the graph. We assume that all nodes have
at least one successor, dout(j) > 0. Then we can define the
transition probability matrix P as follows:

Pij = Aij/dout(j). (1)

The matrix is left-stochastic, which means that each of its
rows sums to 1. We call G(V,E) the original graph, as op-
posed to the PageRank graph which includes a probability
of transitioning to any given vertex. We now define this
transition probability matrix, and the PageRank vector.

Definition 1 (PageRank [15]). Consider the matrix

Q , (1− pT )P + pT
1

n
1n×n.

where pT ∈ [0, 1] is a parameter, most commonly set to 0.15.
The PageRank vector π ∈ ∆n−1 is defined as the principal
right eigenvector of Q. That is, π , v1(Q). By the Perron-
Frobenius theorem, the corresponding eigenvalue is 1. This
implies the fixed-point characterization of the PageRank vec-
tor, π = Qπ.

The PageRank vector assigns high values to important
nodes. Intuitively, important nodes have many important
predecessors (other nodes that point to them). This recur-
sive definition is what makes PageRank robust to manipula-
tion, but also expensive to compute. It can be recovered by
exact eigendecomposition of Q, but at real problem scales
this is prohibitively expensive. In practice, engineers often
use a few iterations of the power method to get a ”good-
enough” approximation.

The definition of PageRank hinges on the left-stochastic
matrix Q, suggesting a connection to Markov chains. In-
deed, this connection is well documented and studied [1, 9].
An important property of PageRank from its random walk
characterization, is the fact that π is the invariant distribu-
tion for a Markov chain with dynamics described by Q. A
non-zero pT , also called the teleportation probability, intro-
duces a uniform component to the PageRank vector π. We
see in our analysis that this implies ergodicity and faster
mixing for the random walk.

2.1.1 Top PageRank Elements
Given the true k vertices of highest PageRank (breaking

ties randomly for simplicity) and the output list of k vertices
by an approximate PageRank algorithm we define accuracy
using two metrics.

Definition 2 (Mass Captured). Given a subset S ⊂
[n] of size k, and the true PageRank vector, π, we define the
mass captured by S as follows.

µ(S) , π(S) =
∑
i∈S

π(i)

Let µmax,k = maxU⊂[n],|U|=k π(U). Then, we can also define
the normalized captured mass.

µ(S) ,
µ(S)

µmax,k
∈ [0, 1]

The second metric we use is the exact identification proba-
bility, i.e. the fraction of elements in the output list that are
also in the true top-k list. Note that the second metric is
limited in that it does not give partial credit for high PageR-
ank vertices that were not in the top-k list. In our experi-
ments in Section 3, we mostly use the normalized captured
mass accuracy metric but also report the exact identification
probability for some cases – typically the results are similar.

We subsequently describe our algorithm. We attempt to
approximate the heaviest elements of the invariant distribu-
tion of a Markov Chain, by simultaneously performing mul-
tiple random walks on the graph. The main modification to
PowerGraph, is the exposure of a parameter, ps, that con-
trols the probability that a given master node synchronizes
with any one of its mirrors. Per step, this leads to a propor-
tional reduction in network traffic. The main contribution
of this paper is to show that we get results of comparable
or improved accuracy, while maintaining this network traffic
advantage. We demonstrate this empirically in Section 3.

2.2 Algorithm
During setup, the graph is partitioned using GraphLab’s

default ingress algorithm. At this point each one of N frogs
is born on a vertex chosen uniformly at random. Each vertex
i carries a counter initially set to 0 and denoted by c(i).
Scheduled vertices execute the following program.

Incoming frogs from previously executed vertex programs,
are collected by the init() function. At apply() every frog
dies with probability pT = 0.15. This, along with a uniform
starting position, effectively simulates the 15% uniform com-
ponent from Definition 1.

A crucial part of our algorithm is the change in synchro-
nization behaviour. The <sync> step only synchronizes a
ps fraction of mirrors leading to commensurate gains in net-
work traffic (cf. Section 3). This patch on the GraphLab
codebase was only a few lines of code. Section 3 contains
more details regarding the implementation.

The scatter() phase is only executed for edges e incident
to a mirror of i that has been synchronized. Those edges
draw a binomial number of frogs to send to their other end-
point. The rest of the edges perform no computation. The
frogs sent to vertex j at the last step will be collected at the
init() step when j executes.
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FrogWild! vertex program

Input parameters: ps, pT = 0.15

apply(i) K(i)← [# incoming frogs]

For every incoming frog:

With probability pT , frog dies:

c(i) = c(i) + 1,

K(i) = K(i)− 1.

<sync> For every mirror m of vertex i:

With probability ps:

Synchronize state with mirror m.

scatter(e = (i, j)) [Only on synchronized mirrors]

Generate Binomial number of frogs:

x ∼ Bin

(
K(i),

1

dout(i)ps

)
Send x frogs to vertex j: signal(j,x)

Parameter pT is the teleportation probability from the
random surfer model in [15]. To get PageRank using ran-
dom walks, one could adjust the transition matrix P as de-
scribed in Definition 1 to get the matrix Q. Alternatively,
the process can be replicated by a random walk following
the original matrix P , and teleporting at every time, with
probability pT . The destination for this teleportation is cho-
sen uniformly at random from [n]. We are interested in the
position of a walk at a predetermined point in time as that
would give us a sample from π. This holds as long as we
allow enough time for mixing to occur.

Due to the inherent markovianity in this process, one
could just consider it starting from the last teleportation
before the predetermined stopping time. When the mixing
time is large enough, the number of steps performed between
the last teleportation and the predetermined stopping time,
denoted by X, is geometrically distributed with parameter
pT . This follows from the time-reversibility in the telepor-
tation process: inter-teleportation times are geometrically
distributed, so as long as the first teleportation event hap-
pens before the stopping time, then X ∼ Geom(pT).

This establishes that, the FrogWild! process – where a
frog performs a geometrically distributed number of steps
following the original transition matrix P – closely mimics
a random walk that follows the adjusted transition matrix,
Q. Hence, to show our main result, Theorem 1, we analyze
the latter process.

Using a binomial distribution to independently generate
the number of frogs in the scatter() phase closely mod-
els the effect of random walks. The marginal distributions
are correct, and the number of frogs, that did not die dur-
ing the apply() step, is preserved in expectation. For our
implementation we resort to a more efficient approach. As-
suming K(i) frogs survived the apply() step, and M mirrors

where picked for synchronization, then we send dK(i)
M
e frogs

to min(K(i),M) mirrors. If the number of available frogs is
less than the number of synchronized mirrors, we pick K(i)
arbitrarily.

2.3 Main Result
Our analytical results essentially provide a high probabil-

ity guarantee that our algorithm produces a solution that

approximates well the PageRank vector. Recall that our
main modification of our algorithm involves limiting the syn-
chronization of master nodes and its mirrors. In theory we
introduce the following broad model to deal with partial
synchronization.

Definition 3 (Edge Erasure Model). An edge era-
sure model is a process that is independent from the random
walks (up to time t) and temporarily erases a subset of all
edges at time t. The event Eti,j represents the erasure of
edge (i, j) from the graph for time t. The edge is not per-
manently removed from the graph, it is just disabled and
considered again in the next step. The edge erasure models
we study satisfy the following properties.

1. Edges are erased independently for different vertices,

P(Eti,j , E
t
i,k) = P(Eti,j)P(Eti,k)

and across time,

P(Eti,j , E
s
i,j) = P(Eti,j)P(Esi,j).

2. Each outgoing edge is preserved (not erased) with prob-
ability at least ps.

P(Eti,j) ≥ ps

3. Erasures are not negatively correlated.

P(Eti,j |Eti,k) ≥ ps

4. Erasures in a neighbourhood are symmetric. Any sub-
set of out-going edges of vertex i, will be erased with
exactly the same probability as another subset of the
same cardinality.

The main two edge erasure models we consider are de-
scribed here. They both satisfy all required properties. Our
theory holds for both1, but in our implementation and ex-
periments we use ”At Least One Out-Edge Per Node.”

Example 4 (Independent Erasures). Every edge is
preserved independently with probability ps.

Example 5 (At Least One Out-Edge Per Node).
This edge erasure model, decides all erasures for node i in-
dependently, like Independent Erasures, but if all out-going
edges for node i are erased, it draws and enables one of them
uniformly at random.

Our results tell us that partial synchronization does not
change the distribution of a single random walk. To make
this and our other results clear, we need the simple defini-
tion.

Definition 6. We denote the state of random walk i at
its tth step by sti.

Then, we see that P
(
st+1
1 = i

∣∣st1 = j
)

= 1/dout(j), and

xt+1
1 = Pxt1. This follows simply by the symmetry assumed

in Definition 3. Thus if we were to sample in serial, the
modification of the algorithm controlling (limiting) synchro-
nization would not affect each sample, and hence would not
affect our estimate of the invariant distribution. However,

1Independent Erasures can lose some walkers, when it tem-
porarily leads to some nodes having zero out-degree.
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we start multiple (all) random walks simultaneously. In this
setting, the fundamental analytical challenge stems from the
fact that any set of random walks with intersection are now
correlated. The key to our result is that we can control the
effect of this correlation, as a function the parameter ps and
the pairwise probability that two random walks intersect. We
define this formally.

Definition 7. Suppose two walkers l1 and l2 perform t
steps under the edge erasure model. The probability that they
meet is defined as follows.

p∩(t) , P (∃ τ ∈ [0, t], s.t. sτl1 = sτl2) (2)

Definition 8 (Estimator). Given the positions of N
random walks at time t, {stl}Nl=1, we define the following
estimator for the invariant distribution π.

π̂N (i) ,

∣∣{l : l ∈ [N ], stl = i}
∣∣

N
=
c(i)

N
(3)

Here c(i) refers to the tally maintained by the FrogWild!
vertex program.

Now we can state the main result. Here we give a guaran-
tee for the quality of the solution furnished by our algorithm.

Theorem 1 (Main Theorem). Consider N frogs fol-
lowing the adjusted transition matrix Q of Definition 1, un-
der the erasure model of Definition 3. The frogs start at
independent locations, distributed uniformly and stop after t
steps. The top-k set of the estimator π̂N (Definition 8), cap-
tures mass close to the optimal. Specifically, with probability
at least 1− δ,

µ(Ŝ∗) ≥ µmax,k − 2ε′,

where

ε′ <
√
kCλt2 +

√
k

δ

[
1

N
+ (1− p2s)p∩(t)

]
,

for some constant C > 0 and λ2 < 1.

We defer the proof to the appendix. The essence of the re-
sult is provided by the following theorem, which guarantees
accurate estimation even under the edge erasure model.

The proof is deferred to Appendix A.2. The guaranteed
accuracy via this result depends on the probability that two
walkers will intersect. Via a simple argument, that proba-
bility is the same as the meeting probability for independent
walks. The next theorem calculates this probability.

Theorem 2 (Intersection Probability). Consider two
independent random walks obeying the same ergodic transi-
tion probability matrix, Q with invariant distribution π, as
described in Definition 1. Furthermore, assume that both of
them are initially distributed uniformly over the state space
of size n. The probability that they meet within t steps, is
bounded as follows,

p∩(t) ≤ 1

n
+
t‖π‖∞
pT

,

where ‖π‖∞, denotes the maximal element of the vector π.

The proof is based on the observation that the l∞ norm of
a distribution controls the probability that two independent
samples coincide. We show that for all steps of the random
walk, that norm is controlled by the l∞ norm of π. We defer
the full proof to Appendix A.3.

2.4 Prior Work
There is a very large body of work on computing and

approximating PageRank on different computation models
(e.g. see [4, 7, 17, 8, 3] and references therein). To the best
of our knowledge, our work is the first to specifically de-
sign an approximation algorithm for high-PageRank nodes
for graph engines. Our base-line comparisons come from
the graph framework papers since PageRank is a standard
benchmark for running-time, network and other computa-
tions. Our implementation is on GraphLab (PowerGraph)
and significantly outperforms the built-in PageRank algo-
rithm. This algorithm is already shown in [10, 18] to be
significantly more efficient compared to other frameworks
like Hadoop, Spark, Giraph etc.

3. EXPERIMENTS
In this section we describe the simulations performed for

comparing the PageRank algorithms for GraphLab v2.2 (Pow-
erGraph) [13]. We compare two algorithms: GraphLab PR
– the basic built-in algorithm provided as a part of the
GraphLab graph analytics toolkit, and FrogWild – the al-
gorithm proposed in the current work. Since FrogWild is
an approximation algorithm, it would be unfair to compare
its performance to the exact GraphLab PR. So, in order
to speedup the GraphLab PR, we tuned its parameters
(tolerance and number of iterations) in a way that allows
maximum possible accuracy with fastest running time.

Several performance metrics were compared, namely, run-
ning time, network usage, and accuracy. The metrics do
not include time and network usage required for loading
the graph into the GraphLab framework (also know as the
ingress time). They reflect only what is consumed by the
engine executing the PageRank algorithm.

3.1 The Systems
We have performed the experiments on two systems. The

first system is a cluster of 20 virtual machines, created using
VirtualBox 4.3 [19] on a single physical server. The physical
server is based on an IntelR© XeonR© CPU E5-1620 with 4
cores at 3.6 GHz, and 16 GB of RAM. As the second system,
we used clusters of up to 24 EC2 machines on AWS (Ama-
zon web services) [2]. All the instances were of the type
m3.xlarge which are based on IntelR© XeonR© CPU E5-2670
and have 4 vCPU and 15 GB RAM.

3.2 The Data
For the VirtualBox system, we use the LiveJournal graph

[12] with 4.8M vertices and 69M edges. For the AWS system,
in addition to the LiveJournal graph, we use the Twitter
graph [11] which has 41.6M nodes and 1.4B edges.

3.3 Implementation
FrogWild is implemented using the standard GAS (gather,

apply, scatter) model. We implement three functions: init(),
apply(), and the scatter(). The purpose of the init()

function is to collect the random walks sent to the node by
its neighbors using scatter() in the previous iteration. In
the first iteration, init() generates a random fraction of the
initial total amount of random walks. The last implies that
the initial random walks are randomly distributed across the
nodes. FrogWild defines the length of random walks to be
geometrically distributed (see Section 2.2). However, for the
sake of efficiency, we impose an upper bound on the length
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of random walks. The algorithm is executed for the con-
stant number of iterations (experiments show good results
with even 3 iterations) after which all the random walks
are stopped simultaneously. The apply() function checks
whether the current iteration is the last, in which case it
saves the amount of random walks received in init() as the
PageRank of the vertex. The scatter() function is respon-
sible to randomly distribute the random walks received in
init() to the neighbors of the vertex.

The scatter() phase is the most challenging part of the
implementation since it is responsible for most of the net-
work traffic generated. In order to reduce information ex-
change between the machines, we used a couple of interest-
ing ideas. First, notice that random walks in the FrogWild
do not have identity. Hence, random walks destined to the
same neighbor can be combined to a single message which
will carry only their amount. The second optimization is
more complicated and involves slight enhancement of the
GraphLab’s infrastructure. Before starting the scatter exe-
cution, GraphLab synchronizes the vertex data and the ver-
tex program between the master and all the mirrors of the
node. This is because vertex data and program’s variables
can be changed in the apply phase, which is executed only
on the master replica of a node.

Notice that in our FrogWild implementation there is no
need to synchronize vertex data during the whole algorithm
execution, since the single vertex’s variable, PageRank, is
updated only on the last iteration (recall that the node’s
PageRank is proportional to the amount of random walks
that stopped at the node). The second observation is that
not all the replicas will receive random walks for their parts
of node’s neighbors. Thus, sending the vertex program to
all the mirrors is wasteful, and led us to implement the ran-
dom replicas’ synchronization. Namely, we expose to the
user parameter ps which is a fraction of replicas to synchro-
nize (non-synchronized replicas remain idle on the upcoming
scatter phase). All the above optimization enhancements
required adding only few (about 10) lines to the GraphLab
codebase. Our modification of the GraphLab engine as well
as our FrogWild vertex program implementation can be
found in [5].

3.4 Results
FrogWild is significantly faster and uses less network

and computing resources compared to GraphLab PR. Let
us start with the Twitter graph and the AWS system. In
Figure 1(a) we can see that while the GraphLab PR takes
7.68 sec. per iteration (for 12 nodes), the FrogWild takes
0.99 sec, even with ps = 1, thus achieving more than 7x
speedup. Reducing the value of ps will further decrease the
running time, however, with the accuracy tradeoff which
we will discuss shortly. In order to compare the total run-
ning time of our approximation FrogWild algorithm to
the GraphLab PR, we reduced the number of iteration
performed by the GraphLab PR to 1 and 2. The lat-
ter achieves reasonable balance between the running time
and the accuracy. The total running time (see Figure 1(b))
shows that FrogWild outperforms GraphLab PR even if
it runs for just 1 or 2 iterations. Notice also a large speedup
when reducing the ps from 1 to 0.1, but again, the accuracy
metric should be considered.

The network usage improvement can be seen on Figure
1(c). There is a 1000x improvement comparing to the exact

GraphLab PR, and more than 10x with respect to the 1
or 2 iterations GraphLab PR. Another interesting metric
is the CPU time used by the algorithms. It gives the total
computing time spent by each CPU in the system. Notice
that this time may be larger than the total running time
since many CPUs in the system work in parallel. This metric
shows how “heavy” is the algorithm for the system which is
important especially when the algorithm is executed along
with another computing tasks. In Figure 1(d) we can see
that the CPU usage is much lower for FrogWild.

We now turn to compare the approximation metrics for
the PageRank algorithm. For various k, we check the two
accuracy metrics: Mass captured (Figure 2(a)) and the Ex-
act identification (Figure 2(b)). Mass captured – is the total
PageRank that the reported top-k vertices worth in the ex-
act ranking. Exact identification – is the number of vertices
in the intersection of the reported top-k and the exact top-k
lists. We can see that the approximation achieved by the
FrogWild for ps = 1 and ps = 0.7 always outperforms
the GraphLab PR with 1 iteration. The approximation
achieved by the FrogWild with ps = 0.4 is relatively good
for the both metrics, and with ps = 0.1 is reasonable for the
Mass captured metrics.

In Figure 3 we can see the tradeoff between the accuracy,
total running time, and the network usage. The performance
of FrogWild is evaluated for various number of iterations
and the values of ps. The results show that with the ac-
curacy comparable to the GraphLab PR, our FrogWild
has much less running time and network usage. Figure 4 il-
lustrate how much network byte we save using FrogWild.
The area of each circle is proportional to the amount of net-
work bytes sent by each algorithm.

Now let us show some results for the LiveJournal graph
on the VirtualBox system. Figure 5 shows the effect of
initial random walks and the number of iteration of the
FrogWild on the achieved accuracy. These experiments
allow us to tune the parameters for the FrogWild. We can
see that good accuracy and the running time (see Figure 6)
is achieved for 800K initial random walks and 4 iterations of
the FrogWild. Also for the LiveJournal graph we can see,
in Figure 7, that our algorithm is faster and uses much less
network while still maintaining good PageRank accuracy.
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APPENDIX
A. THEOREM PROOFS

A.1 Proof for Theorem 1
Proof. First we use the result of Theorem 3 to bound the

distance between the PageRank vector π and the estimator
π̂N . Note that, by construction, the adjusted matrix Q is
always ergodic and mini π(i) ≥ c/n for c = pT . All of the
other assumptions of Theorem 3 are satisfied, hence,

‖π̂N − π‖2 < Cλ2 +

√
1

δ

[
1

N
+ (1− p2s)p∩(t)

]
,

with probability at least 1 − δ. Here C =
(

1−pT
pT

)
, and

λ2 = λ2(Q̃Q)t. We define the top-k sets

Ŝ∗ = argmaxS⊂[n],|S|=kπ̂N (S)

8



100 101 102 103

Total time (s)

0.75

0.80

0.85

0.90

0.95

1.00
A

cc
ur

ac
y 

- M
as

s 
ca

pt
ur

ed
 (k

=1
00

)
Twitter, AWS, 24 nodes, 800K rw

GraphLab PR iters=(1,2,exact)

FrogWild iters=3, Ps=(0.1,0.4,0.7,1)

FrogWild iters=4, Ps=(0.1,0.4,0.7,1)

FrogWild iters=5, Ps=(0.1,0.4,0.7,1)

Figure 4: PageRank approximation accuracy with the

“Mass captured” metric for top-100 vertices. The area

of each circle is proportional to the total network bytes

sent by the specific algorithm.

S∗ = argmaxS⊂[n],|S|=kπ(S).

Let π
∣∣
S

denote the restriction of vector π to the set S.

That is, π
∣∣
S

(i) = π(i) if i ∈ S and 0 otherwise. Now we
show that for any set S of cardinality k,

|π(S)− π̂N (S)| ≤ ‖(π − π̂N )
∣∣
S
‖1 ≤

√
k‖(π − π̂N )

∣∣
S
‖2

≤
√
k‖π − π̂N‖2 , ε′ (4)

Here we used the fact that for k-length vector x, ‖x‖1 ≤√
k‖x‖2 and ‖x

∣∣
S
‖ ≤ ‖x‖. As a consequence of (4),

π̂N (Ŝ∗) = max
S⊂[n],|S|=k

π̂N (S)

≥ π̂N (S∗) ≥ π(S∗)− ε′. (5)

Finally, using (4) and (5) in order we get

µ(Ŝ∗) = π(Ŝ∗) ≥ π̂N (Ŝ∗)− ε′

≥ π(S∗)− 2ε′ ≥ µmax,k − 2ε′.

This concludes the proof.

A.2 Theorem 3

Theorem 3 (Convergence with Erasures). Let N
walkers start from independent, uniformly random positions
and take t steps according to the ergodic transition matrix
P , under the edge erasure model. Let π denote the unique
stationary distribution of P and assume that mini π(i) ≥
c
n

for some constant c ≤ 1. The estimator π̂N , described
in Definition 8, falls inside a neighbourhood of π with good
probability. Specifically, with probability at least 1− δ,

‖π̂N −π‖2 <
(

1− c
c

)
λ2(P̃P )t+

√
1

δ

[
1

N
+ (1− p2s)p∩(t)

]
,

where P̃ = D−1P ′D, for D = diag(π).

For the convergence of the associated Markov chain we
rely on Proposition 11, taken from [6]. First we need the
following definition.
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top 100 that exists in the top 100 reported by the al-
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Definition 9 (χ2-contrast). The χ2-contrast χ2(α;β)
of α with respect to β is defined by

χ2(α;β) =
∑
i

(α(i)− β(i))2

β(i)
.

Lemma 10. Let π ∈ ∆n−1 a distribution satisfying mini π(i) ≥
c
n

for constant c ≤ 1, and let u ∈ ∆n−1 denote the uniform

distribution. Then, χ2(u;π) ≤
(
1−c
c

)
.

Proof.

χ2(u;π) =
∑
i

(1/n− π(i))2

π(i)
=
∑
i

(
1

n2π(i)
− 1

n

)
=

1

n

∑
i

1− nπ(i)

nπ(i)
≤ 1

n

∑
i

1− c
c

=
1− c
c
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Here we used the assumed lower bound on π(i) and the fact
that (1− x)/x is decreasing in x.

Proposition 11 ([6]). Consider an ergodic transition
matrix P on a finite state space, and let π denote its unique
stationary distribution. Let, P̃ = D−1P ′D be the multiplica-
tive reversibilization of P . Then for any starting distribu-
tion ν, after t steps we get ‖P tν − π‖21 ≤ λ2(P̃P )tχ2(ν;π).

Now we have all the necessary tools to prove the main the-
orem.

Proof of Theorem 3. We know, that the individual walk
distributions (marginals) follow the dynamics xt+1

l = Pxtl ,
for all l ∈ [N ], i.e. xtl = xt1. First we show that ‖π̂N − xt1‖2
is small.

P(‖π̂N − xt1‖2 > ε) ≤ E[‖π̂N − xt1‖22]

ε2
(6)

Here we used the Chebyshev inequality. We use stl to denote
the position of walker l at time t as a vector. For example,
stl = ei, if walker l is at state i at time t. Now let us break
down the norm on the numerator of (6).

‖π̂N − xt1‖22 =

∥∥∥∥ 1

N

∑
l

(stl − xt1)

∥∥∥∥2
2

=
1

N2

∑
l

‖stl − xt1‖22 +
1

N2

∑
l 6=k

(stl − xt1)′(stk − xt1) (7)

For the diagonal terms we have:

E[‖stl − xt1‖22] =
∑
i∈[n]

E
[
‖stl − xt1‖22|stl = i

]
P(stl = i)

=
∑
i∈[n]

‖eti − xt1‖22xt1(i) = 1− ‖xt1‖22 ≤ 1 (8)

Under the edge erasures model, the trajectories of differ-
ent walkers are not generally independent. For example, if
they happen to meet, they are likely to make the same deci-
sion for their next step, since they are faced with the same
edge erasures. Now we prove that even when they meet, we
can consider them to be independent with some probability
that depends on ps.

Consider the position processes for two walkers, {st1}t and
{st2}t. At each step t and node i a number of out-going
edges are erased. Any walkers on i, will choose uniformly
at random from the remaining edges. Now consider this
alternative process.

Definition 12 (Blocking Walk). A blocking walk on
the graph under the erasure model, follows these steps.

1. Walker l finds herself on node i at time t.

2. Walker l draws her next state uniformly from the full
set of out-going edges.

w ∼ Uniform(No(i))

3. If the edge (i, w) is erased at time t, the walker cannot
traverse it. We call this event a block and denote it by
Btl . In the event of a block:

• Walker redraws her next step from the out-going
edges of i not erased at time t.

• Otherwise, w is used as the next state.

Clearly, a blocking walk is exactly equivalent to our origi-
nal process; walkers end up picking a destination uniformly
at random among the edges not erased. From now on we
focus on this description of our original process. We use the
same notation: {stl}t for the position process and {xtl}t for
the distribution at time t.

Let us focus on just two walkers, {st1}t and {st2}t and
consider a third process: two independent random walks on
the same graph. We assume that these walks operate on the
complete graph, i.e. no edges are erased. We denote their
positions by {vt1}t and {vt2}t and their marginal distributions
by {zt1}t and {zt2}t.

Definition 13 (Time of First Interference). For two
blocking walks, τI denotes the earliest time at which they
meet and at least one of them experiences blocking.

τI = min
{
t : {st1 = st2} ∩ (Bt1 ∪Bt2)

}
We call this quantity the time of first interference.

Lemma 14 (Process equivalence). For two walkers,
the blocking walk and the independent walk are identical until
the time of first interference. That is, assuming the same
starting distributions, x01 = z01 and x02 = z02 , then

xt1 = zt1 and xt2 = zt2 ∀t ≤ τI .

Proof. The two processes are equivalent for as long as
the blocking walkers make independent decisions effectively
picking uniformly from the full set of edges (before erasures).
From the independence in erasures across time and vertices
in Definition 3, as long as the two walkers do not meet, they
are making an independent choices. Furthermore, since era-
sures are symmetric, the walkers will be effectively choosing
uniformly over the full set of out-going edges.

Now consider any time t that the blocking walkers meet.
As long as neither of them blocks, they are by definition
taking independent steps uniformly over the set of all outgo-
ing edges, maintaining equivalence to the independent walks
process. This concludes the proof.

Lemma 15. Let all walkers start from the uniform dis-
tribution. The probability that the time of first interference
comes before time t is upper bounded as follows. P(τI ≤ t) ≤
(1− p2s)p∩(t)

Proof. Let Mt be the event of a meeting at time t,
Mt ,

{
st1 = st2

}
. In the proof of Theorem 2, we estab-

lish that P(Mt) ≤ ρt/n,where ρ is the maximum row sum of
the transition matrix P . Now denote the event of an inter-
ference at time t as follows. It ,Mt ∩ (Bt1 ∪Bt2), where Bt1
denotes the event of blocking, as described in Definition 12.
Now,

P(It) = P(Mt ∩ (Bt1 ∪Bt2)) = P(Bt1 ∪Bt2|Mt)p∩(t).

For the probability of a block given that the walker have
met at time t,

P(Bt1 ∪Bt2|Mt) = 1− P(Bt1 ∩Bt2|Mt)

= 1− P(Bt2|Bt1,Mt)P(Bt1 |Mt) ≤ 1− p2s.

To get the last inequality we used, from Definition 3, the
lower bound on the probability that an edge is not erased,
and the lack of negative correlations in the erasures.
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Combining the above results, we get

P(τI ≤ t) = P

(
t∑

τ=1

I{Iτ} ≥ 1

)
≤ E

[
t∑

τ=1

I{Iτ}

]
=

t∑
τ=1

P(Iτ )

≤
t∑

τ=1

(1− p2s)P(Mτ ) =
1− p2s
n

t∑
τ=1

ρτ = (1− p2s)p∩(t)

which proves the statement.

Now we can bound the off-diagonal terms in (8).

E
[
(stl − xt1)′(stk − xt1)

]
= E

[
(stl − xt1)′(stk − xt1)

∣∣τI ≤ t]P(τI ≤ t)

+ E
[
(stl − xt1)′(stk − xt1)

∣∣τI > t

]
P(τI > t)

In the second term, the case when l, k have not interfered, by
Lemma 14, the trajectories are independent and the cross-
covariance is 0. In the first term, the cross-covariance is
maximized when stl = stk. That is,

E
[
(stl − xt1)′(stk − xt1)

∣∣τI ≤ t] ≤ E[‖stl − xt1‖22] ≤ 1

From this we get

E
[
(stl − xt1)′(stk − xt1)

]
≤ (1− p2s)p∩(t), (9)

and in combination with (8), we get from (7) that

E
[
‖π̂N − xt1‖22

]
≤ 1

N
+

(N − 1)(1− p2s)p∩(t)

N
.

Finally, we can plug this into (6), to get

P(‖π̂N − xt1‖2 > ε) ≤ 1 + (1− p2s)p∩(t)(N − 1)

Nε2
.

We can now combine this bound, with a bound on ‖xt1 −
π‖2 using the triangle inequality to get the theorem state-
ment. We first use the fact that ‖xt1 − π‖2 ≤ ‖xt1 − π‖1 and
then apply Proposition 11 on the RHS, assuming a uniform
starting distribution and invoking Lemma 10.

A.3 Proof of Theorem 2
Proof. Let u ∈ ∆n−1 denote the uniform distribution

over [n], i.e. ui = 1/n. The two walks start from the same
initial uniform distribution, u, and independently follow the
same law, Q. Hence, at time t they have the same marginal
distribution, pt = Qtu. From the definition of the aug-
mented transition probability matrix, Q, in Definition 1, we
get that

πi ≥
pT
n
, ∀i ∈ [n].

Equivalently, there exists a distribution q ∈ ∆n−1 such that

π = pTu+ (1− pT )q.

Now using this, along with the fact that π is the invariant
distribution associated with Q (i.e. π = Qtπ for all t ≥ 0)
we get that for any t ≥ 0,

‖π‖∞ = ‖Qtπ‖∞
= ‖QtpTu+Qt(1− pT )q‖∞
≥ pT ‖Qtu‖∞.

For the last inequality, we used the fact that Q and q contain
non-negative entries. Now we have a useful upper bound for
the maximal element of the walks’ distribution at time t.

‖pt‖∞ = ‖Qtu‖∞ ≤
‖π‖∞
pT

(10)

Let Mt be the indicator random variable for the event of a
meeting at time t.

Mt = I{walkers meet at time t}

Then, P(Mt = 1) =
∑n
i=1 p

t
ip
t
i = ‖pt‖22. Since p0 is the

uniform distribution, i.e. p0i = 1
n

for all i, then ‖p0‖22 = 1
n

.
We can also bound the l2 norm of the distribution at other
times. First, we upper bound the l2 norm by the l∞ norm.

‖p‖22 =
∑
i

p2i ≤
∑
i

pi‖p‖∞ = ‖p‖∞

Here we used the fact that pi ≥ 0 and
∑
pi = 1.

Now, combining the above results, we get

p∩(t) = P

(
t∑

τ=0

Mτ ≥ 1

)
≤ E

[
t∑

τ=0

Mτ

]
=

t∑
τ=0

E[Mτ ]

=

t∑
τ=0

P(Mτ = 1) =

t∑
τ=0

‖pτ‖22 ≤
t∑

τ=0

‖pτ‖∞

≤ 1

n
+
t‖π‖∞
pT

.

For the last inequality, we used (10) for t ≥ 1 and ‖p0‖22 =
1/n. This proves the theorem statement.
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Figure 5: PageRank approximation accuracy with the “Mass captured” metric for top-100 vertices. (a) – Accuracy for

various number of initial random walks in the FrogWild. (b) – Accuracy for various number of iterations of FrogWild.
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Figure 6: Total running time of the PageRank algorithms. (a) – Total running time for various number of initial

random walks in the FrogWild. (b) – Total running time for various number of iterations of FrogWild.
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