Parallel and Distributed Inference in Coupled Tensor Factorization Models Supplementary Document

Umut Şimşekli Department of Computer Engineering Boğaziçi University, İstanbul, Turkey umut.simsekli@boun.edu.tr

Ali Taylan Cemgil Department of Computer Engineering Boğaziçi University, İstanbul, Turkey taylan.cemgil@boun.edu.tr Beyza Ermiş Department of Computer Engineering Boğaziçi University, İstanbul, Turkey beyza.ermis@boun.edu.tr

Figen Öztoprak Department of Industrial Engineering Bilgi University, İstanbul, Turkey figen.oztoprak@bilgi.edu.tr

Şevket İlker Birbil Faculty of Engineering and Natural Sciences Sabancı University, İstanbul, Turkey sibirbil@sabanciuniv.edu

1 Partial Derivatives with respect to Z_{α}

The optimization problem is minimization of the following objective

minimize
$$D(X_{1:N_x} || \hat{X}_{1:N_x})$$

where the divergence function is separable for each observed tensor element as

$$D(X_{1:N_x} || \hat{X}_{1:N_x}) = \sum_{\nu} D_{\nu}(X_{\nu} || \hat{X}_{\nu})$$

and each divergence is separable as the sum of scalar divergences $d(x||\mu)$ as

$$D_{\nu}(X_{\nu}||\hat{X}_{\nu}) = \sum_{u_{\nu}} d_{\nu}(X_{\nu}(u_{\nu})||\hat{X}_{\nu}(u_{\nu}))$$

The optimization problem can be solved by various approaches. All of these requires us evaluating the gradient with respect to the individual tensor elements $Z_{\alpha}(v_{\alpha})$ and model output tensors \hat{X}_{ν} . In the general form the derivative of the β divergence with respect to the second parameter is

$$\frac{\partial d_p(x||\hat{x})}{\partial \hat{x}} = -x\hat{x}^{-p} + \hat{x}^{1-p} = \frac{\hat{x} - x}{\hat{x}^p}$$

Typically in each iteration of an optimization procedure, we need to calculate the following derivative to update each model output tensor \hat{X}_{ν} :

$$\frac{\partial d_{p_{\nu}}(X_{\nu}(u_{\nu}); \hat{X}_{\nu}(u_{\nu}))}{\partial \hat{X}_{\nu}(u_{\nu})} = -\frac{X_{\nu}(u_{\nu})}{\hat{X}_{\nu}(u_{\nu})^{p_{\nu}}} + \hat{X}_{\nu}(u_{\nu})^{1-p_{\nu}} = \frac{\hat{X}_{\nu}(u_{\nu}) - X_{\nu}(u_{\nu})}{\hat{X}_{\nu}(u_{\nu})^{p_{\nu}}}$$

Next each latent factor of the decomposition model is updated by the following derivative

$$\frac{\partial D(X_{1:N}; \hat{X}_{1:N})}{\partial Z_{\alpha}(v_{\alpha})} = \sum_{\nu} \frac{1}{\phi_{\nu}} \sum_{u_{\nu}} \frac{\partial d_{p_{\nu}}(X_{\nu}(u_{\nu}); \hat{X}_{\nu}(u_{\nu}))}{\partial \hat{X}_{\nu}(u_{\nu})} \frac{\partial \hat{X}_{\nu}(u_{\nu})}{\partial Z_{\alpha}(v_{\alpha})}$$

$$= \sum_{\nu} \left[R(\nu, \alpha) \frac{1}{\phi_{\nu}} \sum_{\tilde{v}_{\alpha}} \left(\frac{\hat{X}_{\nu}(u_{\nu}) - X_{\nu}(u_{\nu})}{\hat{X}_{\nu}(u_{\nu})^{p_{\nu}}} \right) \prod_{\alpha' \neq \alpha} Z_{\alpha'}(v_{\alpha'})^{R(\nu, \alpha)} \right] \quad (1)$$

2 Algorithm Summary

Algorithm 1: Overview of the proposed method for coupled tensor factorization. **Input**: Observed tensors: $X_1, X_2, \ldots, X_{N_x}$ Coupling matrix: R **Output**: Latent factors: $Z_{1:N_z}$, Dispersions: $\phi_{1:N_x}$, Power parameters: $p_{1:N_x}$ Randomly initialize $Z_{1:N_z}^{(0)}$, $\phi_{1:N_x}^{(0)}$, $p_{1:N_x}^{(0)}$ and set i = 1// Estimate the latent factors while not converged and $i \leq MaxIter$ do // Run DIGD until convergence while not converged do Pick a step size η while all blocks are not processed do Form a stratum σ (implicitly determined by the transfer schedule of the blocks) for each block γ in σ do in parallel Load the corresponding block of X_{ν} Run IGD on block γ with step size η // Update the local factors first, then update the shared factors Update all $Z_{\alpha}(v_{\alpha})$ with $v_{\alpha} \in \mathcal{B}_{I}(I_{\alpha}, \gamma)$ by using $X_{\nu}(u_{\nu})$ in $u_{\nu} \in \mathcal{B}_{I}(I_{0,\nu}, \gamma)$ end Pass the shared factor block to another node (will determine the next σ) end end // Estimate the dispersion and power parameters while all blocks are not processed do Form a stratum σ (implicitly determined by the transfer schedule of the blocks) for each block γ in σ do in parallel Load the corresponding block of X_{ν} Compute the related parts of the output tensors at each node: $\hat{X}_{\nu}^{(i)}(u_{\nu}) = \sum_{\bar{u}_{\nu}} \prod_{\alpha} Z_{\alpha}^{(i)}(v_{\alpha})^{R(\nu,\alpha)}$ for all $\nu \in [N_x], u_\nu \in \mathcal{B}_I(I_{0,\nu}, \gamma)$ Compute the related part of the dispersion updates and likelihoods for the grid search end Pass the shared factor block to another node (will determine the next σ) end Send the intermediate dispersion updates and the likelihoods to the responsible node of the site The responsible nodes aggregate the results and compute the new ϕ_{ν} and p_{ν} :
$$\begin{split} \phi_{\nu}^{(i)} &= \arg\max_{\phi} \log \left(\mathbb{P}(X_{\nu} | \phi, \hat{X}_{\nu}^{(i)}, p^{(i-1)}) \mathbb{P}(\phi) \right) \\ p_{\nu}^{(i)} &= \arg\max_{p} \log \mathbb{P}(X_{\nu} | \hat{X}_{\nu}^{(i)}, \phi_{\nu}^{(i)}, p) \end{split}$$
for all $\nu \in [N_x]$ for all $\nu \in [N_r]$ The responsible nodes broadcast the new ϕ_{ν} and p_{ν} to the relevant nodes $i \leftarrow i + 1$ end

3 Exponential Dispersion Models and the Tweedie Family

An exponential dispersion model (EDM) can be defined by a two parameter density as follows [1]:

$$\mathbb{P}(x;\theta,\phi) = h(x,\phi) \exp\left\{\frac{1}{\phi}\left(\theta x - \kappa(\theta)\right)\right\}$$
(2)

where θ is the canonical parameter, ϕ is the dispersion parameter and κ is the cumulant (logpartition) function ensuring normalization. Here, $h(x, \phi)$ is the base measure and is independent of the canonical parameter.

EDMs are a studied in particular as the response distribution of the generalized linear models [2]. For an EDM, we can verify that the mean \hat{x} and the variance $Var\{x\}$ are obtained directly by differentiating $\kappa(\cdot)$:

$$\kappa'(\theta) = \langle x \rangle_{p(x;\theta,\phi)} \equiv \hat{x}, \quad \kappa''(\theta) = \frac{1}{\phi} \operatorname{Var}\{x\} \equiv v(\hat{x}).$$

Here $v(\hat{x})$ is also known as the variance function [3, 1].

In this paper, we focus on a particular EDM, namely The Tweedie family $\mathcal{TW}_p(x; \hat{x}, \phi)$. Tweedie distributions specify the variance function as $v(\hat{x}) = \hat{x}^p$ [1]. The variance function is related to the *p*'th power of the mean, therefore it is called a power variance function. Note that this choice directly dictates the form of \hat{x} and $\kappa(\theta)$ that can be solved as

$$\hat{x}(\theta) = \begin{cases} \frac{1}{2-p} \left((1-p)\theta \right)^{\frac{1}{1-p}} & p \neq 1\\ \exp(\theta) & p = 1 \end{cases}$$
(3)

$$\kappa(\theta) = \begin{cases} \frac{1}{2-p} \left((1-p)\theta \right)^{\frac{2-p}{1-p}} & p \neq 1, 2\\ -\log(-\theta) & p = 2\\ \exp(\theta) & p = 1 \end{cases}$$
(4)

Here, different choices for p yield well-known important distributions such as the Gaussian (p = 0), Poisson (p = 1), compound Poisson (1), Gamma (<math>p = 2) and inverse Gaussian (p = 3) distributions. Excluding the interval 0 for which no EDM exists, for all other values of <math>pnot mentioned above, one obtains Tweedie stable distributions [1].

For $p \in \{0, 1, 2, 3\}$ the densities are given as follows:

$$\mathcal{TW}_0(x;\hat{x},\phi) = (2\pi\phi)^{-\frac{1}{2}} \exp\left(-\frac{1}{\phi}\frac{(x-\hat{x})^2}{2}\right)$$
(5)

$$\mathcal{TW}_1(x;\hat{x},\phi) = \frac{(\bar{x}/\phi)^{\frac{\bar{x}}{\phi}}}{e^{\frac{\bar{x}}{\phi}}\Gamma(\frac{\bar{x}}{\phi}+1)} \exp\left(-\frac{1}{\phi}(\bar{x}\log\frac{\bar{x}}{\bar{x}}-\bar{x}+\bar{x})\right)$$
(6)

$$\mathcal{TW}_2(x;\hat{x},\phi) = \frac{1}{\Gamma(\frac{1}{\phi})(e\phi)^{\frac{1}{\phi}}x} \exp\left(-\frac{1}{\phi}(\frac{x}{\hat{x}} - \log\frac{x}{\hat{x}} - 1)\right)$$
(7)

$$\mathcal{TW}_{3}(x;\hat{x},\phi) = (2\pi x^{3}\phi)^{-\frac{1}{2}} \exp\left(-\frac{1}{\phi}\frac{(x-\hat{x})^{2}}{2x\hat{x}^{2}}\right).$$
(8)

Note that, the Poisson distribution in its well-known form, is an exponential dispersion model with unitary dispersion ($\phi = 1$). This distribution is called over-dispersed ($\phi > 1$) or under-dispersed ($\phi < 1$) when the nominal variance is not sufficient to determine the variance of the observations [2]. When we introduce a dispersion parameter to the Poisson distribution, the domain of the probability distribution is re-defined on the integer multiples of $\phi: \bar{x} \in \{0, \phi, 2\phi, 3\phi, ...\}$. This can be interpreted as the data are scaled by ϕ at each iteration.

For the remaining cases of p, the probability density functions cannot be written in closed-form analytical forms. However, they can be expressed as infinite series that is defined as follows: [1]

$$\mathcal{TW}_p(x;\hat{x},\phi) = \frac{1}{x\xi_p} \left(\sum_{k=1}^{\infty} V_k \right) \exp\left\{ \frac{1}{\phi} \left(\frac{\hat{x}^{1-p}x}{1-p} - \frac{\hat{x}^{2-p}}{2-p} \right) \right\}$$
(9)

and $\xi_p = 1$ for $p \in (1, 2)$ and $\xi_p = \pi$ otherwise.

The Tweedie density with $p \in (1, 2)$ coincides with the compound Poisson distribution [1]. The compound Poisson distribution has a support for continuous positive data and a discrete probability mass at zero. For x = 0, the density function is defined as $\mathcal{TW}_p(x; \cdot) = \exp(\hat{x}^{2-p}/(\phi(p-2)))$ and for x > 0, it follows the form of Equation 9, where the terms V_k for this distribution is defined as follows:

$$V_{k} = \frac{x^{-k\alpha}(p-1)^{k\alpha}\phi^{k(\alpha-1)}}{(2-p)^{k}\Gamma(k+1)\Gamma(-k\alpha)}$$
(10)

where $\alpha = (2 - p)/(1 - p)$.

The cases p < 0 and p > 2 of the Tweedie class correspond to Tweedie stable distributions. For the Tweedie models with p < 0 and p > 2, the terms V_k are defined as follows:

$$V_{k} = \frac{\Gamma(1+\frac{k}{\alpha})\phi^{\frac{\kappa}{p-2}}(-1)^{k}\sin(\frac{k\pi}{\alpha})}{\Gamma(k+1)(1-p)^{k}(2-p)^{-\frac{k}{\alpha}}x^{-k}}, \qquad V_{k} = \frac{\Gamma(1+\alpha k)\phi^{k(1-\alpha)}(-1)^{k}\sin(-k\pi\alpha)}{\Gamma(k+1)(p-1)^{-\alpha k}(p-2)^{k}x^{\alpha k}}$$
(11)

References

- B. Jørgensen, *The Theory of Dispersion Models*, Chapman & Hall/CRC Monographs on Statistics & Applied Probability, 1997.
- [2] C. E. McCulloch and J. A. Nelder, *Generalized Linear Models*, Chapman and Hall, 2nd edition, 1989.
- [3] M. C. Tweedie, "An index which distinguishes between some important exponential families," *Statistics: applications and new directions, Indian Statist. Inst., Calcutta*, pp. 579–604, 1984.