
CME 305: Discrete Mathematics and Algorithms
Instructor: Reza Zadeh (rezab@stanford.edu)

HW#4 – Due at the beginning of class Thursday 03/12/15

1. Let G = (V,E) be a c-edge connected graph. In other words, assume that the size of
minimum cut in G is at least c. Construct a graph G′(V,E ′) by sampling each edge of
G with probability p independently at random and reweighing each edge with weight
1/p. Suppose c > log n, and ε is such that log(n)

cε2
≤ 1. Show that as long as p ≥ log(n)

cε2
,

with high probability the size of every cut in G′ is within (1 ± ε) of the cut in the
original graph G.

2. Consider a random bipartite graph on two vertex sets L,R of size n each, in which
every vertex in L independently picks d uniformly independent random neighbors in
R. Given ε > 1/d, prove that with high probability, every set S in L of size αn/d has
at least |S|(1− ε)d neighbors in R, where α depends only on ε and d.

3. Consider scheduling n jobs to m identical machines to minimize the time taken by the
machine with the heaviest load (i.e. to minimize the makespan). One algorithm is to
order the jobs by decreasing processing times t1 ≥ t2 ≥ . . . ≥ tn, then greedily assign
jobs to the machine whose load is the smallest so far (starting with the heaviest job).

(a) Show that this algorithm is a 4/3 approximation to the optimal makespan.

(b) Show that the 4/3 approximation is tight for this algorithm.

4. Let V be a finite set. A function f : 2V → R is submodular iff for any A,B ⊆ V , we
have

f(A ∩B) + f(A ∪B) ≤ f(A) + f(B)

Now consider a graph with nodes V . For any set of vertices S ⊆ V let f(S) denote the
number of edges e = (u, v) such that u ∈ S and v ∈ V −S. Prove that f is submodular.

5. A square integer matrix A is unimodular if and only if its determinant is −1 or 1. A
matrix (not necessarily square) M is totally unimodular iff every square submatrix
has determinant 1, −1, or 0, i.e. every non-singular square submatrix is unimodular.

Show that for a linear program with totally unimodular constraint matrix M and
integral right-hand side c, all extreme points must be integral.

6. We are given n jobs that each take one unit of processing time. All jobs are available
at time 0, and job j has a profit of cj and a deadline dj. The profit for job j will only
be earned if the job completes by time dj. The problem is to find an ordering of the
jobs that maximizes the total profit. First, prove that if a subset of the jobs can be
completed on time, then they can also be completed on time if they are scheduled in
the order of their deadlines. Now, let E = {1, . . . , n} and let

I = {J ⊆ E : J can be completed on time }

Prove that M = (E, I) is a matroid and describe how to find an optimal ordering for
the jobs.

7. Given a list of personnel (n persons) and of list of k vacation periods, each period
spanning several contiguous vacation days. Let Dj be the set of days included in the
jth vacation period. You need to produce a schedule satisfying:

• For a given parameter c, each tech support person should be assigned to work at
most c vacation days total.

• For each vacation period j, each person should be assigned to work at most one
of the days during the period.

• Each vacation day should be assigned a single tech support person.

• For each person, only certain vacation periods are viable.

Describe a polynomial time algorithm to generate an assignment or output that no
assignment exists. Prove correctness.

8. Online social networks carry a huge potential for online advertising. After a recent
controversy, a popular social networking platform does not allow advertisers to target
the users individually. However, it is allowed to run ads on user communities.

Formally, let X be the set of all users on a social network, and S1, S2, . . . , Sm be
subsets of X, where each Si represents a user community. Notice that a user can
belong to several communities. Suppose the advertiser can afford placing ads on at
most k communities. The goal is to show the ads to as many users as possible, i.e. to
find Si1 , Si2 , . . . , Sik such that | ∪kj=1 Sij | is maximized.

Unfortunately, this problem is NP-hard and therefore we are interested in designing
efficient approximation algorithms to solve it. Consider the following greedy approach:
pick the k communities one at a time, and in each iteration pick the community that
contains the largest number of users that have not been covered yet. In other words,
choose the community that maximizes the current coverage. Show that this greedy
approach yields at least 1− (1− 1/k)k > 1− 1/e fraction of the optimal solution.

Hint: Let xi denote the number of new elements covered by the algorithm in the i-th
set that it picks. Also, let yi =

∑i
j=1 xj, and zi = OPT − yi. Show xi+1 ≥ zi/k and

prove by induction that zi ≤ (1− 1/k)iOPT .

2

