Partitioning for PageRank
Motivation

Recall from first lecture that network bandwidth is \(\sim 100 \times \) as expensive as memory bandwidth.

One way Spark avoids using it is through locality-aware scheduling for RAM and disk.

Another important tool is controlling the partitioning of RDD contents across nodes.
Spark PageRank

Given directed graph, compute node importance. Two RDDs:

» Neighbors (a sparse graph/matrix)

» Current guess (a vector)

Best representation for vector and matrix?
Example

1. Start each page at a rank of 1
2. On each iteration, have page \(p \) contribute \(\frac{\text{rank}_p}{|\text{neighbors}_p|} \) to its neighbors
3. Set each page’s rank to \(0.15 + 0.85 \times \text{contribs} \)

```scala
val links = // RDD of (url, neighbors) pairs
var ranks = // RDD of (url, rank) pairs

for (i <- 1 to ITERATIONS) {
  val contribs = links.join(ranks).flatMap {
    case (url, (links, rank)) =>
      links.map(dest => (dest, rank/links.size))
  }
  ranks = contribs.reduceByKey(_ + _).mapValues(.15 + .85*_)
}
```
Execution

Input File

map

Links
(url, neighbors)

Ranks_0
(url, rank)

join

Contribs_0

reduceByKey

Ranks_1

join

Contribs_2

reduceByKey

Ranks_2

... links and ranks are repeatedly joined

Each join requires a full shuffle over the network
 » Hash both onto same nodes

links

A-F

G-L

M-R

S-Z

Map tasks

Reduce tasks
Solution

Pre-partition the links RDD so that links for URLs with the same hash code are on the same node

```scala
val ranks = // RDD of (url, rank) pairs
val links = sc.textFile(...).map(...) .partitionBy(new HashPartitioner(8))

for (i <- 1 to ITERATIONS) {
  ranks = links.join(ranks).flatMap {
    (url, (links, rank)) =>
      links.map(dest => (dest, rank/links.size))
  }.reduceByKey(_ + _) .mapValues(0.15 + 0.85 * _)
}
```
New Execution

Input File → Links → Ranks

- map
- partitionBy

Links not shuffled

Ranks also not shuffled

Ranks₀ → join → flatMap → reduceByKey

Ranks₁ → join → flatMap → reduceByKey

Ranks₂ → ...

How it works

Each RDD has an optional Partitioner object

Any shuffle operation on an RDD with a Partitioner will respect that Partitioner

Any shuffle operation on two RDDs will take on the Partitioner of one of them, if one is set
Examples

```javascript
pages.join(visits).reduceByKey(...)
```

Output of join is already partitioned

```javascript
pages.join(visits).map(...).reduceByKey(...)
```

map loses knowledge about partitioning

```javascript
pages.join(visits).mapValues(...).reduceByKey(...)
```

mapValues retains keys unchanged
Main Conclusion

Controlled partitioning can avoid unnecessary all-to-all communication, saving computation

Repeated joins generalizes to repeated Matrix Multiplication, opening many algorithms from Numerical Linear Algebra
Performance

Why it helps so much: Links RDD is much bigger in bytes than ranks!
RDD partitioner

Use the `.partitioner` method on RDD

```scala
scala> val a = sc.parallelize(List(((1, 1), (2, 2))))
scala> val b = sc.parallelize(List(((1, 1), (2, 2))))
scala> val joined = a.join(b)

scala> a.partitioner
res0: Option[Partitioner] = None

scala> joined.partitioner
res1: Option[Partitioner] = Some(HashPartitioner@286d41c0)
```
Custom Partitioning

Can define your own subclass of Partitioner to leverage domain-specific knowledge

Example: in PageRank, hash URLs by domain name, because may links are internal

class DomainPartitioner extends Partitioner {
 def numPartitions = 20

 def getPartition(key: Any): Int =
 parseDomain(key.toString).hashCode % numPartitions

 def equals(other: Any): Boolean =
 other.asInstanceOf[DomainPartitioner]
}