CME 305: Discrete Mathematics and Algorithms
Instructor: Professor Amin Saberi (saberi@stanford.edu)
Midterm — 02/17/11

This exam is closed notes/books/laptops. You will have until the end of class to
ask any questions clarifying any of the problems. You may then set aside 3 more
hours to work on the exam individually. The exam is due at 8pm today. Submit
your work into the CME305 dropbox in the basement of Huang located across
from room 041 (next to the HP Garage).

Problem 1. An edge cover C of a graph G(V, E) is a subset of E such that for all v € V'
there exists e € C' with v € e i.e. an edge set covering all vertices. Let C* be a minimum
edge cover, that is |C*| < |C] for all edge covers C' of G. Prove that

|C[+ M| < V]

where M* is a maximal matching of G.

Solution: Let S be the set of vertices not covered by M*. Note that S is an independent
set. Let C' be all edges in M* plus edges which connect M* to S. This is an edge cover.
Then,

C[<|C = [MT[+[S] = [M"[+ (V] = 2|M*|) = [V| = [M"]

and rearrange.

Problem 2: Given a graph G(V, E') we want to partition the vertices of the graph into two
(disjoint) sets A and B (i.e. AUB =V and AN B = @) such that the number of edges with
one endpoint in A and the other in B is maximized. In other words, we are looking for the
maximum cut (A, B) of the graph.

Consider the following algorithm. We start with an arbitrary partition (A, B). If there exists
a vertex v € V such that moving it to the other set in the partition increases the number of
edges in the cut, do so. Proceed until there is no such vertex.

(a) Show that the algorithm stops.

(b) Show that when the algorithm stops, the size of the cut is at least half of the optimum.

Hint: Consider the neighbors of each vertex after the algorithm stops.

Solution:

1. After each iteration, the number of edges in the cut increases by at least one. Obviously

|E| is upper bound on the number of cutting edges. Thus the algorithm will stop after

at most |F| steps.

. Suppose the algorithm terminates and gives us a cut (A, B). For each vertex v € V,

denote d(v) as the degree of v. Moreover, denote d;(v) as the number of edges of the
form (v,u) such that u is in the same partition of v. Similarly denote dg(v) as the
number of the edges of the form (v,u) such that « is in the different partition from wv.

Obviously d(v) = d;(v) + dg(v).

When the algorithm terminates, we have dg(v) > d;(v) for all v € V. Otherwise
we can move some v to the other partition to give a larger cut. Denote OPT as the
optimal cut and C' as the cut given by the algorithm. Then

OPT < |E| = %Zd(v) _ %Zd,@) Fdp) < Sdp(v) <20, (1)

veV veV veV

Problem 3: Consider the following problem: Given n items with sizes aq,as,- - -a, all in
(0, 1], find a packing in unit size bins that minimizes the number of bins used.

(a)

Prove that the following algorithm is a factor 2 approximation: Consider the items in
an arbitrary order. In the i" step, suppose you have a list of partially packed bins,
say By, Bs,..., By. If possible, put a; into any one of them. If a; does not fit into
any of these bins, open a new bin By,; and put a; in it.

Give an example on which the above algorithm does at least as bad as 5/3 of OPT,
where OPT is the number of bins in the optimal packing.

Consider a modification of the algorithm in part (a). At the i*" step, suppose you
have a list of partially packed bins, say Bi, Bs, ..., Bx. You may only put a; into bin
By. If a; does not fit into bin By, open a new bin By, and put a; in it. Prove that
this modified algorithm also gives a factor 2 approximation.

Solution:

(a)

Observe that no two bins can be less than half packed. Otherwise, the algorithm
would have put those items into one bin.

Denote b; as the used amount in box B;. Then b; > 1/2 except for one b;.

=1 =1

Thus 20PT > k — 1, or OPT > k because both OPT and k are integers.

2

(b) The first 6 items have size 0.1 (algorithm packs them into 1 bin with 0.4 left). The
next 6 items have size 0.35 (algorithm packs them into 3 bins with 0.3 left in each).
The next 6 items have size 0.55 (algorithm has to pack them into 6 new bins). So
the total number of bins used by the algorithms is 1 + 3 4+ 6 = 10. But the optimal
packing is 0.55+0.354 0.1 = 1 in each of the OPT= 6 bins. The ratio is 10/6 = 5/3.

(c) Let OPT be the optimal number of bins and r be the number of bins used by our
algorithm. Let w; be the weight of the packing of bin j produced by our algorithm.
By the definition of the algorithm we have w; | +w; > 1 for alli =2,... k. If kis

even then
k/2

n k
OPT > Z&i = Z'LUZ = Zw2i—l+w2i > g
i=1 =1

i=1

Thus k < 20PT. If k is odd, then

k—1)/2

OPTZZCLZ:Z'LUZ> Z w2i—1+w2i>%
=1 i=1

1=1

Thus k£ — 1 < 20PT, then k < 20PT because both of them are integers.

Problem 4: A vertex coloring of a graph G(V, F) is an assignment colors to each vertex
of a graph such that no edge connects two identically colored vertices. A graph G is called
k-vertex-colorable if and only if there exists a vetex coloring of G with & (or less) colors.

Give a polynomial time algorithm for coloring the vertices of a 3-vertex-colorable graph of
size n with at most O(y/n) colors.

Hint: Try coloring the neigborhood of some vertex.

Solution: First, we first prove two claims.

1. For each vertex v, its neighborhood N(v) is a bipartite graph (thus 2-colorable).

Proof: Assume N(v) is not bipartite. Then it has an odd cycle with each vertex in
the cycle connected to v. It is easy to see that such a graph is not 3-colorable which
contradicts the main assumption of this problem.

2. Any graph with maximum degree A is A + 1-colorable.

Proof: The coloring is produced with a greedy strategy. For each uncolored vertex
we assign distinct colors to v U N(v) which has a maximum cardinality A 4+ 1. This
strategy will never run into a conflict since at each step we have at most A + 1 vertices
to color and that many total colors to choose from.

We now state the algorithm to produce a O(y/n)-coloring for any 3-colorable graph G.

3

1) Partition the vertices V' of the graph in the set S = {v € V|d(v) > y/n}. For each v € S
use colors ¢,; for v and ¢,9, ¢,3 for its neighborhood N (v) (by claim (a)).

2) Color the remaining vertices with exactly y/n colors. This can be done by a greedy
procedure from claim (b) since the maximum degree of the vertices in V' — S'is v/n — 1.

Clearly this algorithm runs in polynomial time. There are at most y/n vertices in S (since
there are n total). And we use three colors at each step when coloring S and their neighbors.
The remaining vertices are shown to be y/n-colorable. Thus the graph can be colored with

O(y/n) colors.

