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Outline 

1. What is low rank approximation? 

2. How do we solve it offline? 

3. How do we solve it in a distributed setting? 
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Low rank approximation  

§  A is an n x d matrix 
§  Think of n points in Rd  

§  E.g., A is a customer-product matrix 
§  Ai,j = how many times customer i purchased item j 

§  A is typically well-approximated by low rank matrix 
§  E.g., high rank because of noise 

§  Goal: find a low rank matrix approximating A 
§  Easy to store, data more interpretable 
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What is a good low rank approximation?  

Singular Value Decomposition (SVD) 
Any matrix A = U ¢ Σ ¢ V 

§  U has orthonormal columns 
§  Σ is diagonal with non-increasing positive 
entries down the diagonal 
§  V has orthonormal rows 

§  Rank-k approximation: Ak = Uk ¢ Σk ¢ Vk 

Ak = argminrank k matrices B |A-B|F 
 
 

(|C|F = (Σi,j Ci,j2)1/2 ) 
 
Computing Ak exactly is 
expensive  
 

The rows of Vk are 
the top k principal 

components 
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Low rank approximation  

§  Goal: output a rank k matrix A’, so that 
|A-A’|F · (1+ε) |A-Ak|F 

 

§  Can do this in nnz(A) + (n+d)*poly(k/ε) time [S,CW] 
§  nnz(A) is number of non-zero entries of A 
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Solution to low-rank approximation [S] 

§  Given n x d input matrix A 
§  Compute S*A using a sketching matrix S with k/ε << n 

rows. S*A takes random linear combinations of rows of A 

SA 

A 

§  Project rows of A onto SA, then find best rank-k 
approximation to points inside of SA.  
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What is the matrix S? 

§  S can be a k/ε x n matrix of i.i.d. normal random 
variables 

§  [S] S can be a k/ε x n Fast Johnson Lindenstrauss 
Matrix 
§  Uses Fast Fourier Transform 

§   [CW] S can be a poly(k/ε) x n CountSketch matrix 

[ [

0 0 1 0  0 1  0 0  
1 0 0 0  0 0  0 0 
0 0 0 -1 1 0 -1 0 
0-1 0 0  0 0  0 1 

S ¢ A can be 
computed in 
nnz(A) time! 
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Caveat: projecting the points onto SA is slow  

 

§  Current algorithm:  
1. Compute S*A  
2. Project each of the rows onto S*A 
3. Find best rank-k approximation of projected points 

inside of rowspace of S*A  

§  Bottleneck is step 2  

§  [CW] Approximate the projection 
§  Fast algorithm for approximate regression  

minrank-k X |X(SA)-A|F2 

§  nnz(A) + (n+d)*poly(k/ε) time 
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Distributed low rank approximation  

§  We have fast algorithms, but can they be made to work 
in a distributed setting? 

§  Matrix A distributed among s servers 

§  For t = 1, …, s, we get a customer-product matrix from 
the t-th shop stored in server t. Server t’s matrix = At 

§  Customer-product matrix A = A1 + A2 + … + As 

§  More general than row-partition model in which each 
customer shops in only one shop 
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Communication cost of low rank approximation  

§  Input: n x d matrix A stored on s servers 
§  Server t has n x d matrix At 
§  A = A1 + A2 + … + As 

§  Output: Server t has n x d matrix Ct satisfying 
§  C = C1 + C2 + … + Cs has rank at most k 
§  |A-C|F · (1+ε)|A-Ak|F 

§  Application: distributed clustering 

§  Resources: Each server is polynomial time, linear 
space, communication is O(1) rounds. Bound the total 
number of words communicated 

§  [KVW]: O(skd/ε) communication, independent of n 
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Protocol  

§  Designate one machine the Central Processor (CP) 

§  Let S be one of the poly(k/ε) x n random matrices above 
§  S can be generated pseudorandomly from small seed 
§  CP chooses small seed for S and sends it to all servers 

§  Server t computes SAt and sends it to CP 

§  CP computes Σi=1
s SAt = SA 

§  CP sends orthonormal basis UT for row space of SA to each 
server 

§  Server t computes AtU 

Problems: 
 
§  Can’t output AtUUT since rank too large  

§  Could communicate AtU to CP, then CP 
computes SVD of Σt AtU UT = AUUT 

§  But communicating AtU depends on n 



12 

Approximate SVD lemma 

§  Problem reduces to 
§  Server t has n x r matrix Bt = AtU, where r = poly(k/ε) 
§  B = Σt Bt 
§  CP outputs top k principal components of B 

§  Approximate SVD 
§  If WT 2 Rk x r is the matrix of top k principal components of PB, 

where P is a random r/ε2 x n matrix,   
|B-BW WT|F · (1+ε) |B-Bk|F 

§  CP sends P to every server 
§  Server t sends PBt to CP who computes PB = Σt PBt 

§  CP computes W, sends everyone W 

Communication 
independent of n! 
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The protocol 

§  Phase 1: 

§  Learn an orthonormal basis U for row space of SA 

U 

optimal space in U 

cost · (1+ε)|A-Ak|F 
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The protocol 

§  Phase 2: 

§  Find an approximately optimal space W inside of U 

U 

optimal space in U 

approximate  
space W in U 

cost · (1+ε)2|A-Ak|F 
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Conclusion 

§  O(sdk/ε) communication protocol for low rank approximation 

§  A bit sloppy with words vs. bits but can be dealt with 

§  Almost matching Ω(sdk) bit lower bound 
§  Can be strengthened to Ω(sdk/ε) in one-way model 
§  Can we remove the one-way restriction? 

§  Communication cost of other optimization problems? 
§  Linear programming 
§  Frequency moments 
§  Matching 
§  etc.  


