CME 305: Discrete Mathematics and Algorithms

Instructor: Reza Zadeh (rezab@stanford.edu)
HW\#1 - Due at the beginning of class Thursday 01/22/15

1. Prove that at least one of G and \bar{G} is connected. Here, \bar{G} is a graph on the vertices of G such that two vertices are adjacent in \bar{G} if and only if they are not adjacent in G.
2. A vertex in G is central if its greatest distance from any other vertex is as small as possible. This distance is the radius of G.
(a) Prove that for every graph G

$$
\operatorname{rad} G \leq \operatorname{diam} G \leq 2 \operatorname{rad} G
$$

(b) Prove that a graph G of radius at most k and maximum degree at most $d \geq 3$ has fewer than $\frac{d}{d-2}(d-1)^{k}$ vertices.
3. A random permutation π of the set $\{1,2, \ldots, n\}$ can be represented by a directed graph on n vertices with a directed arc $\left(i, \pi_{i}\right)$, where π_{i} is the i 'th entry in the permutation. Observe that the resulting graph is just a collection of distinct cycles.
(a) What is the expected length of the cycle containing vertex 1 ?
(b) What is the expected number of cycles?
4. Let $v_{1}, v_{2}, \ldots, v_{n}$ be unit vectors in \mathbb{R}^{n}. Prove that there exist $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n} \in\{-1,1\}$ such that

$$
\left\|\alpha_{1} v_{1}+\alpha_{2} v_{2}+\ldots+\alpha_{n} v_{n}\right\|_{2} \leq \sqrt{n}
$$

5. A simple graph $G(V, E)$ is called Hamiltonian if it contains a cycle which visits all nodes exactly once. Prove that if every vertex has degree at least $|V| / 2$, then G is Hamiltonian.
6. Let $G=(V, E)$ be a graph and $w: E \rightarrow R^{+}$be an assignment of nonnegative weights to its edges. For $u, v \in V$ let $f(u, v)$ denote the weight of a minimum $u-v$ cut in G.
(a) Let $u, v, w \in V$, and suppose $f(u, v) \leq f(u, w) \leq f(v, w)$. Show that $f(u, v)=$ $f(u, w)$, i.e., the two smaller numbers are equal.
(b) Show that among the $\binom{n}{2}$ values $f(u, v)$, for all pairs $u, v \in V$, there are at most $n-1$ distinct values.
7. Let T be a spanning tree of a graph G with an edge cost function c. We say that T has the cycle property if for any edge $e^{\prime} \notin T, c\left(e^{\prime}\right) \geq c(e)$ for all e in the cycle generated by adding e^{\prime} to T. Also, T has the cut property if for any edge $e \in T, c(e) \leq c\left(e^{\prime}\right)$ for all e^{\prime} in the cut defined by e. Show that the following three statements are equivalent:
(a) T has the cycle property.
(b) T has the cut property.
(c) T is a minimum cost spanning tree.

Remark 1: Note that removing $e \in T$ creates two trees with vertex sets V_{1} and V_{2}. A cut defined by $e \in T$ is the set of edges of G with one endpoint in V_{1} and the other in V_{2} (with the exception of e itself).
8. Prove that there is an absolute constant $c>0$ with the following property. Let A be an $n \times n$ matrix with pairwise distinct entries. Then there is a permutation of the rows of A so that no column in the permuted matrix contains an increasing subsequence of length $c \sqrt{n}$.

