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The impact of deep neural networks

[Y. LeCun, Y. Bengio, G. Hinton 2015]
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ChatGPT

3



prompt: illustrate this using a diagram

reply (DALL-E 3): This illustration uses a funnel metaphor, where ”Massive Data” enters

the funnel and emerges as a ”Sketch” at the bottom. Surrounding the funnel are words

describing various properties of the sketching process.

4



Deep networks can produce dangerous hallucinations

Fast MRI Challenge, 2020

model generates a false vessel (Muckley et al.)
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deep learning models

� are complex black-box systems based on non-convex optimization

! hard to interpret what the model is actually learning

� often provide the best performance due to their large capacity

! challenging to train

GPT-3 has 175 billion parameters

GPT-4 ?

massive training data
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Fundamental challenges in neural networks

� least-squares, logistic regression, support vector machines etc. are

convex models, which can be solved e�ciently and are understood well

� training a two-layer network to optimality is not achievable in

polynomial-time (unless P=NP)
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Open questions

� how to make training energy/memory/data e�cient

� how to develop a foundational theory for neural networks

� how to interpret these models

randomized embeddings play an important role in all three aspects
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High-level overview

� non-convex neural networks problems can be converted to

high-dimensional convex optimization

� randomized embeddings and sketching to reduce the dimension

� global optimality and approximation guarantees

� connections to zonotopes and Cli↵ord algebra
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Randomized Embeddings

� let V = {z1, ..., zk} be a set of points in Rn and let f : Rn ! Rm be a map where m < n

� we call f an embedding if kf(zi) � f(zj)k ⇡ kzi � zjk
� Johnson-Lindenstrauss embeddings: for m & ✏

�2 log(k) there exists a linear

embedding f(z) = Sz, where S 2 Rm⇥n that approximately preserves distances:

(1 � ✏)kzi � zjk22  kf(zi) � f(zj)k22  (1 + ✏)kzi � zjk22 8i, j 2 [k] (1)
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Randomized Embeddings: `p ! `q

� generalization to arbitrary norms and arbitrary sets

� for p, q 2 [1,1) and ✏ 2 (0, 1)

(1 � ✏)kzkp  kSzkq  (1 + ✏)kzkp 8z 2 V

� V is any subset of Rn
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Randomized Embeddings: Subspace Embedding

� let p = q = 2 and V = range(A) for some fixed matrix A 2 Rn⇥d

� randomly generate S 2 Rm⇥n, e.g., i.i.d. ±1, Gaussian,...

(1 � ✏)kzk2  kSzk2  (1 + ✏)kzk2 8z 2 V

holds with high probability when m & ✏
�2rank(A)

� lengths of all vectors in the range of A are approximately preserved
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Example: Least squares prediction

min
x

kAx � yk22

� A : n rows, d columns, n � d

� computational complexity

Cholesky/QR: O(nd
2)

Conjugate Gradient: O
�p

nd log(1/✏)
�
for an ✏-approximate solution
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Example : Least squares prediction

� A : n ⇥ d feature matrix, and y : n ⇥ 1 response vector

� original problem OPT = min
x

kAx � yk22| {z }
f(Ax)

� approximation bx = arg min
x

kS(Ax � y)k22
� S : m ⇥ n randomized embedding (sketching) matrix (e.g., i.i.d. Gaussian)
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Example : Least squares prediction

� A : n ⇥ d feature matrix, and y : n ⇥ 1 response vector

� original problem OPT = min
x

kAx � yk22| {z }
f(Ax)

� approximation bx = arg min
x

kS(Ax � y)k22
� S : m ⇥ n randomized embedding (sketching) matrix (e.g., i.i.d. Gaussian)

An

d

Sm SA
=

m

d

Õ(nd)
[Candès & Tao, 06; Krahmer & Ward 11]

S = FD
Restricted Isometry Random diagonal ±1

Õ(nnz(A))
[Nelson & Nguyen 13; Bourgain, Dirksen, Nelson, 15]

sparse
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Example : Least squares prediction

� A : n ⇥ d feature matrix, and y : n ⇥ 1 response vector

� original problem OPT = min
x

kAx � yk22| {z }
f(Ax)

� approximation bx = arg min
x

kS(Ax � y)k22
� S : m ⇥ n randomized embedding (sketching) matrix (e.g., i.i.d. Gaussian)

Theorem : Cost approximation

If m � 1 + rank(A)(1 + 1/✏), then

OPT  f(Abx)  (1 + ✏)OPT

with high probability

[Sarlós 06; Rokhlin and Tygert 08; Pilanci and Wainwright, IEEE Trans. Info. Theory 2015; Bartan and Pilanci, IEEE Trans. Info. Theory 2023]
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Example : Least squares prediction

� A : n ⇥ d feature matrix, and y : n ⇥ 1 response vector

� original problem OPT = min
x

kAx � yk22| {z }
f(Ax)

� approximation bx = arg min
x

kS(Ax � y)k22
� S : m ⇥ n randomized embedding (sketching) matrix (e.g., i.i.d. Gaussian)

Practical use

Airline dataset n = 120, 000, 000, d = 28

m = 500 gives 1.06-approximation

m = 5000 gives 1.006-approximation

[Pilanci and Wainwright, IEEE Trans. Info. Theory 2015; Bartan and Pilanci, IEEE Trans. Info. Theory 2023]
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Quantized Embeddings: embeddings into to Hamming cube

� let V = {z1, ..., zk} ✓ Sn�1 be a set of points let S 2 Rm⇥n be i.i.d. Gaussian

� consider the map f(z) := sign(Sz)

s
T
1 z � 0, s

T
2 z � 0

f(z) = [1; 1]

f(z) = [�1; 1]

s
T
1 z � 0, s

T
2 z  0

f(z) = [1;�1]f(z) = [�1;�1]

s
T
2 z = 0s

T
1 z = 0

� generates hyperplane arrangements of the rows of S

�
�� 1
m

Pm
i=1 1f(z) 6=f(z0) � 1

⇡ cos�1(zT z
0)
��  ✏ 8z, z

0 2 V w.h.p. if m & ✏
�2 log k

� locality-sensitive hashing, one-bit compressed sensing and compressing large DNN models
[Charikar 2002; Boufounos & Baraniuk 08; Plan & Vershynin, 14, Saha & Srivastava & Pilanci, NeurIPS 2023]

16



Quantized Embeddings: embeddings into to Hamming cube

� let V = {z1, ..., zk} ✓ Sn�1 be a set of points let S 2 Rm⇥n be i.i.d. Gaussian

� consider the map f(z) := sign(Sz)

s
T
1 z � 0, s

T
2 z � 0

f(z) = [1; 1]

f(z) = [�1; 1]

s
T
1 z � 0, s

T
2 z  0

f(z) = [1;�1]f(z) = [�1;�1]

s
T
2 z = 0s

T
1 z = 0

� generates hyperplane arrangements of the rows of S

�
�� 1
m

Pm
i=1 1f(z) 6=f(z0) � 1

⇡ cos�1(zT z
0)
��  ✏ 8z, z

0 2 V w.h.p. if m & ✏
�2 log k

� locality-sensitive hashing, one-bit compressed sensing and compressing large DNN models
[Charikar 2002; Boufounos & Baraniuk 08; Plan & Vershynin, 14, Saha & Srivastava & Pilanci, NeurIPS 2023]

16



Other problems where randomized embeddings are useful

� streaming setting: At+1 = At + �t SAt+1 = SAt + S�t

� sketching features: A ! AS is applying the left-sketch to the dual problem (ST
A

T )

� low-rank approximations of matrices and tensors

� sketch based preconditioners

� generic convex optimization problems minx2C f(Ax), including logistic regression,

support vector machines, linear programs, semi-definite programs...

Newton Sketch ((r2
f(x))1/2ST

S(r2
f(x))1/2)�1rf(x) approximates Newton steps

� constrained/regularized problems: embedding dimension can be proportional to the width

of the constraint set C, i.e., m & ✏
�2W(C)

[Drineas & Kannan & Mahoney 2006; Rokhlin & Tygert 2008; Halko & Martinsson, & Tropp 2011; Wainwright & Pilanci 2016, 2017]
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Least Squares with L1 regularization

min
x

kAx � yk22 + �kxk1

� L1 norm kxk1 =
Pd

i=1 |xi|
encourages solution x

⇤ to be sparse

18



Least squares with group L1 regularization

min
x

���
LX

i=1

Aixi � y

���
2

2
+ �

LX

i=1

kxik2

kxik2 =
qPd

j=1 x2
ij

encourages solution x
⇤ to be group sparse

most x
⇤
i blocks are zero

19
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Training two-layer neural networks: Non-convex optimization

pnon-convex := minimize L (�(XW1)W2, y) + �
�
kW1k2F + kW2k2F

�

W1 2 Rd⇥m

W2 2 Rm⇥1

where �(u) = max(0, u) is the ReLU activation
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ReLU neural networks are equivalent to convex models

pnon-convex := minimize L (�(XW1)W2, y) + �
�
kW1k2F + kW2k2F

�

W1 2 Rd⇥m

W2 2 Rm⇥1

pconvex := minimize L (Z, y) + � R(Z)| {z }
convex regularization

Z 2 K ✓ Rd⇥p

[Pilanci & Ergen, ICML 2020; Neurips 2023]
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pnon-convex := minimize L (�(XW1)W2, y) + �
�
kW1k2F + kW2k2F

�

W1 2 Rd⇥m

W2 2 Rm⇥1

pconvex := minimize L (Z, y) + �R(Z)

Z 2 K ✓ Rd⇥p

Theorem pnon-convex = pconvex, and an optimal solution to pnon-convex

can be obtained from an optimal solution to pconvex.

[Pilanci & Ergen, ICML 2020; Neurips 2023]
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ReLU Network using squared loss = group Lasso using fixed features

data matrix X 2 Rn⇥d and label vector y 2 Rn
X =

2

64
x
T
1
...

x
T
n

3

75 , y =

2

64
y1
...

yn

3

75

pnon-convex = minimizeW1,W2

���
mX

j=1

�(XW1j)W2j � y

���
2

2
+ �

�
kW1k2F + kW2k2F

�

pconvex = minimizeu1,v1...up,vp2K

���
pX

i=1

DiX(ui � vi) � y

���
2

2
+ �

 
pX

i=1

kuik2 + kvik2

!

D1, ..., Dp are fixed diagonal matrices

Theorem pnon-convex = pconvex, and an optimal solution to pnon-convex can be recovered

from optimal non-zero u
⇤
i , v

⇤
i , i = 1, ..., p as

W
⇤
1j =

u⇤
ip

ku⇤
i k2

, W2j =
p
ku⇤

i k2 or W
⇤
1j =

v⇤jp
kv⇤j k2

, W2j = �
q

kv⇤j k2 .
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n = 3 samples in Rd, d = 2 X =

2

64
x
T
1

x
T
2

x
T
3

3

75 =

2

64
2 2

3 3

1 0

3

75 , y =

2

64
y1

y2

y3

3

75

linear classifier
(2,2)

(3,3)

(1,0)

x

y

D1X =

2

64
1 0 0

0 1 0

0 0 1

3

75X =

2

64
2 2

3 3

1 0

3

75
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n = 3 samples in Rd, d = 2 X =

2

64
x
T
1

x
T
2

x
T
3

3

75 =

2

64
2 2

3 3

1 0

3

75 , y =

2

64
y1

y2

y3

3

75

linear
classi

fier

(2,2)
(3,3)

(1,0)

x

y

D1X =

2

64
1 0 0

0 1 0

0 0 1

3

75X =

2

64
2 2

3 3

1 0

3

75

D2X =

2

64
1 0 0

0 1 0

0 0 0

3

75X =

2

64
2 2

3 3

0 0

3

75
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n = 3 samples in Rd, d = 2 X =

2

64
x
T
1

x
T
2

x
T
3

3

75 =

2

64
2 2

3 3

1 0

3

75 , y =

2

64
y1

y2

y3

3

75

line
ar
cla

ssifi
er

(2,2)
(3,3)

(1,0)

x

y

D1X =

2

64
1 0 0

0 1 0

0 0 1

3

75X =

2

64
2 2

3 3

1 0

3

75

D2X =

2

64
1 0 0

0 1 0

0 0 0

3

75X =

2

64
2 2

3 3

0 0

3

75

D4X =

2

64
0 0 0

0 0 0

0 0 1

3

75X =

2

64
0 0

0 0

1 0

3

75
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Example: Convex Program for n = 3, d = 2

n = 3 samples X =

2

64
x
T
1

x
T
2

x
T
3

3

75 , y =

2

64
y1

y2

y3

3

75

min

�������

2

64
x
T
1

x
T
2

x
T
3

3

75 (u1 � v1) +

2

64
x
T
1

x
T
2

0

3

75 (u2 � v2) +

2

64
0

0

x
T
3

3

75 (u3 � v3) � y

�������

2

2

subject to + �
� 3X

i=1

kuik2 + kvik2
�

D1Xu1 � 0, D1Xv1 � 0

D2Xu2 � 0, D2Xv2 � 0

D4Xu3 � 0, D4Xv3 � 0

equivalent to the non-convex two-layer NN problem 28



Computational Complexity

Learning two-layer ReLU neural networks with m neurons

f(x) =
Pm

j=1 W2j�(Wj1x)

Previous result: � Combinatorial O(2mn
dm) (Arora et al., ICLR 2018)

Convex program O((nr )r) where r = rank(X)

n : number of samples, d : dimension

(i) polynomial in n and m for fixed rank r

(ii) exponential in d for full rank data r = d. Can not be improved

unless P = NP even for m = 1.
29
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Number of variables = number of hyperplane arrangements

� convex program has at most
�
(nr )r

�
variables

#activation patterns of only one neuron

=
���{sign(Xw) : w 2 Rd}

���  O
�
(nr )r

�
where r = rank(X).

� rank is constant for convolutional networks

e.g., 3 ⇥ 3 ⇥ 1024 convolution =) r = 9 polynomial-time wrt all dims 31



How to approximately solve a high-dimensional convex problem

pconvex = minimizeu1,v1...up,vp2K

���
pX

i=1

DiX(ui � vi) � y

���
2

2
+ �

 
pX

i=1

kuik2 + kvik2

!

� idea: randomly subsample variables {DiX(ui � vi)}pi=1 to optimize, set the rest to zero

goal: sample proportionally to some convenient importance measure

32



Sketching the convex neural network: subsampling variables

randomized algorithm

� sample Di = Diag(Xui � 0) where ui is i.i.d. Gaussian for i = 1, ..., p̃, p̃  p

(quantized random embedding / locality-sensitive hashing )

� solve

minimizeu1,v1...up̃,vp̃2K

���
p̃X

i=1

DiX(ui � vi) � y

���
2

2
+ �

 
p̃X

i=1

kuik2 + kvik2

!

� construct neural network from the solution

33



Zonotopes

Z(X) := conv

nP
i xiui, ui 2 {0, 1} 8i 2 [n]

o
= X

T [0, 1]n

� Z
⇣h

x|
1

x|
2

i⌘
= conv{0, x1, x2, x1 + x2} ✓ R2

0

x1

x2

x1 + x2

34



Zonotopes

Z(X) := conv

nP
i xiui, ui 2 {0, 1} 8i 2 [n]

o
= X

T [0, 1]n

� Z
⇣h

x|
1

x|
2

i⌘
= conv{0, x1, x2, x1 + x2} ✓ R2

0

x1

x2

x1 + x2

h

� sample vertices via support functions: arg maxz2Z h
T
z

35



Zonotopes

Z(X) := conv

nP
i xiui, ui 2 [0, 1] 8i 2 [n]

o
= X

T [0, 1]n

� Z
⇣h

x|
1

x|
2

i⌘
= conv{0, x1, x2, x1 + x2} ✓ R2

0

x1

x2

x1 + x2

h

� sample vertices via support functions: arg maxz2Z h
T
z

� h 2 normal cone at z () vertex z is sampled 36



Zonotope-quantized embedding duality

� maxui2[0,1] 8i2[n] h
T P

i xiui =
P

i(x
T
i h)+ where u

⇤
i = 1[xT

i h � 0]

� a random vector h maps to a vertex of the zonotope via 1[Xh � 0] = arg maxz2Z h
T
z

� chambers of the hyperplane arrangements of X correspond to vertices of Z(X)
[Fukuda 2004; Stinson & Gleich & Constantine 2016] 37



Sampling vertices of zonotopes = sampling chambers of an arrangement

 

� normalized solid angles of normal cones for each vertex vi are

✓i = #vertices · Ph⇠N (0,I)

⇥
vi = 1[Xh � 0]

⇤

minimum angle ✓ := mini ✓i > 0 controls the hardness of sampling

38



Reducing Complexity: Approximating Convex Programs by Sampling

� sampled convex model: sample D1, ..., Dp̃ as Diag(Xhi � 0) where hi ⇠ N(0, I)

� Theorem: For any integer k 2 {1, ..., d}, we obtain (1 + �k+1(X)
� )-factor approximation

using O
�
✓
�1(n/k)k log(n/k)

�
samples. Here, ✓ is the minimum solid angle of Z(Xk)

where Xk is the best rank-k approximation of X and �k = �k(X).

39



Reducing Complexity: Approximating Convex Programs by Sampling

� sampled convex model: sample D1, ..., Dp̃ as Diag(Xhi � 0) where hi ⇠ N(0, I)

� Theorem: For any integer k 2 {1, ..., d}, we obtain (1 + �k+1(X)
� )-factor approximation

using O
�
✓
�1(n/k)k log(n/k)

�
samples. Here, ✓ is the minimum solid angle of Z(Xk)

where Xk is the best rank-k approximation of X and �k = �k(X).

39



Specialized Convex Solver: Performance Profile

� baseline: gradient based non-convex

optimization: SGD, ADAM (best of 10

random initializations and 10 learning

rates)

� convex: proximal gradient with adap-

tive acceleration

O(1/T
2) convergence rate

0 20 40 60 80 100

Time (Seconds)

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p.
of

P
ro

bl
em

s
So

lv
ed

$POWFY Adam SGD

Performance profile showing the pecentage of problems solved over a collection of 400 UC

Irvine datasets up to 10�3 training error vs time

[Mishkin & Sahiner & Pilanci, ICML 2022] github.com/pilancilab/scnn
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Interpreting Neural Networks via Sketching: Time Series Prediction

X =

2

66664

x
T
1

x
T
2
...

x
T
n

3

77775
=

2

66664

x[1] ... x[d]

x[2] ... x[d + 1]
...

x[n] ... x[d + n � 1]

3

77775
, y =

2

66664

x[d + 1]

x[d + 2]
...

x[d + n]

3

77775
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Interpreting Neural Networks via Sketching: Time Series Prediction

pconvex = minimizeu1,v1...up,vp2K

���
pX

i=1

DiX(ui � vi) � y

���
2

2
+ �

 
pX

i=1

kuik2 + kvik2

!

� sampled convex program: Di = diag(Xhi � 0), hi ⇠ N (0, I) forms a locality sensitive

hash of the data (i.e., a quantized embedding) 42
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Simplification: Neural networks for one-dimensional data are Lasso models

� one-dimensional data xi, yi 2 R, i = 1, ..., n � model f(x) =
Pm

j=1 �(xw
(1)
j + bj)w

(2)
j

pnon-convex = pconvex = min
↵,b

kK↵ + 1b � yk22 + �k↵k1 where Kij = (xi � xj)+ 8i, j 2 [n]

xx1 x2 x3 x4 x5 x6 x7

f(x)

� Kij = (xi � xj)+
= Vol([xi, xj ])+ positive part of the signed volume of [xi, xj ]

44
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kK↵ + 1b � yk22 + �k↵k1 where Kij = (xi � xj)+ 8i, j 2 [n]

xx1 x2 x3 x4 x5 x6 x7

f(x)

� Kij = (xi � xj)+
= Vol([xi, xj ])+ positive part of the signed volume of [xi, xj ] 44



Two-dimensional data

� Suppose data xi 2 R2
, yi 2 R

pconvex = min
↵,b

kK↵ + 1b � yk22 + �k↵k1

� Kij = 2
kxjk2Vol(4(0, xi, xj))+

where 4(a, b, c) is the triangle with vertices a, b, c

[Pilanci, From Complexity to Clarity: Analytical Expressions of Deep Neural Network Weights via Cli↵ord’s Geometric Algebra and Convexity, 2023] 45



Neural networks are approximately Lasso models

pconvex = min
↵,b

kK↵ + 1b � yk22 + �k↵k1

� Kij = k⇥ (xj1 , ..., xjd)k
�1
2 Vol

�
P(xi, xj1 , ..., xjd)

�
2 Rn⇥(nd)

where P(a1, ..., ak) stands for the parallelogram spanned by a1, ..., ak and j = (j1, ..., jd)

is a multi-index

� solutions of pconvex are (1 + ✏)-optimal if X is an `2 ! `1 subspace embedding, i.e.,

(1 � ✏)kzk2 
1

n
kXzk1  (1 + ✏)kzk2 8z

� this condition holds with high probability if X is i.i.d. Gaussian and n � ✏
�4

d

[Pilanci, From Complexity to Clarity: Analytical Expressions of Deep Neural Network Weights via Cli↵ord’s Geometric Algebra and Convexity, 2023]
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Cli↵ord (geometric) algebra Gd

� generalizes linear algebra, complex numbers, quaternions, cross-products

� multivectors: scalars + vectors + bivectors +...

� the wedge product a ^ b is a bivector representing the oriented area spanned by a and b

� geometric product of vectors: ab = a · b + a ^ b produces a multivector

� there exists a multiplicative inverse

� duals of multivectors represent complementary subspaces, e.g., ?e1 = e2 in G2
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Cli↵ord algebra

min
↵,b

kK↵ + 1b � yk22 + �k↵k1

� Kij =
(xi^xj1 ,...^xjd�1

)+
kxj1^...^xjd�1

k2 = dist(xi,A�ne(xj1,...,xjd
)

� optimal neurons are scalar multiples of the duals of xj1 ^ . . . ^ xjd�1

� sketching in Cli↵ord Algebra

quantized embedding 1[Xh � 0] subsamples the indices (j1, . . . , jd)

alternative scheme: sketching data X ! XS preserves distances via

JL embeddings
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Cli↵ord algebra
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kxj1^...^xjd�1
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� sketching in Cli↵ord Algebra

quantized embedding 1[Xh � 0] subsamples the indices (j1, . . . , jd)
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JL embeddings
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Conclusion

� neural networks are high-dimensional convex models

� better algorithms through randomized dimension reduction

open problems:

� designing better sampling strategies for the convex program

� exploring sketching in Cli↵ord algebra in a unified way

Ref 1 M. Pilanci, From Complexity to Clarity: Analytical Expressions of Deep Neural Network

Weights via Cli↵ord’s Geometric Algebra and Convexity arXiv, 2023

Ref 2 M. Pilanci, T. Ergen, Path Regularization..., Neurips 2023

Ref 3 M. Pilanci, T. Ergen, Neural Networks are Convex Regularizers..., ICML 2020

papers & code: https://stanford.edu/⇠pilanci
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extensions
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Three layer NN: FC-Relu-FC-Relu-FC is equivalent to a convex program with
double hyperplane arrangements

p
⇤
3 = min

{Wj ,uj ,w1j ,w2j}mj=1
uj2B2,8j

1

2

������

mX

j=1

((XWj)+w1j)+ w2j � y

������

2

2

+
�

2

mX

j=1

�
kWjk2F + kw1jk22 + w

2
2j

�
,

Theorem

The equivalent convex problem is

min
{Wi,W 0

i}
p
i=12K

1

2

������

pX

i=1

PX

j=1

DiDjX̃
�
W

0
ij � Wij

�
� y

������

2

2

+
�

2

pX

i,j=1

kWijkF + kW 0
ijkF



Layer-Wise Training of Deep Networks

(i) train a two-layer network convex optimization

(ii) fix the hidden layer to use as feature embedding

(ii) repeat two-layer network training on these features

� ideal for edge AI: low memory and low communication between blocks

� modular: networks can keep evolving, can terminate early during inference

� each convex model is trained to global optimality e�ciently with no hyperparameter

tuning
52



Numerical results for layer-wise convex learning: CIFAR-10 image classification

convex layerwise training

� end-to-end trained 5 layer CNN accuracy: 89%, 16 layer VGG accuracy: 92% 53



ReLU Networks with Batch Normalization (BN)

� BN transforms a batch of data to zero mean and standard deviation one, and has two

trainable parameters ↵, �

BN↵,�(x) =
(I � 1

n11
T )x

k(I � 1
n11

T )xk2
� + ↵

pnon-convex = min
W1,W2,↵,�

���BN↵,�(�(XW1))W2 � y

���
2

2
+ �

�
kW1k2F + kW2k2F

�

=
=

pconvex = min
w1,v1...wp,vp2K

���
pX

i=1

Ui(wi � vi) � y

���
2

2
+ �

 
pX

i=1

kwik2 + kvik2

!

where Ui⌃iV
T
i = DiX is the SVD of DXi, i.e., BatchNorm whitens local data

T. Ergen, A. Sahiner, B. Ozturkler, J. Pauly, M. Mardani, M. Pilanci Demystifying

Batch Normalization in ReLU Networks, ICLR 2022 54



Vector Output Two-layer ReLU: equivalent to nuclear norm penalty

pnon-convex = min
W12Rd⇥m,W22Rm⇥c

���
mX

j=1

�(XW1j)W2j � Y

���
2

2
+ �

�
kW1k2F + kW2k2F

�

pconvex = min
U1,V1...Up,Vp2K

���
pX

i=1

DiX(Ui � Vi) � y

���
2

2
+ �

 
pX

i=1

kUik⇤ + kVik⇤

!

D1, ..., Dp are fixed diagonal matrices

Theorem pnon-convex = pconvex, and an optimal solution to pnon-convex can be recovered

from optimal non-zero U
⇤
i , V

⇤
i , i = 1, ..., p.

A. Sahiner, T. Ergen, J. Pauly, M. Pilanci Vector-output ReLU Neural Network

Problems are Copositive Programs, ICLR 2021
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All stationary points correspond to sampled convex models

pnon-convex := minimizeW1,W2 L (�(XW1)W2, y) + �
�
kW1k2F + kW2k2F

�

Theorem Stationary points
n

x : 0 2 conv {limk!1rf(xk) | limk!1 xk = x, xk 2 D}
o

of pnon-convex are optimal solutions of the sampled convex program psampled-cvx

Y. Wang, J. Lacotte, M. Pilanci. The Hidden Convex Optimization Landscape of Two-Layer

ReLU Neural Networks: an Exact Characterization of the Optimal Solutions ICLR, 2022



Convex Generative Adversarial Networks (GANs)

� Wasserstein GAN parameterized with neural networks

p
⇤ = min

✓g
max

D: 1-Lipschitz
Ex⇠px [D(x)] � Ez⇠pz [D(G✓g(z))]

⇠= min
✓g

max
✓d

Ex⇠px [D✓d(x)] � Ez⇠pz [D✓d(G✓g(z))]

Theorem: Two-layer generator two-layer discriminator WGAN problems are

convex-concave games. Saddle-points exists and globally solvable. (Sahiner et al. Hidden

Convexity of Wasserstein GANs, ICLR 2022.)
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Transformer and Attention-based Architectures

� based on the attention module

f(X) = �(XQ
T
KX)XV

� Q, K, V are trainable parameters: Q : query, K : key, V : value

� used in transformers, vision transformers, mixer models...

� There is a convex formulation1, which involves the nuclear norm

1
A. Sahiner, T. Ergen, B. Ozturkler, M. Mardani, J. Pauly, M. Pilanci, ICML 2022
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Exact Convex Program: Two-Layer ReLU NN
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Figure: m = 8
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Figure: m = 15

Training cost of a two-layer ReLU network trained with SGD (10 initialization trials) and the

convex program on a toy dataset (d = 2)
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Exact Convex Program: Classifying a subset of CIFAR-10
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(b) m = 50

Figure: Two-layer ReLU network trained with SGD (10 initialization trials) and the convex program on

a subset of CIFAR-10 for binary classification (n = 195)
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Sampled Convex Model vs Non-convex Model (Stochastic Gradient Descent)

Figure: training accuracy Figure: test accuracy

10-class classification on the CIFAR Dataset (n = 50, 000, d = 3072) with randomly sampled

arrangement patterns for the convex program
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Re-training Final Convolutional Layers of Pretrained Deep Nets

Person detection task on the COCO Dataset containing 110, 000 images of median resolution

640 x 480. Two-layer ReLU CNN trained on pretrained MobileNetV3 features (convex

PyTorch model: https://github.com/pilancilab/convex_nn)

62

https://github.com/pilancilab/convex_nn)

	Neural networks and current challenges
	Randomized embeddings
	Hidden convexity and randomization in neural networks
	Clifford algebra

