Covariance Matrices & All-pairs Similarity

Reza Zadeh

April 2015, Stanford DAO
Notation for matrix A

- Given $m \times n$ matrix A, with $m \gg n$.

$$A = \begin{pmatrix}
a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\
a_{2,1} & a_{2,2} & \cdots & a_{2,n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m,1} & a_{m,2} & \cdots & a_{m,n}
\end{pmatrix}$$

- A is tall and skinny, example values $m = 10^{12}$, $n = \{10^4, 10^6\}$.
- A has sparse rows, each row has at most L nonzeros.
- A is stored across hundreds of machines and cannot be streamed through a single machine.
We compute $A^T A$.

- $A^T A$ is $n \times n$, considerably smaller than A.
- $A^T A$ is dense.
- Holds dot products between all pairs of columns of A.
Guarantees

There is a knob γ which can be turned to preserve similarities and singular values. Paying $O(nL\gamma)$ communication cost and $O(\gamma)$ computation cost.

- With a low setting of γ, preserve similar entries of $A^T A$ (via Cosine, Dice, Overlap, and Jaccard similarity).
- With a high setting of γ, preserve singular values of $A^T A$.
Computing All Pairs of Cosine Similarities

- We have to find dot products between all pairs of columns of A
- We prove results for general matrices, but can do better for those entries with $\cos(i, j) \geq s$
- Cosine similarity: a widely used definition for "similarity" between two vectors

$$\cos(i, j) = \frac{c_i^T c_j}{||c_i|| \cdot ||c_j||}$$

- c_i is the i^{th} column of A
Example matrix

Rows: users.
Columns: movies.
With such large datasets, we must use many machines.
Algorithm code available in Spark and Scalding.
Described with Maps and Reduces so that the framework takes care of distributing the computation.
Naive Implementation

1. Given row r_i, Map with NaiveMapper (Algorithm 1)
2. Reduce using the NaiveReducer (Algorithm 2)

Algorithm 1 NaiveMapper(r_i)

```plaintext
for all pairs $(a_{ij}, a_{ik})$ in $r_i$ do
    Emit ($(j, k) \rightarrow a_{ij}a_{ik}$)
end for
```

Algorithm 2 NaiveReducer($(i, j), \langle v_1, \ldots, v_R \rangle$)

```plaintext
output $c_i^Tc_j \rightarrow \sum_{i=1}^R v_i$
```
Very easy analysis
1) Shuffle size: $O(mL^2)$
2) Largest reduce-key: $O(m)$

Both depend on m, the larger dimension, and are intractable for $m = 10^{12}$, $L = 100$.

We’ll bring both down via clever sampling

Assuming column norms are known or estimates available
Algorithm 3 DIMSUMMapper(r_i)

for all pairs (a_{ij}, a_{ik}) in r_i do

With probability $\min\left(1, \gamma \frac{1}{||c_j|| ||c_k||}\right)$
emit $((j, k) \rightarrow a_{ij}a_{ik})$

end for

Algorithm 4 DIMSUMReducer($((i,j), \langle v_1, \ldots, v_R \rangle)$)

if $\frac{\gamma}{||c_i|| ||c_j||} > 1$ then

output $b_{ij} \rightarrow \frac{1}{||c_i|| ||c_j||} \sum_{i=1}^{R} v_i$

else

output $b_{ij} \rightarrow \frac{1}{\gamma} \sum_{i=1}^{R} v_i$

end if
The algorithm outputs b_{ij}, which is a matrix of cosine similarities, call it B. Four things to prove:

1. Shuffle size: $O(nL\gamma)$
2. Largest reduce-key: $O(\gamma)$
3. The sampling scheme preserves similarities when $\gamma = \Omega(\log(n)/s)$
4. The sampling scheme preserves singular values when $\gamma = \Omega(n/\epsilon^2)$
Theorem

For \(\{0, 1\} \) matrices, the expected shuffle size for DIMSUMMapper is \(O(nL^\gamma) \).

Proof.

The expected contribution from each pair of columns will constitute the shuffle size:

\[
\sum_{i=1}^{n} \sum_{j=i+1}^{n} \sum_{k=1}^{\#(c_i,c_j)} \Pr[\text{DIMSUMEmit}(c_i, c_j)]
\]

\[
= \sum_{i=1}^{n} \sum_{j=i+1}^{n} \#(c_i, c_j) \Pr[\text{DIMSUMEmit}(c_i, c_j)]
\]
Proof.

\[
\leq \sum_{i=1}^{n} \sum_{j=i+1}^{n} \frac{\gamma \#(c_i, c_j)}{\sqrt{\#(c_i)} \sqrt{\#(c_j)}}
\]
Proof.

\[
\leq \sum_{i=1}^{n} \sum_{j=i+1}^{n} \gamma \frac{\#(c_i, c_j)}{\sqrt{\#(c_i)} \sqrt{\#(c_j)}}
\]

(by AM-GM)

\[
\leq \frac{\gamma}{2} \sum_{i=1}^{n} \sum_{j=i+1}^{n} \#(c_i, c_j) \left(\frac{1}{\#(c_i)} + \frac{1}{\#(c_j)} \right)
\]
Shuffle size for DIMSUM

Proof.

\[
\leq \sum_{i=1}^{n} \sum_{j=i+1}^{n} \frac{\gamma \#(c_i, c_j)}{\sqrt{\#(c_i)}} \sqrt{\#(c_j)}
\]

(by AM-GM)

\[
\leq \frac{\gamma}{2} \sum_{i=1}^{n} \sum_{j=i+1}^{n} \#(c_i, c_j) \left(\frac{1}{\#(c_i)} + \frac{1}{\#(c_j)} \right)
\]

\[
\leq \gamma \sum_{i=1}^{n} \frac{1}{\#(c_i)} \sum_{j=1}^{n} \#(c_i, c_j)
\]
Shuffle size for DIMSUM

Proof.

\[
\leq \sum_{i=1}^{n} \sum_{j=i+1}^{n} \gamma \frac{\#(c_i, c_j)}{\sqrt{\#(c_i)} \sqrt{\#(c_j)}}
\]

(by AM-GM)

\[
\leq \frac{\gamma}{2} \sum_{i=1}^{n} \sum_{j=i+1}^{n} \#(c_i, c_j) \left(\frac{1}{\#(c_i)} + \frac{1}{\#(c_j)} \right)
\]

\[
\leq \gamma \sum_{i=1}^{n} \frac{1}{\#(c_i)} \left(\sum_{j=1}^{\#(c_i)} \#(c_i, c_j) \right)
\]

\[
\leq \gamma \sum_{i=1}^{n} \frac{1}{\#(c_i)} L\#(c_i) = \gamma Ln
\]
$O(nLγ)$ has no dependence on the dimension m, this is the heart of DIMSUM.

Happens because higher magnitude columns are sampled with lower probability:

$$\gamma \frac{1}{||c_1|| ||c_2||}$$
For matrices with real entries, we can still get a bound

Let H be the smallest nonzero entry in magnitude, after all entries of A have been scaled to be in $[-1, 1]$

E.g. for $\{0, 1\}$ matrices, we have $H = 1$

Shuffle size is bounded by $O(nL\gamma/H^2)$
Largest reduce key for DIMSUM

- Each reduce key receives at most γ values (the oversampling parameter)
- Immediately get that reduce-key complexity is $O(\gamma)$
- Also independent of dimension m. Happens because high magnitude columns are sampled with lower probability.
Correctness

Since higher magnitude columns are sampled with lower probability, are we guaranteed to obtain correct results w.h.p.?

- Yes. By setting γ correctly.
- Preserve similarities when $\gamma = \Omega(\log(n)/s)$
- Preserve singular values when $\gamma = \Omega(n/\epsilon^2)$
Theorem

Let A be an $m \times n$ tall and skinny ($m > n$) matrix. If $\gamma = \Omega(n/\epsilon^2)$ and D a diagonal matrix with entries $d_{ii} = ||c_i||$, then the matrix B output by DIMSUM satisfies,

$$\frac{||DBD - A^T A||_2}{||A^T A||_2} \leq \epsilon$$

with probability at least $1/2$.

Relative error guaranteed to be low with constant probability.
Proof

- Uses Latala’s theorem, bounds 2nd and 4th central moments of entries of B.
- Really need extra power of moments.
Theorem

(Latala’s theorem). Let X be a random matrix whose entries x_{ij} are independent centered random variables with finite fourth moment. Denoting $\|X\|_2$ as the matrix spectral norm, we have

$$
\mathbb{E} \|X\|_2 \leq C \left[\max_i \left(\sum_j \mathbb{E} x_{ij}^2 \right)^{1/2} + \max_j \left(\sum_i \mathbb{E} x_{ij}^2 \right)^{1/2} + \left(\sum_{i,j} \mathbb{E} x_{ij}^4 \right)^{1/4} \right].
$$
Proof

Prove two things

1. \(\mathbb{E}[(b_{ij} - Eb_{ij})^2] \leq \frac{1}{\gamma} \) (easy)
2. \(\mathbb{E}[(b_{ij} - Eb_{ij})^4] \leq \frac{2}{\gamma^2} \) (not easy)

Details in paper.
Correctness

Theorem

For any two columns \(c_i\) and \(c_j\) having \(\cos(c_i, c_j) \geq s\), let \(B\) be the output of DIMSUM with entries \(b_{ij} = \frac{1}{\gamma} \sum_{k=1}^{m} X_{ijk}\) with \(X_{ijk}\) as the indicator for the \(k\)'th coin in the call to DIMSUMMapper. Now if \(\gamma = \Omega(\alpha/s)\), then we have,

\[
\Pr \left[\|c_i\| \|c_j\| b_{ij} > (1 + \delta)[A^T A]_{ij} \right] \leq \left(\frac{e^{\delta}}{(1 + \delta)(1+\delta)} \right)^{\alpha}
\]

and

\[
\Pr \left[\|c_i\| \|c_j\| b_{i,j} < (1 - \delta)[A^T A]_{ij} \right] < \exp(-\alpha \delta^2 / 2)
\]

Relative error guaranteed to be low with high probability.
Proof.

- In the paper
- Uses standard concentration inequality for sums of indicator random variables.
- Ends up requiring that the oversampling parameter γ be set to $\gamma = \log(n^2)/s = 2\log(n)/s$.
Observations

- DIMSUM helpful when there are some popular columns
- e.g. The Netflix Matrix (some columns way more popular than others)
- Power-law columns are effectively neutralized
In practice

- Forget about theoretical settings for γ
- Crank up γ until application works
- Estimates for $\|c_i\|$ can be used, expectations still hold, but concentration isn’t guaranteed
- If using for singular values, watch for ill-conditioned matrices
Experiments

- Large scale production live at twitter.com
Experiments

Figure: Y-axis ranges from 0 to 100s of terabytes
Implementation

```scala
// Load and parse the data file.
val rows = sc.textFile(filename).map { line =>
    val values = line.split(' ').map(_.toDouble)
    Vectors.dense(values)
}
val mat = new RowMatrix(rows)

// Compute similar columns perfectly, with brute force.
val simsPerfect = mat.columnSimilarities()

// Compute similar columns with estimation using DIMSUM
val simsEstimate = mat.columnSimilarities(threshold)
```

Figure: Widely distributed with Spark as of version 1.2
Picking out similar columns work for some other similarity measures.

<table>
<thead>
<tr>
<th>Similarity</th>
<th>Definition</th>
<th>Shuffle Size</th>
<th>Reduce-key size</th>
</tr>
</thead>
</table>
| Cosine | \[
\frac{\#(x,y)}{\sqrt{\#(x)} \sqrt{\#(y)}}\] | \(O(nL \log(n)/s)\) | \(O(\log(n)/s)\) |
| Jaccard | \[
\frac{\#(x,y)}{\#(x)+\#(y)-\#(x,y)}\] | \(O((n/s) \log(n/s))\) | \(O(\log(n/s)/s)\) |
| Overlap | \[
\frac{\#(x,y)}{\min(\#(x),\#(y))}\] | \(O(nL \log(n)/s)\) | \(O(\log(n)/s)\) |
| Dice | \[
\frac{2\#(x,y)}{\#(x)+\#(y)}\] | \(O(nL \log(n)/s)\) | \(O(\log(n)/s)\) |

Table: All sizes are independent of \(m\), the dimension.
Locality Sensitive Hashing

- MinHash from the Locality-Sensitive-Hashing family can have its vanilla implementation greatly improved by DIMSUM.
- Another set of theorems for shuffle size and correctness in DISCO paper.

stanford.edu/~rezab/papers/disco.pdf
Consider DIMSUM if you ever need to compute $A^T A$ for large sparse A

Many more experiments and results in paper at stanford.edu/~rezab
Combiners

- All bounds are without combining: can only get better with combining
- For similarities, DIMSUM (without combiners) beats naive with combining outright
- For singular values, DIMSUM (without combiners) beats naive with combining if the number of machines is large (e.g. 1000)
- DIMSUM with combining empirically beats naive with combining
- Difficult to analyze combiners since they happen at many levels. Optimizations break models.
- DIMSUM with combiners is best of both.
With k machines

- DIMSUM shuffle with combiner: $O(\min(nL_\gamma, kn^2))$
- DIMSUM reduce-key with combiner: $O(\min(\gamma, k))$
- Naive shuffle with combiner: $O(kn^2)$
- Naive reduce-key with combiner: $O(k)$

DIMSUM with combiners is best of both.
Figure: As \(\gamma = \frac{p}{\varepsilon} \) increases, shuffle size increases and error decreases. There is no thresholding for highly similar pairs here.