
CME 323: Distributed Algorithms and Optimization
Instructor: Reza Zadeh (rezab@stanford.edu)

TA: Alex Yang (yangzj@stanford.edu)

HW#2 – Due Thursday May 4 (on Gradescope)

1. List Prefix Sums As described in class, List Prefix Sums is the task of determining
the sum of all the elements before each element in a list. Let us consider the following
simple variation.

• Select each element from the list randomly and independently with probability
1/ log n and add it to a set S. Add the head of the list to this set, and mark all
these elements in the list.

• Start from each element s ∈ S, and in parallel traverse the lists until you find
the next element in S (by detecting the mark) or the end of the list. For s ∈ S,
call this element found in this way next(s). While traversing, calculate the sum
from s to next(s) (inclusive of s but exclusive of next(s)), and call this sum(s).

• Create a list by linking each s ∈ S to next(s) and with each node having weight
sum(s).

• Compute the List Prefix Sums on this list using pointer jumping. Call the result
prefixsum(s).

• Go back to the original list, and again traverse from each s to next(s) starting
with the value prefixsum(s) and adding the value at each node to a running
sum and writing this into the node. Now all elements in the list should have the
correct prefix sum.

Analyze the work and depth of this algorithm. These should both be given with high
probability bounds.

Solution

Proposition. With high probability |S| = O(n/ log n).

Proof. We will show that the size of S is O(n/ log n) with high probability using a
Chernoff bound. Associate indicator variable Xi with the i-th element of the initial
list to indicate whether it has been selected for inclusion in S. Since we sample each
element with probability 1/ log n, we see that Xi’s are Bernoulli distributed where

Xi =

{
1 with probability 1/ log n,

0 otherwise.

Clearly, the Xi are independent. Since our Xi’s are indicators, then their probability
equals their expectation.1 By linearity of expectations,

E[X] = E

[
n∑

i=1

Xi

]
=

n∑
i=1

E[Xi] =
n∑

i=1

1

log n
=

n

log n
.

1This follows trivially, since E[Xi] = 1 · Pr(Xi = 1) + 0 · Pr(Xi = 0) = Pr(Xi = 1).



That is, in expectation |S| = n/ log n. Recall Chernoff’s Bound, for δ ∈ (0, 1),

Pr (X > (1 + δ)µ) < e−δ2µ/3.

We evaluate for δ = 1/2 and µ = n/ log n,

Pr(X > 3n/(2 log n)) < e
−n

12 logn

< e− logn =
1

n

We have used the fact that for sufficiently large n, n
12 logn

> log n. Note that the
analysis can be made more tight, but this probability bound will suffice to say that
with high probability, |S| = O(n/ log n).

Total Work We see that steps a, b, c and e all require O(n) work in the worst
case. In step d, we use pointer jumping to perform prefix sums of our linked list. This
algorithm, on a list of size n, requires O(n log n) work and O(log n) depth.2 Therefore,
step d requires |S| log |S| work. With high probability:

|S| log |S| ≤ 3n

2 log n
log

(
3n

2 log n

)
= O(n).

Total work, then, is O(n).

Total Depth Now we compute the total depth. Steps a and c have depth O(1)
because we may do all nodes in parallel. As we stated before, computing prefix sums
using pointer jumping on linked lists takes depth O(log |S|) = O(log(n/ log n). In steps
b and e we need to traverse all elements in the original list between elements in S, so
the depth of these steps will be the maximum length between elements in S. We will
show with high probability this maximum length will be less than 4 log2 n. If this claim
holds, then total depth for the algorithm will be O(log2 n) with high probability.

Proposition. The maximum length between elements in S is less than O(log2 n) with
high probability.

Proof. Consider dividing the original list into chunks of size 2 log2 n (so there will be
n/(2 log2 n) chunks). For every element in the original list, the probability it is not
chosen to S is (1 − 1/ log n), independently. The probability that all of the elements
in a particular chunk, ci, of the original list are not in S is given by:

Pr(e /∈ S,∀e ∈ ci) = (1− 1/ log n)2 log
2 n

= ((1− 1/ log n)logn)2 logn

≤ (1/e)2 logn <
1

n2

2Please see the Wikipedia page on pointer jumping and/or http://wwwmayr.informatik.
tu-muenchen.de/lehre/2013WS/pa/split/sub-Prefix-Sum-single.pdf for a discussion on
pointer jumping for prefix sums.

2



By union bound, we know the probability that all the chunks have at least one element
in S is ≤ n/(2 log2 n) · 1/n2 ≤ 1/n. So with high probability the maximum length
between elements in S is bounded by 4 log2 n (the maximum interval between points in
consecutive chunks). Thus, the depth of steps b and e is O(log2 n) with high probability,
and that is the total depth of the algorithm as well.

2. Shortest Path for Weighted Directed Graph Consider a directed graph G =
(V,E) with non-negative weights ω : E → R+. The task is to develop an algorithm to
efficiently find the shortest paths from the source s ∈ V to any other vertex v ∈ V , i.e.

p∗(v) = argminp valid

np∑
i=1

ωi(ui, ui+1),

where a valid path from source s to v is a sequence p = (u0, u1, . . . , unp) satisfying:

• u0 = s;

• unp = v;

• (ui, ui+1) ∈ E for i = 0, . . . , np.

Now assume that the operation of finding neighbors of a vertex can be performed in
constant time and constant depth (both O(1)). Design an algorithm that achieves
O(nm) work and O(n logn) depth. (n = |V | and m = |E|.)

Solution First, we present the following algorithm about solving Shortest Path Prob-
lem:

function BellmanFord(G, s, ω)
k ← 0
Dk ← {v 7→ ∞ : v ∈ V \{s}} ∪ {s 7→ 0}
Pk ← {v 7→ null : v ∈ V }
while k == 0 || Dk ̸= Dk−1 do

for v ∈ V (parallel) do

Dk+1[v]← min
(
Dk[v],minu∈N−

G (v){Dk[u] + ω(u, v)}
)

Pk+1[v]← argminu∈N−
G (v){Dk[u] + ω(u, v)}

end for
k ← k + 1

end while
return Dk

end function

Here, N−
G (v) indicates the in-neighbors of vertex v.

Then we prove the correctness of the algorithm.

3



Theorem (Correctness of Bellman-Ford). Given a directed weighted graph G = (V,E),
a weight function w : E → R+, and a source s ∈ V , the Bellman-Ford algorithm returns
a shortest-path tree for all vertices reachable from s.

Proof. By induction on the number of edges n in a path. The base case is correct since
the initial distance to the source s is set to zero. For all v ∈ V , on each step a shortest
s-v path with up to k edges must consist of a shortest s-u path with up to k− 1 edges
followed by a single edge (u, v). Therefore, if we take the minimum of these, we get the
overall shortest path with up to k edges. For the source, the self-edge will maintain the
distance of zero. The algorithm can only proceed to |V | rounds if there is a reachable
negative-weight cycle. Otherwise, a shortest path to every vertex v is simple and can
consist of at most |V | vertices and hence |V | − 1 edges.

Now, let’s analyze the work and depth of this algorithm: the algorithm converges in at
most n steps, and for each step, we find the minimum element of a list for each node
in parallel, which takes O(

∣∣N−
G (u)

∣∣) work and O(log
∣∣N−

G (v)
∣∣) depth.

WBF = O
(
n ∗
∑

v ∈ V
∣∣N−

G (u)
∣∣) = O(nm),

DBF = O

(
n ∗max

v∈V
log
∣∣N−

G (v)
∣∣) = O(n logn)

3. Singular Value Decomposition for SPSD Matrices Given a symmetric positive
definite matrix A ∈ Rn×n, in this problem we explore how to efficiently compute its
singular value decomposition A = UTSU , where U is orthogonal matrix, S is diagonal.
Here we assume the singular values satisfy λ1 > λ2 > · · · > λn.

(a) Instead of directly performing QR-iteration on A, we want to first convert ma-
trix A to a symmetric tridiagonal matrix using Householder reflection, i.e. con-
structing an orthogonal matrix Q0, s.t. T = QT

0AQ0 is symmetric tridiagonal.
Give a parallel algorithm to solve this problem, and analyze its work and depth.

(Hint: Householder reflection H = In − 2
(eα−eβ)(eα−eβ)

T

(eα−eβ)T (eα−eβ)
projects eα to eβ where

eα = α/||α||2 and eβ = β/||β||2. )

Solution

function HouseholderTridiagonalization(A)
T,Q0 ← A, I
for k = 1 to n− 2 do

α← −sgn(A[k + 1, k]) ·
√∑n

j=k+1A[j, k]
2

r ←
√

1
2
(α2 − A[k + 1, k] · α)

v ← 1
2r
A[k + 2 : n, k]− α

2r
e1

P ← I − 2vvT

T,Q0 ← PTP, PQ0

4



end for
end function

In the above algorithm, we sequentially apply Householder Transformation to
zero out off-tridiagonal elements for each row and column i. While the sequential
nature of this step precludes parallelization, the transformations themselves in-
volve matrix-vector products and element-wise matrix operations. These can be
parallelized to achieve a depth complexity of O(logn).

W (n) =
n∑

k=1

O(k) +O(nk) = O(n3)

D(n) =
n∑

k=1

O(1) +O(logk) = O(nlogn).

(b) Now we perform QR-iteration on symmetric tridiagonal matrix T to achieve SVD
for T using Givens rotation. Obviously, if we get the SVD of T, i.e. S = Q̃TTQ̃,
then we have S = (Q0Q̃)TAQ0Q̃, which is the SVD of A. Now, let’s explore the
following algorithm:

function QR-Iteration for symmetric tridiagonal matrix(s[1 . . . n])
Let Q0 ← In, T0 ← T
for t = 1 to T do

Let Qt ← Qt−1, Tt ← Tt−1

for k = 1 to n− 1 do
Let α← Tt[k : k + 1, k], (c, s)T ← α/||α||2
Gk ← Givens(k, c, s)
Tt ← Gk ∗ Tt ∗GT

k

Qt ← Gk ∗Qt

end for
end for
return TT , QT

end function

Here, the matrix representation of Givens Rotation is

Givens(k, c, s) =


Ik−1 0 0

0

[
c s
−s c

]
0

0 0 In−k−1

 .

Analyze the work and depth of this algorithm, then compare it with part (a).
Write a few sentences about your findings.

Solution The Givens rotation algorithm for QR iteration on a symmetric tridiagonal
matrix involves successive application of Givens rotations to zero out the off-diagonal
elements. For each rotation, targeting a specific off-diagonal element, only two rows

5



and columns are modified, leading to a computational complexity of O(1) for each
rotation. With n − 1 rotations needed to process all subdiagonal elements once per
iteration, the total work per iteration is O(n). Similarly, the depth of this algorithm is
also O(n) as the algorithm works sequentially. In our algorithm, we assume T iterations
are enough for convergence, thus the total depth and work are:

D(n) = O(Tn)

W (n) = O(Tn)

4. Stochastic Gradient Descent

(a) In class we proved that gradient descent on L-smooth functions is guaranteed
to decrease the function value at each iteration. Stochastic gradient descent, on
the other hand, does not have the same guarantee. Provide an example where
stochastic gradient descent does not produce a descent step. Specifically, find a
function f(x) =

∑m
i=1 fi(x), and an iterate x0 such that for all step sizes, there

exist i such that f(x1) > f(x0) (where x+ 1 := x0 − α∇fi(x)).

Solution Consider f(x) = 1
2
(f1(x)+f2(x)) where f1(x) =

1
2
(x−2)2 and f2(x) =

1
2
(x+1)2. Suppose x0 = 0 and we sample f2 first, then x1 = x0−γ(x0+1) = −γ.

So regardless of how we choose γ > 0, f(x1) > f(x0), so this would not be a
descent step.

(b) This exercise will guide you through the convergence proof of SGD. As a reminder,
we are proving that if there exists a constant G such that E[∥∇fi(x)∥2] ≤ G2 and
f(x) is µ-strongly convex. Then, with step-sizes γk =

1
µk
, we have

E[∥xk − x∗∥2] ≤
max{∥x1 − x∗∥2 , G

2

µ2 }
k

.

• Using strong convexity, prove that

⟨∇f(xk)−∇f(x∗), xk − x∗⟩ = ⟨∇f(xk), xk − x∗⟩ ≥ µ ∥xk − x∗∥2

Solution Because f is µ-strongly convex, then we have that

f(x∗)− f(xk) ≥ ⟨∇f(xk), x
∗ − xk⟩+

µ

2
∥xk − x∗∥2

f(xk)− f(x∗) ≥ ⟨∇f(x∗), xk − x∗⟩+ µ

2
∥xk − x∗∥2

Combining the inequalities:

⟨∇f(xk)−∇f(x∗), xk − x∗⟩ = ⟨∇f(xk), xk − x∗⟩ ≥ µ ∥xk − x∗∥2

• Apply the previous step, to express E[∥xk+1 − x∗∥2] in terms of E[∥xk − x∗∥2],
γk, G, and µ.

6



Solution Expanding the norm,

E(∥xk+1 − x∗∥2) = E(∥xK − γkgk − x∗∥2)
= E(∥xk − x∗∥2)− 2γkE(⟨gk, xk − x∗⟩) + γ2

kE(∥gk∥
2)

≤ E(∥xk − x∗∥2)− 2γkE(⟨∇f(xk), xk − x∗⟩) + γ2
kG

2)

≤ E(∥xk − x∗∥2)− 2γkµE(∥xk − x∗∥2) + γ2
kG

2)

• Prove the convergence of SGD using induction. It is clear that the base case,
which states

∥x1 − x∗∥2 ≤ max{∥x1 − x∗∥2 , G
2

µ2
}

is true. Now assume that statement holds until iteration k, we need to show
that it holds for k + 1. From the previous bullet point we have that

E(∥xk+1 − x∗∥2) ≤
(
1− 2

k

)
E(∥xk − x∗∥2) + 1

µ2k2
G2

≤
(
1− 2

k

)
max{∥xk − x∗∥2 , G2

µ2 }
k

+
max{∥xk − x∗∥2 , G2

µ2 }
k2

≤
(
1

k
− 1

k2

)
max{∥xk − x∗∥2 , G

2

µ2
}

≤
max{∥xk − x∗∥2 , G2

µ2 }
k + 1

.

5. HOGWILD! This exercise will provide examples applying the main theorem of HOG-
WILD!. Recall that in HOGWILD!, the objective function we want to minimize is :

f(x) =
∑
e∈E

fe(xe)

where we define the hyperedge e to be the subset of variables that fe depends on.
Figure ?? depicts such a graph. Then, if we denote the average degree of the conflict
graph as ∆C , convergence is still guaranteed if the core delay is less than τ ≤ n

2∆C
(i.e.,

no more than τ samples are being processed while a core is processing one).

• Graph Cuts In graph cuts problems, we are given a sparse matrix W which
indexes similarity between node. We want to match each node to a list of D
classes i.e., we want assign a vector xi ∈ {v ∈ RD|

∑D
j=1 vj = 1, vj ≥ 0} that solve

the following optimization problem.

minimize
x

∑
(u,v)∈E

wuv ∥xu − xv∥1

subject to xu ∈ {v ∈ RD|
D∑
j=1

vj = 1, vj ≥ 0}.
(1)

Prove that
∆C

n
= O (Avg. deg.)

7



Figure 1: The function-variable and conflict graph for sparse functions.

Solution Since a function fu,v conflicts with all other functions involving u and v,
the total number of conflicts is∑

(u,v)∈E

deg(u) + deg(v)− 2 = −2|E|+
∑

(u,v)∈E

deg(u) +
∑

(u,v)∈E

deg(v)

= −2|E|+
∑
u∈V

∑
v∈N(u)

deg(u)

= −2|E|+
∑
u∈V

deg2(u)

<
∑
u∈V

deg2(u)

≤

(∑
u∈V

deg(u)

)2

= (2m)2

So ∆C ≤ 4m and so ∆C

n
= O (Avg. deg.).

6. Implement logistic regression using tensorflow. Use the following code to generate
train and test data. Note that we have set seed (using ”random state=42”). Use
cross-entropy loss and gradient descent optimizer with a learning rate of 0.01. Use
batch size of 100, and run for 500 steps. Report the accuracy on test set.

from sklearn.datasets import make_classification
from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt

# Generate data
X_data, y_data = make_classification(n_samples=200, n_features=2,
n_redundant=0, random_state=42)

# Split into train and test sets
X_train, X_test, y_train, y_test = train_test_split(X_data, y_data,
test_size=0.2, random_state=42)

8



# Plot training data
plt.scatter(X_train[:, 0], X_train[:, 1], c=y_train)
plt.show()

Solution

from sklearn.datasets import make_classification

from sklearn.model_selection import train_test_split

import matplotlib.pyplot as plt

import tensorflow as tf

import numpy as np

# Generate data

X_data, y_data = make_classification(n_samples=200, n_features=2,

n_redundant=0, random_state=42)

# Split into train and test sets

X_train, X_test, y_train, y_test = train_test_split(X_data, y_data,

test_size=0.2, random_state=42)

# Plot training data

#plt.scatter(X_train[:, 0], X_train[:, 1], c=y_train)

#plt.show()

y_train = y_train.reshape((-1,1))

y_test = y_test.reshape((-1,1))

# Define parameters

learning_rate = 0.01

batch_size = 100

num_steps=500

n_samples=X_train.shape[0]

# Define placeholders for input

X = tf.placeholder(tf.float32, shape=[None, 2])

y = tf.placeholder(tf.float32, shape=[None, 1])

# Define variables to be learned

W = tf.get_variable("weights", (2,1), initializer =

tf.random_normal_initializer())

b = tf.get_variable("bias", (1,), initializer =

tf.constant_initializer(0.0))

y_pred = tf.matmul(X,W)+b

loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=

y_pred, labels=y))

# Define optimizer

opt = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss)

with tf.Session() as sess:

#Initialize Variables in graph

9



sess.run(tf.global_variables_initializer())

for _ in range(num_steps):

# Select random minibatch

indices = np.random.choice(n_samples, batch_size)

X_batch, y_batch = X_train[indices,:], y_train[indices]

# Do gradient descent step

_, loss_val = sess.run([opt, loss], feed_dict={X: X_batch,

y: y_batch})

print(loss_val)

# Test model

correct_prediction = tf.equal(tf.argmax(y_pred, 1), tf.argmax(y, 1))

# Calculate accuracy

accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))

print("Accuracy:", accuracy.eval({X: X_test, y: y_test}))

10


