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Outline

What is low rank approximation?

How do we solve it offline?

How do we solve it in a distributed setting?



Low rank approximation

Ais an n x d matrix
Think of n points in R

E.g., Ais a customer-product matrix
A;; = how many times customer i purchased item |

A is typically well-approximated by low rank matrix
E.g., high rank because of noise

Goal: find a low rank matrix approximating A
Easy to store, data more interpretable



What is a good low rank approximation?

Singular

Any Mg Ak = ar.gmmrank k matrices B |A'B|F
|

The rows of V, are
the top k principal
components




Low rank approximation

Goal: output a rank k matrix A", so that
A-A [ - (1+E) [A-A

Can do this in nnz(A) + (n+d)*poly(k/¢) time [S,CW]
nnz(A) is number of non-zero entries of A



Solution to low-rank approximation [S]

Given n x d input matrix A

Compute S*A using a sketching matrix S with k/e << n
rows. S*A takes random linear combinations of rows of A

/

Project rows of A onto SA, then find best rank-k
approximation to points inside of SA.



What is the matrix S?

= S can be a k/e x n matrix of i.i.d. normal random

variables

= [S] S can be a k/e x n Fast Johnson Lindenstrauss

Matrix
= Uses Fast Fourier Transform

= [CW] S can be a poly(k/e) x n CountSketch matrix
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S ¢ Acan be
computed Iin
nnz(A) time!




Caveat: projecting the points onto SA is slow

Current algorithm:
Compute S*A
Project each of the rows onto S*A

Find best rank-k approximation of projected points
inside of rowspace of S*A

Bottleneck is step 2

[CW] Approximate the projection
Fast algorithm for approximate regression
minrank-kX |X(SA)'A|F2

nnz(A) + (n+d)*poly(k/e) time



Distributed low rank approximation

We have fast algorithms, but can they be made to work
in a distributed setting?

Matrix A distributed among s servers

Fort=1, ..., s, we get a customer-product matrix from
the t-th shop stored in server t. Server t’' s matrix = At

Customer-product matrix A=AT+ A2+ . + AS

More general than row-partition model in which each
customer shops in only one shop



Communication cost of low rank approximation

Input: n x d matrix A stored on s servers
Server t has n x d matrix At
A=AT+AZ+  +AS

Output: Server t has n x d matrix Ct satisfying
C=C'+(C?2+ ...+ Cshasrank at most k
ACle - (1+€)IA-A-
Application: distributed clustering

Resources: Each server is polynomial time, linear
space, communication is O(1) rounds. Bound the total
number of words communicated

[KVW]: O(skd/e) communication, independent of n



Protocol

Designate one machine the Ce

Problems:

= Can’ t output AtUUT since rank too large

= Could communicate AU to CP, then CP
computes SVD of &, AlU UT= AUUT

= But communicating AU depends on n

Server t computes AU



Approximate SVD lemma

Problem reduces to
Serverthas nxrma
B =2, Bt
CP outputs top Kk [

Communication
independent of n!

Approximate SVD

If WT 2 Rkx" js the matrix of top k principal components of PB,
where P is a random r/€2 x n matrix,

IB-BW WT[¢ - (1+¢€) |B-B,|r

CP sends P to every server

Server t sends PB!to CP who computes PB = %, PB!
CP computes W, sends everyone W



The protocol

Phase 1:

Learn an orthonormal basis U for row space of SA

optimal space in U
/

cost - (1+¢€)|A-A |



The protocol

Phase 2:

Find an approximately optimal space W inside of U

optimal space in U
/

v

\
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cost - (1+€)?|A-A, |-



Conclusion

O(sdk/e) communication protocol for low rank approximation

A bit sloppy with words vs. bits but can be dealt with

Almost matching Q(sdk) bit lower bound
Can be strengthened to Q(sdk/e) in one-way model
Can we remove the one-way restriction?

Communication cost of other optimization problems?
Linear programming
Frequency moments
Matching
etc.



