
Improved Algorithms for Distributed Boosting

Jeff Cooper
University of Illinois at Chicago

Chicago, IL 60607
jcoop8@uic.edu

Lev Reyzin
University of Illinois at Chicago

Chicago, IL 60607
lreyzin@math.uic.edu

Abstract

We introduce two distributed boosting algorithms. Our first algorithm uses the en-
tire dataset to train a classifier and requires a significant amount of communication
among the distributed sites. Our second algorithm requires very little communi-
cation but uses a subsample of the dataset to train the final classifier. Both of
our algorithms improve upon existing distributed algorithms. Further, both are
competitive with AdaBoost when it is run with the entire dataset.

1 Introduction

Both theoretical results and empirical studies indicate that machine learning algorithms can often
greatly improve their performance by training on larger and larger datasets. In some situations,
training on large datasets is not possible – acquiring labeled training data can be very expensive.
Oftentimes, however, there is a plethora of labeled data – e.g., stocks and their prices over time.

In the cases where data is overabundant, various issues arise. One would ideally like to use all the
available data, but training an algorithm on all data can be too time consuming. Moreover, the data
may not fit in the working memory of any one machine. Hence, a practical solution would be to
distribute the data across several machines.

To reduce training time, one could also use simple classifiers, e.g. linear predictors, and this has
proven effective in many applications – the problem of parallelizing the computation still remains
interesting [1], but the theory is more straightforward. However, ideally, one should be able to
use state-of-the-art classification methods such as boosting [12] or SVM [8], without sacrificing on
running time or limiting the amount of training data.

We focus on boosting, a state-of-the-art ensemble algorithm for supervised learning [6]. One effec-
tive approach to large-scale ensemble algorithms is to develop distributed algorithms for the weak
classifier used in the ensemble; for example, Panda et al. [15] and Tyree et al. [17] developed dis-
tributed algorithms for the decision trees used in ensemble algorithms.

Our goal instead is to develop distributed boosting algorithms which can be used with arbitrary weak
learners. Thus our aim is to match the accuracy of standard boosting algorithms when trained on
the same datasets. We build on the work of Lazarevic and Obradovic [14], who presented one of the
earliest distributed boosting algorithms. Their algorithm, which improved on work of Fan, Stolfo,
and Zhang [9], was shown to perform as well as standard boosting algorithms when constructing
small ensembles of classifiers. However, for larger ensembles, their algorithms does not match
state-of-the-art boosting algorithms. We will illustrate this is due to its tendency to over-fit training
data.

In this paper, we present two distributed boosting algorithms. Our first method resembles the method
of Lazarevic and Obradovic [14] but is less prone to overfitting. Our second method is based on sub-
sampling the data and has the advantage that it requires very little communication between machines.
Both methods outperform [14] on all of the datasets on which we compared them. Moreover, our

1

algorithms match the performance of the well-known boosting algorithm AdaBoost when it is run
with all of the available training data.

2 Previous work

2.1 Boosting

AdaBoost (Algorithm 1) is known to be one of the best off-the-shelf machine learning algo-
rithms [10, 16]. The algorithm is an ensemble method that was originally developed to improve
the performance of a single weak learning algorithm. At each iteration of the algorithm, a new weak
learner is constructed so that it performs better on training data where the previous weak learner
failed. AdaBoost accomplishes this by maintaining a weight distribution over the training data,
which the weak learning algorithm can use to emphasize different training points. Unfortunately,
this distribution is updated at each step of the algorithm, making the algorithm inherently sequential.
It is thus not obvious how to deploy it in a distributed environment.

Algorithm 1 AdaBoost [12]

Given: (x1, y1), . . . , (xn, yn), where xi ∈ X , yi ∈ Y = {−1,+1}.
Initialize D1(i) = 1/m.
for t = 1, . . . , T do

Train base learner using distribution Dt and get base classifier ht : X → {−1,+1}.
Let γt =

∑
iDt(i)yiht(xi) and choose αt = 1

2 ln
1+γt
1−γt .

Update:

Dt+1(i) =
Dt(i) exp(−αtyiht(xi))

Zt
,where Zt normalizes so that Dt+1 is a distribution.

end for
Output the final classifier: H(x) = sign

(∑T
t=1 αtht(x)

)
.

2.2 DistBoost

The Distributed Boosting Algorithm [14], which we refer to as DistBoost, is meant to be run
on several machines which can communicate with each other. The data is partitioned across these
machines, and each machine stores a weight distribution for its own data. The main idea of the algo-
rithm is to have the concatenation of these local distributions mimic the distribution of AdaBoost
as if all of the data had been on one machine. A sketch of the algorithm is shown in Algorithm 2. For
simplicity, we use the simple majority rule described by Lazarevic and Obradovic [14] for creating
ensemble Et.

Algorithm 2 DistBoost [14]

Given: K machines, (x1, y1), . . . , (xKn, yKn), where xi ∈ X , yi ∈ Y = {−1,+1}.
Initialize D1(i) =

1
Kn .

for t = 1, . . . , T do
for j = 1, . . . ,K (in parallel) do

Train base learner using data at site j and dist. Dt and get ht,j : X → {−1,+1}.
end for
Let Et(x) = sign

(∑K
j=1 ht,j(x)

)
and γt =

∑
iDt(i)yiEt(xi). Choose αt = 1

2 ln
1+γt
1−γt .

Update:

Dt+1(i) =
Dt(i) exp(−αtyiEt(xi))

Zt
,where Zt normalizes so that Dt+1 is a distribution.

end for
Output the final classifier: H(x) = sign

(∑T
t=1 αtht(x)

)
.

2

Despite its name, it is not hard to see that DistBoost is not a true boosting algorithm given a bad
split of the data. Consider the set of labeled examples on the real line

X = {(−1, 1), (0,−1), (1, 1)}.
It is not hard to see that X is weakly learnable by decision stumps. However, suppose there are
three machines, two of which contain both of the positive examples and one containing the negative
example. The two machines with the positive examples will always output a decision stump which
classifies −1 and 1 correctly and will therefore misclassify the negative example. Thus the majority
vote classifier will never correctly classify the negative example, preventing the creation of a strong
learner.

The point of this example is that the algorithm can overfit the training data at one site. More gener-
ally, consider a site j. The classifier ht,j is constructed based only on the slice of Dt corresponding
to the data at site j. As t grows, this slice becomes increasingly specialized to site j. As a result,
ht,j generalizes poorly to the distributions D(l)

t , for l 6= j. Its contribution to the ensemble Et thus
becomes noise, so Et fails to effectively reduce the error at any of the machines.

The effect of this overfitting on accuracy can be seen in experiments, where as the number of rounds
of boosting grows, DistBoost begins to overfit and fails to keep up with AdaBoost (when run
on the entire dataset) in decreasing the generalization error. This is illustrated in Figure 1, where
DistBoost fails to match AdaBoost’s accuracy after only 25 rounds of boosting.

25 50 100 150 200 300

Ensemble size

6

7

8

9

10

11

12

13

14

E
rr

o
r

(%
)

AdaBoost

DistBoost

Figure 1: AdaBoost and DistBoost run on the UCI particle dataset.

Another drawback of DistBoost, which our sampling algorithm addresses, is that the machines
communicate with each other at each boosting round. To compute Et, the weak learners at every
site must be broadcast to every other site. Then the sites must each broadcast the local error of Et
so that γt can be computed. This reliance on communication among machines can be problematic
when hundreds of machines are running and delays or failures become likely.

2.3 Ivote and DIvote

Like AdaBoost, Ivote [4] is an ensemble algorithm which tries to focus on harder examples.
Rather than maintain a weight distribution, Ivote focuses on hard examples at each iteration by
sampling from the training data using a variation of bagging [3]. Recall that bagging draws a set of
samples with replacement and uses them for training. In Ivote, a point is drawn at random with
replacement, and if the current ensemble correctly classifies it, it is added to the next set of training
data. Otherwise, it is discarded with some probability, which is chosen so that roughly half of the
sampled data is correctly classified by the current ensemble and half is incorrectly classified. The
sampled training data is then used to build a new classifier, which is added to the ensemble. The
ensemble uses majority vote to combine the classifiers.

DIvote is a distributed version of Ivote [7]. The data is first partitioned across machines. At
each machine, an ensemble is built using Ivote, and the ensembles are then combined to create one
large majority-vote ensemble. As each individual classifier is trained using roughly half correctly
classified and half incorrectly classified examples (by the machine’s current ensemble), the learners
avoid overfitting on hard examples. However, the algorithm is not a boosting algorithm and is unable
to drive down the training error as well as AdaBoost (the example from Section 2.2 also works for
DIvote). Our experiments show this results in a loss of accuracy compared to AdaBoost.

3

Algorithm 3 PreWeak
Given: K machines, (x1, y1), . . . , (xKn, yKn), where xi ∈ X , yi ∈ Y = {−1,+1}.
for j = 1, . . . ,K (in parallel) do

Run AdaBoost for T rounds using data at site j
Save collection of weak learners hj,1 . . . , hj,T .

end for
Initialize D1(i) =

1
Kn .

for t = 1, . . . , T do
Choose ht from {hj,i : 1 ≤ j ≤ K, 1 ≤ i ≤ T} that minimizes error with respect to Dt.
Let γt =

∑
iDt(i)yiht(xi) and choose αt = 1

2 ln
1+γt
1−γt .

Update:

Dt+1(i) =
Dt(i) exp(−αtyiht(xi))

Zt
,where Zt normalizes so that Dt+1 is a distribution.

end for
Output the final classifier: H(x) = sign

(∑T
t=1 αtht(x)

)
.

3 Our approach

We propose two algorithms for distributed boosting, PreWeak and AdaSampling. PreWeak
addresses the overfitting problem of DistBoost but still requires a large amount of communica-
tion among sites. AdaSampling is a different approach, which tries to select the most difficult
examples from each machine and use them to train one classifier. FilterBoost [2] is a some-
what related approach, which samples a small amount of data from the training set at every round of
boosting.

3.1 Avoiding overfitting

The main idea of PreWeak is to pre-build a large set of weak learners that can be tested on the
global distribution. The algorithm has two stages. During the first stage, AdaBoost is run at each
of K sites, resulting in a set of T weak learners at each site. These classifiers are then broadcast to
each other so that each site has its own copy of the setH = {h1, . . . , hTK} of all classifiers. Finally,
each site j computes a TK × n error matrix Ej , where

Ej(i,m) =

{
1, hi(xm, ym) 6= ym
0, hi(xm, ym) = ym.

Stage two consists of a master server running a slight variant of AdaBoost for T rounds. The
algorithm maintains a single distribution Dt over the set of all examples. Since this distribution
may not fit in the main memory of one machine, PreWeak accomplishes this by having each site
maintain the slice of the distribution corresponding to its training data (this is also how DistBoost

maintains the global distribution). For each site j, we refer to this slice as D(j)
t .

However, rather than using Dt to construct a classifier at each iteration, PreWeak uses Dt to select
a classifier from the set H that was constructed in the previous stage. More precisely, PreWeak
selects the hi ∈ H that minimizes

∑K
j=1

∑n
m=1Ej(i,m)D

(j)
t (m), which the master can compute

after receiving the inner sum from each site. The master then tells each site j which classifier was
selected so that the site may compute D(j)

t+1. Note that the normalization factor Zt can be computed
with an additional round of communication with the master.

DistBoost and PreWeak differ primarily in how the classifier is selected at each round.
DistBoost constructs a classifier at site j using the weak learning algorithm and the distribu-
tion D(j)

t , so it has available to it a larger set of candidate classifiers than PreWeak. However, the
classifier is evaluated based only on the local slice D(j)

t of the global distribution. As Section 2.2
discusses, after a few rounds of boosting, this causes the constructed weak learner to overfit to its
local training data and so it has trouble classifying higher weighted examples at other machines.

4

PreWeak is only able to choose one of TK weak learners, but it gets to evaluate all of these weak
learners against the global distribution. Thus the chosen weak learner is less likely to overfit to the
training data at any single site. Furthermore, since the candidate set of weak learners was constructed
using AdaBoost, we expect that at each round at least one of the weak learners will perform well
on the global distribution. We thus expect PreWeak to more successfully reduce the training error
than DistBoost.

Figure 2 demonstrates DistBoost’s tendency to overfit. After each iteration of DistBoost, we
measured the error of the weak learner constructed at site i on the training data at all sites j 6= i
(using the current round’s distribution). As Figure 2 shows, the weak learners did not perform
significantly better than random guessing. On the other hand, PreWeak did not suffer from this
problem. Figure 2 also shows the error of the weak learner selected by PreWeak when tested on
the sites where it was not built. This error still approaches 50%, but it does so slowly enough that it
is able to continue to decrease the test error.

25 50 100 150 200 300

Ensemble size

42

44

46

48

49

50

O
u
ts

id
e

e
rr

o
r

(%
)

DistBoost

PreWeak

Figure 2: Global training error of weak learners selected by DistBoost and PreWeak on the UCI
particle dataset.

Unfortunately, PreWeak requires slightly more communication among sites than DistBoost.
Both algorithms broadcast a total of TK weak learners: PreWeak broadcasts these during stage
one, while DistBoost broadcasts K weak learners during each of the T rounds of boosting.
However, during each round of boosting, PreWeak requires that each site broadcast the error of
the TK classifiers on its training data. Each site thus broadcasts T 2K messages that DistBoost
avoids. Depending on the size of the weak learner, these additional messages may be negligible
compared to the broadcasting of the weak learners.

An advantage of PreWeak is that the weak learner built at a particular site depends only on the data
at that site. If PreWeak is later run on a larger dataset with additional machines, PreWeak can
save time by reusing the weak learners from the old machines, whereas DistBoost would need to
rebuild weak learners at every site.

3.2 Passing informative examples

While PreWeak works well in our experiments, it requires significant communication. We in-
troduce a second algorithm, AdaSampling, which requires no communication between sites. In
AdaSampling, a small number of examples are selected at each site and then sent to a master
machine. This machine then runs AdaBoost with these examples to obtain the final classifier.
Since the final classifier is not trained on all examples, AdaSampling must be careful in how each
machine chooses its small set of examples.

AdaSampling is based on a connection between AdaBoost and game theory. Consider a two-
person game, where the row player is given a setH of weak learners, and the column player is given
a set X of training data. In each round of the game, the row player picks a weak learner h ∈ H,
while the column player picks a training example (x, y) ∈ X . The row player receives a payout of
1 if h(x) = y and 0 if h(x) 6= y.

The solution to this game is a pair of probability distributions (P ∗, Q∗), where P ∗ ∈ R|H| and
Q∗ ∈ R|X|, which tells each player how to randomly select its choice at each round. Since the

5

Algorithm 4 AdaSampling
Given: K machines, (x1, y1), . . . , (xKn, yKn), where xi ∈ X , yi ∈ Y = {−1,+1}.
for j = 1, . . . ,K (in parallel) do

Run AdaBoost for T rounds using data at site j
Sort examples by decreasing value of

∑T
t=1D

j
t (i)/t

Broadcast n/K consecutive examples with lowest local test error
end for
Run AdaBoost with training set of the n broadcasted examples.
Output classifier returned by AdaBoost

column player is motivated to choose examples which are likely to be misclassified, we would
intuitively expect their corresponding weights in Q∗ to be higher than the weights of examples
which are easier to classify.

Recall that AdaBoost maintains a distribution Dt over its training set at each iteration of the
algorithm. When a constant value of γt is used in AdaBoost, Freund and Schapire [11] showed
that the average of the distributions Dt converges (as t→∞) to the strategy Q∗. We may thus view
the examples with highest average weight as the hardest to classify.

AdaSampling uses this view to select examples on which to train a final classifier. Consider one
of the K sites. Its goal is to select n/K examples to send to the final classifier for training. The
site runs AdaBoost for T iterations. It then sorts the examples in decreasing order of

∑T
t=1Dt(i),

giving us a list (x1, y1), . . . , (xn, yn) of training examples at the site. We know that the top examples
in this list can be viewed as the hardest examples, so we might then be tempted to select examples
(x1, y1), . . . , (xn/K , yn/K). However, we only know that they are hard to classify, not that they are
particularly helpful in training a classifier.

We instead select the n/K consecutive examples which provide the most accurate AdaBoost
classifier at the local machine. To find them, for each i, we train a classifier with examples
(xi+1, yi+1), . . . , (xi+n/K , yi+n/K) and compute the test error on the remaining examples. We
then send the n/K examples with the lowest test error. These examples may not form the most
effective training set at the local machine, but our sorting scheme allows us to select a training set
from only n − n/K candidate sets rather than all possible training sets. In our experiments, we
further reduced the number of candidate training sets by incrementing i by a step size of n/4K
and stopping when i reached n/2. Thus we only trained an additional 2K classifiers, each with a
relatively small training set of size n/K.

Note that our sampling scheme is reminiscent of Karmaker and Kwek’s [13] method of using
AdaBoost to ignore noisy examples.

4 Experiments

We compare four distributed algorithms: DistBoost, DIvote, PreWeak, and AdaSampling.
In all of the algorithms, we assume that the training data is distributed across 10 sites. We also
compare our results to AdaBoost when trained with the full training set and AdaBoost when
trained with 1/10 of the training set (1/10). This is meant to simulate AdaBoost running on a
single site where it would not be able to take advantage of additional training data.

4.1 Datasets

We first experiment on six two-class datasets: ocr17, ocr49, forestcover12, particle, ringnorm, and
twonorm. None of these datasets approach terascale sizes [1], but are comparable in size to those of
Lazarevic and Obradovic [14]. In addition, we experimented on a larger dataset provided by Yahoo!

The training size, test size, and number of attributes for each dataset are shown in Table 1. All of
the datasets’ features are scaled to be integer-valued. Datasets ocr17 and ocr49 are a subset of the
NIST database and consist of handwritten images of 1s and 7s and of 4s and 9s, respectively. Each

6

Table 1: Datasets used in experiments

Dataset Training Testing Features
ocr17 5000 1000 196
ocr49 5000 1000 196

forestcover12 250,000 245,141 54
particle 80,000 50,064 50

ringnorm 50,000 50,000 21
twonorm 50,000 50,000 21
Yahoo! 1,500,000 790,224 10

image is represented by 196 integer intensity values in the range [0, 3]. We experiment on these
small datasets to see how robust our algorithms were to small datasets.

The forestcover12 dataset consists of classes 1 and 2 from the 7-class Covertype dataset in the UCI
repository. The particle dataset, from the UCI repository, consists of two classes, signal and back-
ground. This data is from the MiniBooNE experiment and is used to distinguish electron neutrinos
(signal) from muon neutrions (background). Ringnorm and twonorm are both synthetic datasets,
which we generated using the twonormgen and ringnormgen scripts made available by Breiman [5].

The Yahoo! dataset [18] contains anonymized user click logs for news articles displayed on Ya-
hoo! The dataset contains 10 features per click, and the label determines whether the user clicked
the displayed article. We trimmed the dataset to contain 1,042,974 positive examples (clicks) and
1,237,251 negative examples (non-clicks).

4.2 Results

25 50 100 150 200 300
22.0

22.5

23.0

23.5

24.0

24.5

25.0

25.5

26.0

E
rr

o
r

forestcover12

25 50 100 150 200 300
2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0
twonorm

25 50 100 150 200 300
0

10

20

30

40

50

E
rr

o
r

ringnorm

25 50 100 150 200 300
4

5

6

7

8

9

10

11

12
ocr49

25 50 100 150 200 300

Ensemble size

0.5

1.0

1.5

2.0

2.5

3.0

E
rr

o
r

ocr17

25 50 100 150 200 300

Ensemble size

7

8

9

10

11

12

13
particle

AdaSampling

AdaBoost

DIvote

DistBoost

PreWeak

Figure 3: Test error (%) with ensembles of
decision stumps

25 50 100 150 200 300
18

19

20

21

22

23

24

25

E
rr

o
r

forestcover12

25 50 100 150 200 300
2.5

3.0

3.5

4.0

4.5

5.0
twonorm

25 50 100 150 200 300
1

2

3

4

5

6

7

E
rr

o
r

ringnorm

25 50 100 150 200 300
1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0
ocr49

25 50 100 150 200 300

Ensemble size

0.0

0.5

1.0

1.5

2.0

E
rr

o
r

ocr17

25 50 100 150 200 300

Ensemble size

6

7

8

9

10

11

12

13

14
particle

AdaSampling

AdaBoost

DIvote

DistBoost

PreWeak

Figure 4: Test error (%) with ensembles of
depth three decision trees

7

Table 2: Test error and standard error (%) with 300 decision stumps

AdaBoost DistBoost DIvote PreWeak AdaSampling 1/10
ocr17 .69 ± .23 2.14 ± .61 1.76 ± .38 .63 ± .23 .68 ± .25 1.41 ± .28
ocr49 5.17 ± .66 8.60 ± 1.31 6.21 ± .89 4.55 ± .62 5.93 ± .86 6.94 ± .58

forestcover12 22.66 ± .11 23.15 ± .40 25.61 ± .06 22.46 ± .09 22.20 ± .11 22.73 ± .15
particle 8.22 ± .10 9.46 ± .25 11.16 ± .17 7.98 ± .10 8.08 ± .07 8.57 ± .12

ringnorm 2.53 ± .07 46.9 ± .89 27.1 ± 10.8 2.69 ± .08 4.59 ± .25 2.80 ± .10
twonorm 2.89 ± .07 4.86 ± .61 2.74 ± .07 2.86 ± .06 2.58 ± .06 3.06 ± .07
Yahoo! 36.57 ± .05 37.56 ± .39 40.31 ± .05 36.50 ± .27 37.20 ± .06 36.89 ± .21

Table 3: Test error and standard error (%) using 300 depth three decision trees

AdaBoost DistBoost DIvote PreWeak AdaSampling 1/10
ocr17 .39 ± .16 2.16 ± .49 .94 ± .29 .41 ± .16 .40 ± .18 .98 ± .52
ocr49 1.61 ± .36 3.97 ± .72 2.50 ± .52 1.76 ± .42 2.79 ± .47 3.10 ± .30

forestcover12 20.86 ± .44 20.96 ± .66 22.13 ± .06 18.72 ± .24 19.55 ± .17 20.99 ± .46
particle 6.75 ± .09 8.39 ± .18 7.35 ± .08 7.09 ± .09 6.25 ± .13 7.21 ± .09

ringnorm 1.81 ± .05 5.97 ± .99 2.06 ± .05 2.13 ± .07 2.15 ± .06 2.25 ± .07
twonorm 3.09 ± .09 4.10 ± .15 2.58 ± .05 3.28 ± .08 3.14 ± .06 3.08 ± .07
Yahoo! 34.99 ± .08 35.61 ± .10 37.40 ± .02 35.12 ± .01 35.31 ± .04 35.56 ± .03

Our results on Yahoo! data are averaged over 3 experiments. The results on the remaining datasets
are averaged over 15 experiments. In each experiment, we randomly partition the data into training
and test sets. We compare ensembles of stumps and of unpruned depth 3 decision trees, with each
algorithm performing 300 rounds of boosting – a large enough number elucidate trends in error rates.
DIvote built an ensemble of 300 trees at each site, resulting in a total ensemble of 3, 000 trees.

Graphs comparing error rate to the number of trees in each algorithm’s ensemble are shown in Fig-
ure 3 and Figure 4. In every case, DistBoost stops boosting after a small number of rounds,
while PreWeak boosts at the same rate as AdaBoost. These results support our conclusion that
DistBoost’s weak learners overfit the training data at each site, while PreWeak is able to con-
tinually drive down the training error. We noticed that on the ocr17 and ocr49 datasets, PreWeak
and AdaBoost both had 0% training error when using depth three trees.

Table 2 shows the results for decision stumps. PreWeak outperformed AdaBoost on every dataset
except ringnorm. On ringnorm, PreWeak remained competitive with AdaBoost and drastically
outperformed DistBoost and DIvote. AdaSampling was competitive with AdaBoost on
all but 2 datasets. Further, it outperformed DIvote and DistBoost on every dataset.

Table 3 shows the results with depth three decision trees. Except for twonorm, the classifiers are all
more accurate with depth 3 trees. On twonorm, AdaBoost, PreWeak, and AdaSampling all
performed worse with depth 3 trees. Further, PreWeak and AdaSampling (and DistBoost)
lost to 1/10, the version of AdaBoost trained using 1/10 of the data. PreWeak and
AdaSampling also lost to DIvote on ringnorm, the other synthetic dataset. However, PreWeak
and AdaSampling were more accurate than DIvote on the remaining four datasets. In addition,
AdaSampling with decision stumps was just as accurate as DIvote with depth three trees.

5 Discussion

We presented two new algorithms for distributed boosting. Both of our algorithms are competi-
tive with AdaBoost when it is trained with the entire dataset, and both algorithms outperform
DistBoost on every dataset on which we experimented. Further, PreWeak was able to boost its
accuracy at the same rate as AdaBoost.

Like DIvote, AdaSampling requires no communication between sites yet outperformed it on
several datasets. AdaSampling, however, was substantially worse than AdaBoost on two of
the datasets. It remains open to create a boosting algorithm that is competitive in accuracy to
AdaBoost on all six datasets yet requires as little communication as DIvote.

8

References
[1] Agarwal, A.; Chapelle, O.; Dudı́k, M.; and Langford, J. 2011. A reliable effective terascale

linear learning system. CoRR abs/1110.4198.
[2] Bradley, J. K., and Schapire, R. E. 2007. FilterBoost: Regression and classification on large

datasets. In Advances in Neural Information Processing Systems, volume 20.
[3] Breiman, L. 1996. Bagging predictors. Machine Learning 24(2):123–140.
[4] Breiman, L. 1999a. Pasting small votes for classification in large databases and on-line. Machine

Learning 36(1-2):85–103.
[5] Breiman, L. 1999b. Prediction games and arcing algorithms. Neural Computation 11(7):1493–

1517.
[6] Caruana, R., and Niculescu-Mizil, A. 2006. An empirical comparison of supervised learning

algorithms. In Cohen, W. W., and Moore, A., eds., ICML, volume 148 of ACM International
Conference Proceeding Series, 161–168. ACM.

[7] Chawla, N. V.; Hall, L. O.; Bowyer, K. W.; and Kegelmeyer, W. P. 2004. Learning ensembles
from bites: A scalable and accurate approach. Journal of Machine Learning Research 5:421–451.

[8] Cortes, C., and Vapnik, V. 1995. Support-vector networks. Machine Learning 20(3):273–297.
[9] Fan, W.; Stolfo, S. J.; and Zhang, J. 1999. The application of adaboost for distributed, scalable

and online learning. In Pages 362366 of: SIGKDD Conference on Knowledge and Data Mining
(KDD.

[10] Freund, Y., and Schapire, R. E. 1996a. Experiments with a new boosting algorithm. In Saitta,
L., ed., ICML, 148–156. Morgan Kaufmann.

[11] Freund, Y., and Schapire, R. E. 1996b. Game theory, on-line prediction and boosting. In
In Proceedings of the Ninth Annual Conference on Computational Learning Theory, 325–332.
ACM Press.

[12] Freund, Y., and Schapire, R. E. 1997. A decision-theoretic generalization of on-line learning
and an application to boosting. J. Comput. Syst. Sci. 55(1):119–139.

[13] Karmaker, A., and Kwek, S. 2006. A boosting approach to remove class label noise. Int. J.
Hybrid Intell. Syst. 3(3):169–177.

[14] Lazarevic, A., and Obradovic, Z. 2001. The distributed boosting algorithm. In Lee, D.;
Schkolnick, M.; Provost, F. J.; and Srikant, R., eds., KDD, 311–316. ACM.

[15] Panda, B.; Herbach, J. S.; Basu, S.; and Bayardo, R. J. 2009. Planet: Massively parallel
learning of tree ensembles with mapreduce. In Proceedings of the 35th International Conference
on Very Large Data Bases (VLDB-2009).

[16] Quinlan, J. R. 1996. Bagging, boosting, and c4.5. In Clancey, W. J., and Weld, D. S., eds.,
AAAI/IAAI, Vol. 1, 725–730. AAAI Press / The MIT Press.

[17] Tyree, S.; Weinberger, K. Q.; and Agrawal, K. 2011. Parallel boosted regression trees for web
search ranking. In Proceedings of the 20th International World Wide Web Conference (WWW-
2011).

[18] Yahoo! Labs. 2014. Webscope dataset ydata-frontpage-todaymodule-clicks-v1 0.
http://labs.yahoo.com/Academic Relations.

9

