Communication Patterns

Reza Zadeh

@Reza_Zadeh | http://reza-zadeh.com
Outline

Shipping code to the cluster
Shuffling
Broadcasting
Other programming languages
Outline

Shipping code to the cluster
Life of a Spark Program

1) Create some input RDDs from external data or parallelize a collection in your driver program.

2) Lazily transform them to define new RDDs using transformations like filter() or map()

3) Ask Spark to cache() any intermediate RDDs that will need to be reused.

4) Launch actions such as count() and collect() to kick off a parallel computation, which is then optimized and executed by Spark.
Example Transformations

<table>
<thead>
<tr>
<th>Function</th>
<th>Function</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>map()</td>
<td>intersection()</td>
<td>cartesian()</td>
</tr>
<tr>
<td>flatMap()</td>
<td>distinct()</td>
<td>pipe()</td>
</tr>
<tr>
<td>filter()</td>
<td>groupByKey()</td>
<td>coalesce()</td>
</tr>
<tr>
<td>mapPartitions()</td>
<td>reduceByKey()</td>
<td>repartition()</td>
</tr>
<tr>
<td>mapPartitionsWithIndex()</td>
<td>sortByKey()</td>
<td>partitionBy()</td>
</tr>
<tr>
<td>sample()</td>
<td>join()</td>
<td>...</td>
</tr>
<tr>
<td>union()</td>
<td>cogroup()</td>
<td>...</td>
</tr>
</tbody>
</table>
Example Actions

reduce()
collect()
count()
first()
take()
takeSample()
saveToCassandra()
takeOrdered()
saveAsTextFile()
saveAsSequenceFile()
saveAsObjectFile()
countByKey()
foreach()
saveToCassandra()...
Sending your code to the cluster
RDD → Stages → Tasks

RDD Objects

- rdd1.
 - `join(rdd2)`
 - `groupBy(…)`
 - `filter(…)`

- build operator DAG

DAG Scheduler

- split graph into *stages* of tasks
- submit each stage as ready

Task Scheduler

- launch tasks via cluster manager
- retry failed or straggling tasks

Worker

- Threads
- Block manager

- execute tasks
- store and serve blocks
Communication Patterns

Narrow Dependencies:
- map, filter
- union

Wide Dependencies:
- groupByKey
- join with inputs not co-partitioned
Example Stages

- **A**: RDD
- **B**: cached partition
- **C**: lost partition

Stage 1: A (RDD) -> B (groupBy)

Stage 2: C (RDD) -> D (map) -> E (filter)

Stage 3: E (RDD) -> join

Diagram shows the flow of data through three stages with operations like join and filter.
Talking to Cluster Manager

Manager can be:

- YARN
- Mesos
- Spark Standalone
Shuffling
Shuffle

= groupByKey
 sortByKey
 reduceByKey

Sort: use advances in sorting single-machine memory-disk operations for all-to-all communication
Sorting

Distribute Timsort, which is already well-adapted to respecting disk vs memory

Sample points to find good boundaries

Each machine sorts locally and builds an index
Sorting (shuffle)

<table>
<thead>
<tr>
<th></th>
<th>Hadoop World Record</th>
<th>Spark 100 TB *</th>
<th>Spark 1 PB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Size</td>
<td>102.5 TB</td>
<td>100 TB</td>
<td>1000 TB</td>
</tr>
<tr>
<td>Elapsed Time</td>
<td>72 mins</td>
<td>23 mins</td>
<td>234 mins</td>
</tr>
<tr>
<td># Nodes</td>
<td>2100</td>
<td>206</td>
<td>190</td>
</tr>
<tr>
<td># Cores</td>
<td>50400</td>
<td>6592</td>
<td>6080</td>
</tr>
<tr>
<td># Reducers</td>
<td>10,000</td>
<td>29,000</td>
<td>250,000</td>
</tr>
<tr>
<td>Rate</td>
<td>1.42 TB/min</td>
<td>4.27 TB/min</td>
<td>4.27 TB/min</td>
</tr>
<tr>
<td>Rate/node</td>
<td>0.67 GB/min</td>
<td>20.7 GB/min</td>
<td>22.5 GB/min</td>
</tr>
<tr>
<td>Sort Benchmark</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Dayton Rules</td>
<td>dedicated data center</td>
<td>EC2 (i2.8xlarge)</td>
<td>EC2 (i2.8xlarge)</td>
</tr>
</tbody>
</table>

Distributed TimSort
Example Join

```scala
// Load RDD of (URL, name) pairs
val pageNames = sc.textFile("pages.txt").map(...)

// Load RDD of (URL, visit) pairs
val visits = sc.textFile("visits.txt").map(...)

val joined = visits.join(pageNames)
```

Shuffles both pageNames and visits over network
Broadcasting
Broadcasting

Often needed to propagate current guess for optimization variables to all machines

The exact wrong way to do it is with “one machines feeds all” – use bit-torrent instead

Needs $\log(n)$ rounds of communication
Bit-torrent Broadcast
Broadcast Rules

Create with SparkContext.broadcast(initialVal)

Access with .value inside tasks (first task on each node to use it fetches the value)

Cannot be modified after creation
Replicated Join

```scala
val pageNames = sc.textFile("pages.txt").map(...)
val pageMap = pageNames.collect().toMap()
val bc = sc.broadcast(pageMap)

val visits = sc.textFile("visits.txt").map(...)

val joined = visits.map(v => (v._1, (bc.value(v._1), v._2)))
```

- **Type is Broadcast[Map[...]]**
- **Call .value to access value**

Only sends pageMap to each node once
Model Broadcast

\[
w \leftarrow w - \alpha \cdot \sum_{i=1}^{n} g(w; x_i, y_i)
\]

val points = spark.textFile(...).map(parsePoint).cache()
var w = Vector.zeros(d)
for (i <- 1 to numIterations) {
 val gradient = points.map { p =>
 (1 / (1 + exp(-p.y * w.dot(p.x))) - 1) * p.y * p.x
 }
 w -= alpha * gradient
}
Model Broadcast

$$w \leftarrow w - \alpha \cdot \sum_{i=1}^{n} g(w; x_i, y_i)$$

Call `sc.broadcast`

```scala
val points = spark.textFile(...).map(parsePoint).cache()
var w = Vector.zeros(d)
for (i <- 1 to numIterations) {
  val gradient = points.map { p =>
    (1 / (1 + exp(-p.y * w.dot(p.x))) - 1) * p.y * p.x
  }.reduce(_ + _)
  w = alpha * gradient
}

Use via .value
Spark for Python (PySpark)
PySpark and Pipes

Spark core is written in Scala

PySpark calls existing scheduler, cache and networking layer (2K-line wrapper)

No changes to Python