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Abstract

The training of two-layer neural networks with nonlinear activation functions is an impor-
tant non-convex optimization problem with numerous applications and promising performance
in layerwise deep learning. In this paper, we develop exact convex optimization formulations
for two-layer neural networks with second degree polynomial activations based on semidefinite
programming. Remarkably, we show that semidefinite lifting is always exact and therefore com-
putational complexity for global optimization is polynomial in the input dimension and sample
size for all input data. The developed convex formulations are proven to achieve the same global
optimal solution set as their non-convex counterparts. More specifically, the globally optimal
two-layer neural network with polynomial activations can be found by solving a semidefinite
program (SDP) and decomposing the solution using a procedure we call Neural Decomposition.
Moreover, the choice of regularizers plays a crucial role in the computational tractability of
neural network training. We show that the standard weight decay regularization formulation
is NP-hard, whereas other simple convex penalties render the problem tractable in polynomial
time via convex programming. We extend the results beyond the fully connected architecture
to different neural network architectures including networks with vector outputs and convolu-
tional architectures with pooling. We provide extensive numerical simulations showing that the
standard backpropagation approach often fails to achieve the global optimum of the training
loss. The proposed approach is significantly faster to obtain better test accuracy compared to
the standard backpropagation procedure.

1 Introduction

We study neural networks from the optimization perspective by deriving equivalent convex opti-
mization formulations with identical global optimal solution sets. The derived convex problems
have important theoretical and practical implications concerning the computational complexity of
optimal training of neural network models. Moreover, the convex optimization perspective provides
a more concise parameterization of neural network models that enables further analysis of their
interesting properties.

In non-convex optimization, the choice of optimization method and its internal hyperparame-
ters, such as initialization, mini-batching and step sizes, have a considerable effect on the quality
of the learned model. This is in sharp contrast to convex optimization problems, where locally
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Figure 1: ReLU (left) and swish (right) activation functions and their second degree polynomial
approximations. ReLU activation: σ(u) = max(0, u) and its polynomial approximation: σ(u) =
0.09u2 + 0.5u + 0.47. Swish activation: σ(u) = u(1 + e−u)−1 and its polynomial approximation:
σ(u) = 0.1u2 + 0.5u+ 0.24.

optimal solutions are globally optimal and optimizer parameters have no influence on the solution
and therefore the model. Moreover, the solutions of convex optimization problems can be obtained
in a very robust, efficient and reproducible manner thanks to the elegant and extensively studied
structure of convex programs. Therefore, our convex optimization based globally optimal training
procedure enables the study of the neural network model and the optimization procedure in a
decoupled way. For instance, step sizes employed in the optimization can be considered hyperpa-
rameters of non-convex models, which affect the model quality and may require extensive tuning.
For a classification task, in our convex optimization formulation, step sizes as well as the choice of
the optimizers are no longer hyperparameters to obtain better classification accuracy. Any convex
optimization solver can be applied to the convex problem to obtain a globally optimal model.

Various types of activation functions were proposed in the literature as nonlinearities in neural
network layers. Among the most widely adopted ones is the ReLU (rectified linear unit) activation
given by σ(u) = max(0, u). A recently proposed alternative is the swish activation σ(u) = u(1 +
e−u)−1, which performs comparably well [45]. Another important class is the polynomial activation
where the activation function is a scalar polynomial of a fixed degree. We focus on second degree
polynomial activation functions, i.e., σ(u) = au2 + bu + c. Although polynomial coefficients a, b, c
can be regarded as hyperparameters, it is often sufficient to choose the coefficients in order to
approximate a target nonlinear activation function such as the ReLU or swish activation. ReLU and
swish activations are plotted in Figure 1 along with their second degree polynomial approximations.

Our derivation of the convex program for polynomial activations leverages convex duality and
the S-procedure, and can be stated as a simple semidefinite program (SDP). We refer the reader to
[44] for a survey of the S-procedure and applications in SDPs. In addition, another commonly used
activation function in the literature, quadratic activation, is a special case of polynomial activations
(b = c = 0) and we devote a separate section to this case (Section 5). The corresponding convex
program is an SDP and takes a simpler form.

Main aspects of our work that differ from others in the literature that study the optimization
landscape of two-layer neural networks (e.g. see section 1.2) are the following: Our results (1)
provide global optimal solutions in fully polynomial time (polynomial in all problem parameters),
(2) uncover an important role of the regularizer in computational tractability, (3) hold for arbitrary
loss function and other network architectures such as vector output, convolutional and pooling, (4)
are independent of the choice of the numerical optimizer and its parameters.

We summarize the types of neural network architectures considered in this work and the cor-
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responding convex problems that we have derived to train them to global optimality in Table 1.
The fourth column of Table 1 shows the upper bounds for critical width m∗, i.e., the optimal
number of neurons that one needs for global optimization of any problems with number of neurons
m ≥ m∗. The fifth column, named ”construction algorithm”, refers to the method for obtaining
the optimal neural network weights from the solution of the associated convex program. The last
column contains the references to the theorems for each result.

1.1 Overview of Our Contributions

• We show that the standard optimization formulation for training neural networks fθ(x) =∑m
j=1 σ(xTuj)αj with trainable parameters θ = (u1, . . . , um, α1, . . . , αm) and degree two poly-

nomial activations σ(u) = au2 + bu+ c, training data X = [x1, . . . , xn]T ∈ Rn×d, y ∈ Rn, and
`22 regularization on the parameters given by

min
θ

`(fθ(X), y) + β

m∑
j=1

(‖uj‖22 + ‖αj‖22) (1)

is computationally intractable via a reduction to the NP-hard subset sum problem, for any
value of m.

• Surprisingly, for quadratic activation networks, σ(u) = u2, we show that modifying the
quadratic weight decay regularization to cubic regularization

min
θ

`(fθ(X), y) + β
m∑
j=1

(‖uj‖32 + ‖αj‖32) (2)

enables global optimization in fully polynomial time via convex semidefinite programming.
The computational complexity is polynomial in all problem parameters (n, d,m).

• Furthermore, for any degree two polynomial activation σ, the non-convex neural network
training problem

min
θ s.t. ‖uj‖2=1 ,∀j∈[m]

`(fθ(X), y) + β‖α‖1 (3)

can be equivalently stated as a convex semidefinite problem and globally solved in fully
polynomial time. In fact, the cubic regularization strategy in (2) is a special case of this
convex program. The result holds universally for all input data without any conditions and
also holds when β → 0.

• In deriving the convex formulations, we identify a concise re-parameterization of the neural
network parameters that enables exact convexification by removing the redundancy in the
classical overparameterized formulation. This is similar in spirit to the semidefinite lifting
procedure in relaxations of combinatorial optimization problems. In contrast to these relax-
ations, we show that our lifting is always exact as soon as the network width exceeds a critical
threshold which can be efficiently determined.

• We develop a matrix decomposition procedure called Neural Decomposition to extract the
optimal network parameters from the solution of convex optimization, which is guaranteed
to produce an optimal neural network. Neural Decomposition transforms the convex re-
parameterization to the overparameterized, i.e., redundant, formulation in a similar spirit to
(a non-orthogonal version of) Eigenvalue Decomposition.
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Non-convex objective Tractable convex Upper bound on Construction Thms
formulation critical width m∗ algorithm

Poly (scalar) `
(∑m

j=1 σ(Xuj)αj , y
)

+ β
∑m

j=1 |αj | s.t. ‖uj‖ = 1 Eq (21) 2(d+ 1) Neural decomp Thm 3.1

Poly (vector) `
(∑m

j=1 σ(Xuj)α
T
j , Y

)
+ β

∑m
j=1 ‖αj‖1 s.t. ‖uj‖ = 1 Eq (72) 2(d+ 1)C Neural decomp Thm 7.1

Convolutional `
(∑m

j=1

∑K
k=1 σ(Xkuj)αjk, y

)
+ β

∑m
j=1 ‖αj‖1 s.t. ‖uj‖ = 1 Eq (85) 2(f + 1)K2 Neural decomp Thm 8.1

Pooling `
(∑m

j=1

∑K/P
k=1

1
P

∑P
l=1 σ(X(k−1)P+luj)αjk, y

)
+ β

∑m
j=1 ‖αj‖1 Eq (95) 2(f + 1)K

2

P 2 Neural decomp Thm 9.1

s.t. ‖uj‖ = 1

Quad (scalar, `
(∑m

j=1 σ(Xuj)αj , y
)

+ β
∑m

j=1 |αj | s.t. ‖uj‖ = 1, or Eq (45) d Eigen- Thm 5.1

cubic reg) `
(∑m

j=1 σ(Xuj)αj , y
)

+ β
c

∑m
j=1(|αj |3 + ‖uj‖32) decomposition

Quad (scalar, `
(∑m

j=1 σ(Xuj)αj , y
)

+ β
∑m

j=1 |αj |2/3 s.t. ‖uj‖ = 1, or NP-hard - - Thm 6.1

quad reg) `
(∑m

j=1 σ(Xuj)αj , y
)

+ β
c

∑m
j=1(|αj |2 + ‖uj‖22) (intractable)

Table 1: List of the neural network architectures that we have studied in this work and the cor-
responding convex programs. Abbreviations are as follows. Poly (scalar): Polynomial activation
scalar output, Poly (vector): Polynomial activation vector output, Convolutional: CNN with poly-
nomial activation, Pooling: CNN with polynomial activation and average pooling, Quad (scalar,
cubic reg): Quadratic activation scalar output with cubic regularization, Quad (scalar, quad reg):
Quadratic activation scalar output with quadratic regularization. K is the number of patches and
f is the filter size for the convolutional architecture. C is the output dimension for the vector
output case. P is the pool size for average pooling. σ(u) is defined as u2 for quadratic activation,
and au2 + bu+ c for polynomial activation.

• In addition to the fully connected neural network architecture, we derive the equivalent convex
programs for various other architectures such as convolutional, pooling and vector output
architectures.

• We provide extensive numerical simulations showing that the standard backpropagation ap-
proach with or without regularization fails to achieve the global optimum of the training
loss. Moreover, the test accuracy of the proposed convex optimization is considerably higher
in standard datasets as well as random planted models. Our convex optimization solver is
significantly faster in total computation time to achieve similar or better test accuracy.

1.2 Prior Work

A considerable fraction of recent works on the analysis of optimization landscape of neural networks
focuses on explaining why gradient descent performs well. The works [12, 49] consider the opti-
mization landscape of a restricted class of neural networks with quadratic activation and quadratic
regularization where the second layer weights are fixed. They show that when the neural network
is overparameterized, i.e., m ≥ d, the non-convex loss function has benign properties: all local
minima are global and all saddle points have a direction of negative curvature. However, in this
paper we show that training both the first and second layer weights with quadratic regularization
in fact makes global optimization NP-hard for any m. In contrast, we provide a different formula-
tion to obtain the global optimal solution via convex optimization in the more general case when
the second layer weights are also optimized, the activation function is any arbitrary degree two
polynomial, and global optimum is achieved for all values of m. The work in [35] similarly studies
two-layer neural networks with quadratic activation function and squared loss and states results on
both optimization and generalization properties. The authors in [19] focus on quadratic activation
networks from the perspectives of optimization landscape and generalization performance, where
the setting is based on a planted model with a full rank weight matrix. In [30, 33] it was shown
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that sufficiently wide ReLU networks have a benign landscape when each layer is sufficiently wide,
satisfying m ≥ n+ 1.

Another recent work analyzing the training of neural networks with quadratic-like activations
for deeper architectures is [2]. Authors in [2] consider polynomial activation functions and inves-
tigate layerwise training and compare with end-to-end training of layers. It is demonstrated in
[2] that the degree two polynomial activation function performs comparably to ReLU activation
in deep networks. More specifically, it is reported in [2] that for deep neural networks, ReLU
activation achieves a classification accuracy of 0.96 and a degree two polynomial activation yields
an accuracy of 0.95 on the Cifar-10 dataset. Similarly for the Cifar-100 dataset, they obtain an
accuracy of 0.81 for ReLU activation and 0.76 for the degree two polynomial activation. These
numerical results are obtained for the activation σ(u) = u + 0.1u2, which the authors prefer over
the standard quadratic activation σ(u) = u2 to make the neural network training stable. Moreover,
the performance of layerwise learning with such activation functions is considerably high, although
there is some gap between end-to-end trained models. In addition, neural networks with polyno-
mial activations have immediate applications in encrypted computing [24, 20, 36, 39]. In encrypted
computing, it is desirable to have a low degree polynomial as the activation function. For instance,
homomorphic encryption can only support additions and multiplications in a straightforward way,
which necessitates low degree polynomials as activations. In [20], degree two polynomial approxi-
mations were shown to be effective for accurate neural network predictions with encryption. These
results demonstrate that degree two polynomial activations are quite promising and worth studying
from both theoretical and practical perspectives.

In a recent series of papers, the authors derived convex formulations for training ReLU neural
networks to global optimality [43, 15, 16, 14, 46, 47]. Our work takes a similar convex duality
approach in deriving the convex equivalents of non-convex neural network training problems. In
particular, the previous work in this area deals with ReLU activations while in this work we focus
on polynomial activations. Hence, the mathematical techniques involved in deriving the convex
programs and the resulting convex programs are substantially different. The convex program
derived for ReLU activation in [43] has polynomial time trainability for fixed rank data matrices,
whereas the convex programs developed in this work are all polynomial-time trainable with respect
to all problem dimensions. More specifically, their convex program is given by

min
{vi,wi}Pi=1

1

2

∥∥∥∥∥
P∑
i=1

DiX(vi − wi)− y

∥∥∥∥∥
2

2

+ β

P∑
i=1

(‖vi‖2 + ‖wi‖2)

s.t. (2Di − In)Xvi ≥ 0, (2Di − In)Xwi ≥ 0, ∀i ∈ [P ] , (4)

where the neural network weights are constructed from vi ∈ Rd and wi ∈ Rd, i = 1, . . . , P . The
matrices Di are diagonal matrices whose diagonal entries consist of 1xT1 u≥0

, 1xT2 u≥0
, . . . , 1xTnu≥0 for

all possible u ∈ Rd. The number of distinct Di matrices, denoted by P is the number of hyperplane

arrangements corresponding to the data matrix X. It is known that P is bounded by 2r
(
e(n−1)

r

)r
where r = rank(X) (see [43] for the details). In particular, convolutional neural networks have a
fixed value of r, for instance m filters of size 3× 3 yield r = 9. This is an exponential improvement
over previously known methods that train optimal ReLU networks which are exponential in the
number of neurons m and/or the number of samples n [3, 21, 5].

The work in [6] presents formulations for convex factorization machines with nuclear norm
regularization, which is known to obtain low rank solutions. Vector output extension for factoriza-
tion machines and polynomial networks, which are different from polynomial activation networks,
is developed in [7]. Polynomial networks are equivalent to quadratic activation networks with an
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addition of a linear neuron. In [7], the authors consider learning an infinitely wide quadratic acti-
vation layer by a greedy algorithm. However, this algorithm does not provide optimal finite width
networks even in the quadratic activation case. Furthermore, [34] presents a greedy algorithm for
training polynomial networks. The algorithm provided in [34] is based on gradually adding neurons
to the neural network to reduce the loss. More recently, [48] considers applying lifting for quadratic
activation neural networks and presents non-convex algorithms for low rank matrix estimation for
two-layer neural network training.

1.3 Notation

Throughout the text, σ : R → R denotes the activation function of the hidden layer. We refer
to the function σ(u) = u2 as quadratic activation and σ(u) = au2 + bu + c where a, b, c ∈ R as
polynomial activation. We use X ∈ Rn×d to denote the data matrix, where its rows xi ∈ Rd
correspond to data samples and columns are the features. In the text, whenever we have a function
mapping from R to R with a vector argument (e.g., σ(v) or v2 where v is a vector), this means
the elementwise application of that function to all the components of the vector v. We denote a
column vector of ones by 1̄ and its dimension can be understood from the context. vec(·) denotes
the vectorized version of its argument. In writing optimization problems, we use min and max to
refer to ”minimize” and ”maximize”. We use the notations [m] and 1, . . . ,m interchangeably.

We use `(ŷ, y) for convex loss functions throughout the text for both scalar and vector outputs.
`∗(v) = supz(v

T z − `(z, y)) denotes the Fenchel conjugate of the function `(·, y). Furthermore, we
assume `∗∗ = ` which holds when ` is a convex and closed function [8].

We use Z � 0 for positive semidefinite matrices (PSD). S refers to the set of symmetric matrices.
tr refers to matrix trace. ⊗ is used for outer product. The operator conv stands for the convex
hull of a set.

1.4 Preliminaries on Semidefinite Lifting

We defer the discussion of semidefinite lifting for two-layer neural networks with polynomial activa-
tions to Section 2. We now briefly discuss a class of problems where SDP relaxations lead to exact
convex optimization solutions of the original non-convex problem and also instances where they
fail to be exact. Let us consider the following quadratic objective problem with a single quadratic
constraint:

min
u

uTQ1u+ bT1 u+ c1

s.t. uTQ2u+ bT2 u+ c2 ≤ 0 (5)

where Q1, Q2 are indefinite, i.e., not assumed to be positive semidefinite. Due to the indefinite
quadratics, this is a non-convex optimization problem. By introducing a matrix variable U = uuT ,
one can equivalently state this problem as

min
U,u

tr(Q1U) + bT1 u+ c1

s.t. tr(Q2U) + bT2 u+ c2 ≤ 0

U = uuT . (6)

This problem can be relaxed by replacing the equality by the matrix inequality U � uuT . Re-
writing the expression U � uuT as a linear matrix inequality via the Schur complement formula
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yields the following SDP

min
U,u

tr(Q1U) + bT1 u+ c1

s.t. tr(Q2U) + bT2 u+ c2 ≤ 0[
U u
uT 1

]
� 0 . (7)

Remarkably, it can be shown that the original non-convex problem in (5) can be solved exactly by
solving the convex SDP in (7) via duality, under the mild assumption that the original problem
is strictly feasible (see Appendix B in [8]). This shows that the SDP relaxation is exact in this
problem, returning a globally optimal solution when one exists. We note that there are alternative
numerical procedures to compute the global optimum of quadratic programs with one quadratic
constraint [8, 25].

We also note that the lifting approach U = uuT and the subsequent relaxation U � uuT for
quadratic programs with more than two quadratic constraints is not tight in general [38, 9]. A
notable case with multiple constraints is the NP-hard Max-Cut problem and its SDP relaxation
[22]

max
u2i=1,∀i

uTQu = max
u2i=1,∀i

tr(QuuT ) ≤ max
U�0, Uii=1,∀i

tr(QU). (8)

The SDP relaxation of Max-Cut is not tight since its feasible set contains the cut polytope

conv
{
uuT : ui ∈ {−1,+1} ∀i

}
and other non-integral extreme points [31]. Nevertheless, an approximation ratio of 0.878 can be
obtained via the Goemans-Williamson randomized rounding procedure [22]. It is conjectured that
this is the best approximation ratio for Max-Cut [27], whereas it can be formally proven to be
NP-hard to approximate within a factor of 16

17 [23, 50]. Hence, in general we cannot expect to
obtain exact solutions to problems of combinatorial nature, such as Max-Cut and variants using
computationally efficient SDP relaxations.

It is instructive to note that a naive application of the SDP lifting strategy is not immedi-
ately tractable for two-layer neural networks. For simplicity, consider a scalar output polynomial
activation network f(x) =

∑m
j=1 σ(xTuj)αj where σ(u) = u2 + u, and {uj , αj}mj=1 are trainable

parameters. The corresponding training problem for a given loss function `(·, y) and its SDP
relaxation are as follows

min
{uj ,αj}mj=1

∑
x∈X

`
( m∑
j=1

((xTuj)
2 + xTuj)αj , y

)
≥ min
{Uj�ujuTj ,αj}mj=1

∑
x∈X

`
( m∑
j=1

xTUjxαj + xTujαj , y
)
.

(9)

The above problem is non-convex due to the bilinear terms {Ujαj}mj=1. Moreover, a variable change

Ûj = Ujαj does not respect semidefinite constraints Uj � uju
T
j when αj ∈ R. Another limitation

is the prohibitively high number of variables in the lifted space, which is d2m+dm+m as opposed
to dm + m in the original problem. Therefore, a different convex analytic formulation is required
to address all these concerns.

Although SDP relaxations are extensively studied for various non-convex problems (see e.g. [51]
for a survey of applications), instances with exact SDP relaxations are exceptionally rare. As will
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be discussed in the sequel, our main result for two-layer neural networks is another instance of an
SDP relaxation leading to exact formulations where the semidefinite lifting and relaxation is tight.

In convex geometry, a spectrahedron is a convex body that can be represented as a linear matrix
inequality which are the feasible sets of semidefinite programs. An example is the elliptope defined
as the feasible set of the Max-Cut relaxation given by U � 0, Uii = 1∀i, which is a subset of n× n
symmetric positive-definite matrices. Due to the existence of efficient projection operators and
barrier functions of linear matrix inequalities, optimizing convex objectives over spectrahedra can
be efficiently implemented, which renders SDPs tractable. We will show that polynomial activation
neural networks can be represented via a class of simple linear matrix inequalities, dubbed neural
spectrahedra (see Figure 2 for an example), and enables global optimization in fully polynomial
time and elucidates their parameterization in convex analytic terms.

1.5 Paper Organization

Section 2 gives an overview of the theory developed in this work. Section 3 describes the convex
optimization formulation via duality and S-procedure for polynomial activation neural networks.
Section 4 establishes via the neural decomposition method that the convex problem developed
in Section 3 can be used to train two-layer polynomial activation networks to global optimality.
Quadratic activation neural networks and the hardness result are studied in Section 5 and 6. Vector
output and convolutional neural network architectures are studied in Section 7 and 8, respectively
and convolutional networks with average pooling is in Section 9. We discuss the implementation
details for solving the convex programs and give experimental results in Section 10.

2 Lifted Representations of Networks with Polynomial Activa-
tions

Consider the network f(x) =
∑m

j=1 σ(xTuj)αj where the activation function σ is the degree two

polynomial σ(u) = au2 + bu+ c. First, we note that the neural network output can be written as

f(x) =

m∑
j=1

(
a(xTuj)

2 + bxTuj + c
)
αj =

m∑
j=1

(
〈axxT , ujuTj 〉+ 〈bx, uj〉+ c

)
αj

=

〈 axxT

bx
c

 ,

∑m

j=1 uju
T
j αj∑m

j=1 ujαj∑m
j=1 αj

〉
= 〈φ(x), ψ({uj , αj}mj=1)〉 , (10)

where φ : Rd → Rd2+d+1 and ψ : Rm(d+1) → Rd2+d+1 are formally defined in the sequel. The above
identity shows that the nonlinear neural network output is linear over the lifted features

φ(x) :=
(
axxT , bx, c

)
∈ Rd

2+d+1.

In turn, the nonlinear model f(x) is completely characterized by the lifted parameters which we
define as the following matrix-vector-scalar triplet

ψ({uj , αj}mj=1) :=
( m∑
j=1

uju
T
j αj ,

m∑
j=1

ujαj ,

m∑
j=1

αj

)
∈ Rd

2+d+1.
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Figure 2: (Left) The Neural Cone C12 described by (u2α, uα, α) ∈ R3 where u, α ∈ R, |u| ≤ 1. (Right)

Neural Spectrahedron M(1) described by (Z11, Z12, Z22) ∈ R3 where Z =

 Z11 Z12 Z13

Z12 Z22 Z23

Z13 Z23 Z33

 �
0, Z11 + Z22 = Z33 ≤ 1 (constrained to the slice Z22 = Z11 and Z ′ = 0 in (14)).

Optimizing over the lifted parameter space initially appears as hard as the original non-convex
neural network training problem. This is due to the cubic and quadratic terms involving the weights
of the hidden and output layer in the lifted parameters. Furthermore, norms of the network weights
are nonlinear in the lifted parameters, which complicates regularization terms, e.g.,

∑m
j=1 ‖uj‖22

typically included in training. Nevertheless, one of our main results shows that the lifted parameters
can be exactly described using linear matrix inequalities.

We begin by characterizing the lifted parameter space as a non-convex cone.

Definition 1 (Neural Cone of degree two). We define the non-convex cone Cm2 ⊆ Rd2+d+1 as

Cm2 :=

(
m∑
j=1

uju
T
j αj ,

m∑
j=1

ujαj ,
m∑
j=1

αj

)
: uj ∈ Rd, ‖uj‖2 = 1, αj ∈ R ∀j ∈ [m]

 . (11)

See Figure 2 (left) for a depiction of C12 ⊆ R3 corresponding to the case m = 1, d = 1.

Surprisingly, we will show that the original non-convex neural network problem is solved exactly
to global optimality when the optimization is performed over a convex set which we define as the
Neural Spectrahedron, given by the convex hull of the cone C2. In other words, every element of the
convex hull can be associated with a neural network of the form f(x) =

∑m
j=1 σ(xTuj)αj through

a special matrix decomposition procedure which we introduce in Section 4. Moreover, a Neural
Spectrahedron can be described by a simple linear matrix inequality. Consequently, these two
results enable global optimization of neural networks with polynomial activations of degree two in
fully polynomial time with respect to all problem parameters: dimension d, number of samples n
and number of neurons m. To the best of our knowledge, this is the first instance of a method
that globally optimizes a standard neural network architecture with computational complexity
polynomial in all problem dimensions. We refer the reader to the recent work [43] for a convex
optimization formulation of networks with ReLU activation, where the worst case computational
complexity is O((nr )r) with r = rank(X).

It is equally important that our results characterize neural networks as constrained linear learn-
ing methods 〈φ(x), ψ〉 in the lifted feature space φ(x), where the constraints on the lifted param-
eters ψ are precisely described by a Neural Spectrahedron via linear matrix inequalities. These
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constraints can be easily tackled with convex semidefinite programming or closed-form projections
onto these sets in iterative first-order algorithms. We also investigate interesting regularization
properties of this convex set, and draw similarities to `1 norm and nuclear norm. In contrast, Re-
producing Kernel Hilbert Space methods and Neural Tangent Kernel approximations [26, 10] are
linear learning methods over lifted feature maps where the corresponding parameter constraints are
ellipsoids. These approximations fall short of explaining the extraordinary power of finite width
neural networks employed in practical applications.

We extend the definition of the Neural Cone to degree k activations as follows.

Definition 2 (Neural Cone of degree k). We define the non-convex cone Cmk ⊆ R
∑k

i=0 d
i

as
follows

Cmk :=

(
m∑
j=1

u⊗kj αj , · · · ,
m∑
j=1

uj ⊗ ujαj ,
m∑
j=1

ujαj ,

m∑
j=1

αj

)
: uj ∈ Rd, ‖uj‖2 = 1, αj ∈ R ∀j ∈ [m]


(12)

where we use the notation u⊗k := u⊗ · · · ⊗ u︸ ︷︷ ︸
k times

.

It is easy to see that two-layer neural networks with degree k polynomial activations can be
represented linearly using the lifted parameter space Ck and corresponding lifted features. Taking
the closure of the union {C}∞k=0, any analytic activation function can be represented in this fashion.
In this paper we limit the analysis to the degree 2 case.

Next, we describe a compact set that we call neural spectrahedron which describes the lifted
parameter space of networks with a constraint on the `1 norm of output layer weights.

Definition 3. A neural spectrahedron Sm2 (t) ⊆ Rd2+d+1 is defined as the compact convex set

Sm2 (t) := conv

(
m∑
j=1

uju
T
j αj ,

m∑
j=1

ujαj ,
m∑
j=1

αj

)
: ‖uj‖2 = 1, αj ∈ R,∀j = 1, . . . ,m,

m∑
j=1

|αj | ≤ t


(13)

We will show that a neural spectrahedron can be equivalently described as a linear matrix
inequality via defining Sm2 (t) =

(
M11(t),M12(t),M22(t)

)
for all m ≥ m∗ where

M(t) =

{
Z − Z ′ : Z =

[
Z1 Z2

ZT2 Z4

]
� 0, Z ′ =

[
Z ′1 Z ′2
Z ′2

T Z ′4

]
� 0, tr(Z1) = Z4, tr(Z

′
1) = Z ′4, Z4 + Z ′4 ≤ t

}
,

(14)

Z,Z ′ ∈ S(d+1)×(d+1), Z1, Z
′
1 ∈ Sd×d, Z2, Z

′
2 ∈ Rd×1 and Z4, Z

′
4 ∈ R+, and m∗ = m∗(t) is a critical

number of neurons that satisfies m∗(0) = 0 and m∗(t) ≤ 2(d + 1)∀t, which will be explicitly
defined in the sequel. Therefore, an efficient description of the set M(t) in terms of linear matrix
inequalities enables efficient convex optimization methods in polynomial time. Moreover, it should
be noted that in non-convex optimization, the choice of the optimization algorithm and its internal
hyperparameters, such as initialization, mini-batching and step sizes have a substantial contribution
to the quality of the learned neural network model. This is in stark contrast to convex optimization
problems, where optimizer hyperparameters have no effect, and solutions can be obtained in a very
robust, efficient and reproducible manner.
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2.1 A geometric description of the Neural Spectrahedron for the special case
of nonnegative output layer weights

Here we describe a simpler case with the restriction αj ≥ 0∀j ∈ [m] in the Neural Cone Cm2 and
we will suppose that m ≥ d + 1. In this special case, let us define the one-sided positive Neural
Spectrahedron as

+Sm2 (t) := conv

(
m∑
j=1

uju
T
j αj ,

m∑
j=1

ujαj ,
m∑
j=1

αj

)
: ‖uj‖2 = 1, αj ∈ R+, ∀j = 1, . . . ,m,

m∑
j=1

αj ≤ t

 .

(15)

We observe that +Sm2 (t) is identical to the set
(

+M11,
+M12,

+M22

)
⊆ Rd2+d+1 where

+M(t) : = t conv


m∑
j=1

[
uj
1

] [
uj
1

]T
αj : uj ∈ Rd, ‖uj‖2 = 1, αj ∈ R+,

m∑
j=1

αj ≤ 1

 , (16)

which is partitioned as +M(t) =

[
+M11

+M12
+MT

12
+M22

]
where +M11 ⊆ Sd×d, +M12 ⊆ Rd×1 and

+M22 ⊆ R+.
Next, we note that as soon as the network width1 satisfies m ≥ d+ 1, we have

+M(t) : = t conv

{{[
u
1

] [
u
1

]T
: ‖u‖2 = 1

}
∪ 0

}
, (17)

where 0 is the zero matrix, since
∑m

j=1

[
uj
1

] [
uj
1

]T
αj ∈ S(d+1)×(d+1) is a positive semidefinite

matrix, and hence can be factorized2 as a convex combination of at most d+ 1 rank-one matrices

of the form

[
u
1

] [
u
1

]T
. Note that the zero matrix is included to account for the inequality∑m

j=1 αj ≤ 1 in (16). This important observation enables us to represent the convex hull of the

non-convex Neural Cone (an example is shown in Figure 2), via the simple convex body +M(t)
given in (17).

Most importantly, the positive Neural Spectrahedron set +M(t) provides a representation
of the non-convex Neural Cone Cm2 via its extreme points. Furthermore, +M(t) has a simple
description as a linear matrix inequality provided in the following lemma (the proof can be found
in the appendix).

Lemma 2.1. For m ≥ d+ 1, it holds that

+M(t) =

{
Z : Z =

[
Z1 Z2

ZT2 Z4

]
� 0, tr(Z1) = Z4 ≤ t

}
. (18)

Therefore the positive Neural Spectrahedron can be represented as the intersection of the positive
semidefinite cone and linear inequalities. Moreover, every element of +M(t) can be factorized as∑m

j=1

[ ujuTj αj ujαj
uTj αj αj

]
for some ‖uj‖2 = 1, αj ≥ 0, ∀j ∈ [m],

∑m
j=1 αj ≤ t, which can be identified

as an element of the non-convex Neural Cone Cm2 and a neural network in the lifted parameter space
as shown in (10).

1This assumption is not required in our later analysis.
2We describe the details of this factorization in Section 4.
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The assumption m ≥ d+ 1 is not required and only used here to illustrate this simpler special
case. In the more general case of arbitrary output layer weights αj ∈ R, ∀j ∈ [m], we have the more
general linear matrix inequality representation in (14), which is in terms of two positive semidefinite
cones and three linear inequalities. In general, such a restriction on the number of neurons m in
terms of the dimension d is not necessary. In the next sections, we only require m ≥ m∗, where
m∗ can be determined via a convex program. Furthermore, the regularization parameter directly
controls the number of neurons m∗. We illustrate the effect of the regularization parameter on m∗

in the numerical experiments section, and show that m∗ can be made arbitrarily small.

3 Convex Duality for Polynomial Activation Networks

We consider the non-convex training of a two-layer fully connected neural network with polynomial
activation and derive a convex dual optimization problem. The input-output relation for this
architecture is

f(x) =
m∑
j=1

σ(xTuj)αj , (19)

where σ is the degree two polynomial σ(u) = au2 + bu + c. This neural network has m neurons
with the first layer weights uj ∈ Rd and second layer weights αj ∈ R. We refer to this case where
f : Rd → R as the scalar output case. Section 7 extends the results to the vector output case.

It is relatively easy to obtain a weak dual that provides a lower-bound via Lagrangian duality.
However, in non-convex problems, a duality gap may exist since strong duality does not hold in
general. Remarkably, we show that strong duality holds as soon as the network width exceeds a
critical threshold which can be easily determined.

We will assume `1 norm regularization on the second layer weights as regularization and include
constraints that the first layer weights are unit norm. We note that `1 norm regularization on the
second layer weights results in a special dual problem and hence is crucial in the derivations. We
show in Section 5 that this formulation is equivalent to cubic regularization when the activation
is quadratic. For the standard `22, i.e., weight decay regularization, we will in fact show that the
problem is NP-hard (see Section 6). The training of a network under this setting requires solving
the non-convex optimization problem given by

p∗ = min
{αj , uj}mj=1, s.t. ‖uj‖2=1, ∀j

`

 m∑
j=1

σ(Xuj)αj , y

+ β

m∑
j=1

|αj | . (20)

Theorem 3.1 states the main result for polynomial activation neural networks that the non-
convex optimization problem in (20) can be solved globally optimally via a convex problem. Before
we state Theorem 3.1, we briefly describe the numerical examples shown in Figure 3 and 4 which
compare the solution of the non-convex problem via backpropagation and the solution of the cor-
responding convex program via a convex solver (see Section 10 for details on the solver). Figure
3 shows the training and test costs on a regression task with randomly generated data for the
two-layer quadratic activation neural network. We observe that convex SDP takes a much shorter
time to optimize and obtains a globally optimal solution while the SGD algorithm converges to
local minima in some of the trials where the initialization is different. Furthermore, Figure 4 com-
pares the classification accuracies for the two-layer vector output polynomial activation network
on a multiclass classification problem with real data. The exact statement of the vector output

12
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Figure 3: Cost against wall-clock time on the training (left) and test (right) sets for stochastic
gradient descent (SGD) and the convex SDP for quadratic activation networks. The solid lines
show the training curve of the non-convex model with SGD (with learning rate tuned optimally via
extensive grid search) and each different colored solid curve corresponds to an independent trial.
The dotted horizontal curve shows the cost for the convex SDP and the cross indicates the time
that it takes to solve the convex SDP. The dataset X is synthetically generated by sampling from
the i.i.d. Gaussian distribution and has dimensions n = 100, d = 10. Labels y are generated by a
teacher network with 10 planted neurons. The regularization coefficient is β = 10−6 and the batch
size for SGD is 10.
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Figure 4: Classification accuracy results on the UCI dataset ”annealing” (n = 638, d = 31) for
polynomial activation networks. This is a multiclass classification dataset with C = 5 classes. Both
training (left) and test (right) set accuracies are shown for the gradient descent (GD) and the convex
SDP methods. Legend labels are as follows. GD - tractable: The non-convex problem in (65) solved
via gradient descent, GD - weight decay : Non-convex problem with quadratic regularization on all
weights solved via gradient descent, Convex SDP (optimal): The convex problem in (72). Degree
two polynomial activation with coefficients a = 0.09, b = 0.5, c = 0.47 is used. The regularization
coefficient is β = 1. The learning rate for GD is optimized offline and only the best performing
learning rate is shown. The resulting number of neurons from the convex program is 172.
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extension of the main result is provided in Section 7. In Section 10, we present additional numerical
results verifying all of the theoretical results on various datasets.

Figure 5 compares the accuracy of the non-convex polynomial activation model when it is trained
with different optimizers (SGD and Adam [28]) for a range of step sizes. Figure 5 shows that the
convex formulations outperform the non-convex solution via SGD and Adam. The extension of the
main result to convolutional neural networks is discussed in Section 8 and 9.

Theorem 3.1 (Globally optimal convex program for polynomial activation networks). The solution
of the convex problem

min
Z,Z′

`(ŷ, y) + β(Z4 + Z ′4)

s.t. ŷi = axTi (Z1 − Z ′1)xi + bxTi (Z2 − Z ′2) + c(Z4 − Z ′4), i ∈ [n]

tr(Z1) = Z4, tr(Z ′1) = Z ′4

Z =

[
Z1 Z2

ZT2 Z4

]
� 0, Z ′ =

[
Z ′1 Z ′2
Z ′2

T Z ′4

]
� 0 (21)

provides a global optimal solution for the non-convex problem in (20) when the number of neurons
satisfies m ≥ m∗ where

m∗ = rank(Z∗) + rank(Z ′
∗
). (22)

Here Z∗ and Z ′∗ denote the solution of (21). The optimal network weights can be extracted from
Z∗ and Z ′∗ using the Neural Decomposition procedure given in Section 4. It follows that the optimal
number of neurons is upper bounded by m∗ ≤ 2(d+ 1).

The proof of Theorem 3.1 is established in this section and the next. In this section we show
that the solution of the convex program (21) provides a lower bound for the solution of the non-
convex problem (20). In the next section, we prove, via the method of neural decomposition, that
the solution of the convex problem provides also an upper bound, which concludes the proof of
Theorem 3.1.

In proving the lower bound, we leverage duality. Minimizing over first αj ’s and then uj ’s, we
can restate the problem in (20) as

p∗ = min
{uj}mj=1 s.t. ‖uj‖2=1,∀j

min
{αj}mj=1,ŷ

` (ŷ, y) + β
m∑
j=1

|αj | s.t. ŷ =
m∑
j=1

σ(Xuj)αj . (23)

The dual problem for the inner minimization problem is given by

max
v
−`∗(−v) s.t. |vTσ(Xuj)| ≤ β, ∀j . (24)

Next, let us call the optimal solution of the following problem d∗

d∗ = min
{uj}mj=1 s.t. ‖uj‖2=1, ∀j

max
|vT σ(Xuj)|≤β ,∀j

−`∗(−v). (25)

By changing the order of the minimization and maximization operations, we obtain the following
bound

d∗ ≥ max
|vT σ(Xuj)|≤β ,‖uj‖2=1, ∀j

−`∗(−v). (26)

14



0 100 200 300 400
Time (sec)

0.5
0.6
0.7
0.8
0.9
1.0

Tr
ai

ni
ng

 a
cc

ur
ac

y

SGD
Adam
Convex SDP (optimal)

(a) CNN, MNIST, training accuracy

0 100 200 300 400
Time (sec)

0.5
0.6
0.7
0.8
0.9
1.0

Te
st
 a
cc

ur
ac

y

SGD
Adam
Convex SDP (optimal)

(b) CNN, MNIST, test accuracy
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Figure 5: Classification accuracy for various learning rates and optimizers are plotted on the same
figure. SGD and Adam are used in solving the non-convex optimization problem. The solid blue
lines each correspond to a different learning rate for SGD and each dashed green curve corresponds
to a different learning rate for the Adam algorithm. Plots a, b: CNN with degree two polynomial
activations and global average pooling for binary classification on the first two classes of the MNIST
dataset (12000 training samples). Plots c, d: The same architecture as plots a, b and the dataset is
the first two classes of the CIFAR-10 dataset (10000 training samples). Plots e, f: Fully connected
architecture for binary classification on the dataset oocytes-merluccius-nucleus-4d.
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We note that the constraints |vTσ(Xuj)| ≤ β can equivalently be written as two quadratic (in uj)
inequalities for each j = 1, . . . ,m,

uTj

(
a

n∑
i=1

xix
T
i vi

)
uj + bvTXuj + cvT 1̄ ≤ β, −uTj

(
a

n∑
i=1

xix
T
i vi

)
uj − bvTXuj − cvT 1̄ ≤ β.

(27)

Next, we use the S-procedure given in Corollary 3.3 to reformulate the quadratic inequality con-
straints as linear matrix inequality constraints. Corollary 3.3 is based on Lemma 3.2 which char-
acterizes the solvability of a quadratic system. The proof of Corollary 3.3 is given in the appendix.

Lemma 3.2 (Proposition 3.1 from [44]). Let f1 and f2 be quadratic functions where f2 is strictly
concave (or strictly convex) and assume that f2 takes both positive and negative values. Then, the
following two statements are equivalent:

1. f1(u) < 0, f2(u) = 0 is not solvable.

2. There exists λ ∈ R such that f1(u) + λf2(u) ≥ 0, ∀u.

Corollary 3.3 (S-procedure with equality). max‖u‖2=1 u
TQu+ bTu ≤ β if and only if there exists

λ ∈ R such that [
λI −Q −1

2b
−1

2b
T β − λ

]
� 0.

Corollary 3.3 allows us to write the maximization problem in (26) as the equivalent problem
given by

max− `∗(−v)

s.t.

[
ρ1I − a

∑n
i=1 xix

T
i vi −1

2bX
T v

−1
2bv

TX β − c 1̄T v − ρ1

]
� 0[

ρ2I + a
∑n

i=1 xix
T
i vi

1
2bX

T v
1
2bv

TX β + c 1̄T v − ρ2

]
� 0 , (28)

where we note the two additional variables ρ1, ρ2 ∈ R are introduced. Next, we will find the dual
of the problem in (28). Let us first define the following Lagrange multipliers

Z =

[
Z1 Z2

Z3 Z4

]
, Z ′ =

[
Z ′1 Z ′2
Z ′3 Z ′4

]
, (29)

where Z,Z ′ ∈ S(d+1)×(d+1) are symmetric matrices, and the dimensions for each block matrix are
Z1, Z

′
1 ∈ Sd×d, Z2, Z

′
2 ∈ Rd×1, Z3, Z

′
3 ∈ R1×d, Z4, Z

′
4 ∈ R1×1. We note that because of the symmetry

of Z and Z ′, we have ZT2 = Z3 and Z2
′T = Z ′3. The Lagrangian for the problem in (28) is

L(v, ρ1, ρ2, Z, Z
′) = −`∗(−v) + ρ1 tr(Z1) + ρ2 tr(Z ′1)− a

n∑
i=1

vix
T
i (Z1 − Z ′1)xi − bvTX(Z2 − Z ′2)+

+ (β − ρ1)Z4 + (β − ρ2)Z ′4 − c
n∑
i=1

vi(Z4 − Z ′4). (30)

Maximizing the Lagrangian with respect to v, ρ1, ρ2, we obtain the problem in (21), which concludes
the lower bound part of the proof. In the next section, we introduce a method for decomposing the
solution of this convex program (i.e. Z∗ and Z ′∗) into feasible neural network weights to prove the
upper bound.
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4 Neural Decomposition

We have shown that a lower bound on the optimal value of the non-convex problem in (20) is
obtained via the solution of the convex program in (21) that we have derived using Lagrangian
duality. Now we show that this lower bound is in fact identical to the optimal value of the non-
convex problem, thus proving strong duality. Our approach is based on proving an upper bound
by constructing neural network weights from the solution of the convex problem such that the
convex objective achieves the same objective as the non-convex objective. Suppose that (Z∗, Z ′∗)
is a solution to (21). Let us denote the rank of Z∗ by r and the rank of Z ′∗ by r′. We will discuss
the decomposition for Z∗ and then complete the picture by considering the same decomposition for
Z ′∗. We begin by noting that Z∗ satisfies the constraints of (21), i.e.,

Z∗ � 0 and tr(Z∗1 ) = Z∗4 , or equivalently tr
(
Z∗
[
Id 0
0 −1

]
︸ ︷︷ ︸

G

)
= 0. (31)

Suppose that we have a decomposition of Z∗ as a sum of rank-1 matrices such that Z∗ =
∑r

j=1 pjp
T
j

where pj ∈ Rd+1 and tr(pjp
T
j G) = pTj Gpj = 0 for j = 1, . . . , r. We show how this can always be

done in subsection 4.1 by introducing a new matrix decomposition method, dubbed the neural
decomposition procedure.

Letting pj :=
[
cTj dj

]T
with cj ∈ Rd and dj ∈ R, we note that pTj Gpj = 0 implies ‖cj‖22 = d2j .

We may assume pj 6= 0, ∀j in the decomposition (otherwise we can simply remove zero components),
implying ‖cj‖22 > 0, ∀j. Furthermore, this expression for pj ’s allows us to establish that

r∑
j=1

pjp
T
j =

r∑
j=1

[
cj
dj

] [
cTj dj

]
=

r∑
j=1

[
cjc

T
j cjdj

djc
T
j d2j

]
=

[
Z∗1 Z∗2
Z∗3 Z∗4

]
. (32)

As a result, we have the following decompositions:

Z∗1 =

r∑
j=1

cjc
T
j =

r∑
j=1

uju
T
j ‖cj‖22 =

r∑
j=1

uju
T
j d

2
j (33)

Z∗2 =
r∑
j=1

cjdj =
r∑
j=1

ujdj‖cj‖2 =
r∑
j=1

ujdj |dj | (34)

Z∗4 =
r∑
j=1

d2j , (35)

where we have introduced the normalized weights uj =
cj
‖cj‖2 , j = 1, . . . , r. If dj ≤ 0 for some j,

we redefine the corresponding pj as pj ← −pj , which does not modify the decomposition
∑

j pjp
T
j

and the equality pTj Gpj = 0. Hence, without loss of generality, we can assume that dj ≥ 0 for all
j = 1, . . . , r, which leads to

Z∗1 =

r∑
j=1

uju
T
j d

2
j , Z∗2 =

r∑
j=1

ujd
2
j , Z∗4 =

r∑
j=1

d2j . (36)

Similarly for Z ′∗, we will form the following decompositions:

Z ′1
∗

=

r′∑
j=1

u′ju
′
j
T
d′j

2
, Z ′2

∗
=

r′∑
j=1

u′jd
′
j
2
, Z ′4

∗
=

r′∑
j=1

d′j
2
. (37)
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Considering the decompositions for both Z∗ and Z ′∗, finally we obtain a neural network with first
layer weights as {u1, . . . , ur, u′1, . . . , u′r′}, and second layer weights as {d21, . . . , d2r ,−d′1

2, . . . ,−d′r′
2}.

We note that this corresponds to a neural network with r+ r′ neurons. If both Z∗ and Z ′∗ are full
rank, then we will have 2(d+ 1) neurons, which is the maximum.

To see why we can use the decompositions of Z∗ and Z ′∗ to construct neural network weights,
we plug-in the expressions (36) and (37) in the objective of the convex program in (21):

`(ŷ, y) + β

( r∑
j=1

|d2j |+
r′∑
j=1

| − d′j
2|
)
, where ŷi = axTi

( r∑
j=1

uju
T
j d

2
j +

r′∑
j=1

u′ju
′
j
T

(−d′j
2
)

)
xi+

+bxTi

( r∑
j=1

ujd
2
j +

r′∑
j=1

u′j(−d′j
2
)

)
+ c

( r∑
j=1

d2j +
r′∑
j=1

(−d′j
2
)

)
, i = 1, . . . , n . (38)

We note that this expression exactly matches the optimal value of the non-convex objective in (20)
for a neural network with r+ r′ neurons. Also, the unit norm constraints on the first layer weights
are satisfied (hence feasible) since uj ’s and u′j ’s are normalized. This establishes that the neural
network weights obtained from the solution of the convex program provide an upper bound for the
minimum value of the original non-convex problem. Consequently, we have shown that the optimal
solution of the convex problem (21) provides a global optimal solution to the non-convex problem
(20) and this concludes the proof of Theorem 3.1.

4.1 Neural Decomposition Procedure

Here we describe the procedure for computing the decomposition Z∗ =
∑r

j=1 pjp
T
j � 0 such that

pTj Gpj = 0, j = 1, . . . , r. The computational complexity of this procedure is at most O(nd2), which
is dominated by Eigenvalue Decomposition of Z∗. This algorithm is inspired by the constructive
proof of the S-procedure given in Lemma 2.4 of [44] with modifications to account for the equalities
pTj Gpj = 0.
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Neural Decomposition for PSD Matrices:

0. Compute a rank-1 decomposition Z∗ =
∑r

j=1 pjp
T
j .

This can be done with the eigenvalue decomposition Z∗ =
∑r

j=1 qjq
T
j λj . Since Z∗ � 0,

we have λj > 0, for j = 1, . . . , r. Then we can obtain the desired rank-1 decomposition
Z∗ =

∑r
j=1 pjp

T
j by defining pj =

√
λjqj , j = 1, . . . , r.

1. If pT1Gp1 = 0, return y = p1. If not, find a j ∈ {2, . . . , r} such that
(pT1Gp1)(p

T
j Gpj) < 0.

We know such j exists since tr(Z∗G) =
∑r

j=1 p
T
j Gpj = 0 (this is true since it is one

of the constraints of the convex program), and pT1Gp1 6= 0. Hence, for at least one
j ∈ {2, . . . , r}, pTj Gpj must have the opposite sign as pT1Gp1.

2. Return y =
p1+αpj√
1+α2

where α ∈ R satisfies (p1 + αpj)
TG(p1 + αpj) = 0.

We know that such α exists since the quadratic equation

(p1 + αpj)
TG(p1 + αpj) = α2pTj Gpj + 2αpT1 pj + pT1Gp1 = 0 (39)

has real solutions since the discriminant 4(pT1 pj)
2 − 4(pT1Gp1)(p

T
j Gpj) is positive due to

step 1 where we picked j such that (pT1Gp1)(p
T
j Gpj) < 0. To find α, we simply solve the

quadratic equation for α.

3. Update r ← r − 1, and then the vectors p1, . . . , pr as follows:

Remove p1 and pj and insert u =
pj−αp1√
1+α2

. Consequently, we will be dealing with the

updated matrix Z∗ ← Z∗ − yyT in the next iteration, which is of rank r − 1:

Z∗ − yyT = uuT +

r∑
i=2,i 6=j

pip
T
i . (40)

Note that Step 0 is carried out only once and then steps 1 through 3 are repeated r − 1 times. At
the end of r− 1 iterations, we are left with the rank-1 matrix p1p

T
1 which satisfies pT1Gp1 = 0 since

initial Z∗ satisfies tr(Z∗G) = 0 and the following r− 1 updates are of the form yyT which satisfies
yTGy = 0. If we denote the returned y vectors as yi for the iteration i and yr is the last one we
are left with, then yi’s satisfy the desired decomposition that Z∗ =

∑r
i=1 yiy

T
i and yTi Gyi = 0,

i = 1, . . . , r.
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Figure 6: Illustration of the neural decomposition procedure for d = 2 (i.e. Z∗ ∈ R3×3). The
dashed red arrows correspond to the eigenvectors of Z∗ (q1, q2, q3) and the solid blue arrows show
the decomposed vectors p1 and p2. In this example, the rank of Z∗ is 2 where q1 and q2 are its two
principal eigenvectors. The eigenvalue corresponding to the eigenvector q1 is zero. The light blue
colored surface shows the Lorentz cones z =

√
x2 + y2 and z = −

√
x2 + y2. We observe that the

decomposed vectors p1 and p2 lie on the boundary of Lorentz cones.

Figure 6 is an illustration of the neural decomposition procedure for a toy example with d = 2
where the eigenvectors of Z∗ and the vectors pj are plotted together. Due to the constraints

pTj Gpj = 0, j = 1, 2, the vectors pj have to lie on the boundary of Lorentz cones3 z =
√
x2 + y2

and z = −
√
x2 + y2. Decomposing the solution of the convex problem Z∗ and Z ′∗ onto these cones,

i.e., neural decomposition, enables the construction of neural network weights from Z∗ and Z ′∗.

5 Quadratic Activation Networks

In this section, we derive the corresponding convex program when the activation function is
quadratic, i.e., σ(u) = u2. The resulting convex problem takes a simpler form than the polynomial
activation case. We start by noting that the bound in (26) holds for any activation function. The
inequalities |vTσ(Xuj)| ≤ β however lead to different constraints than the polynomial activation
case. Note that |vT (Xuj)

2| ≤ β is equivalent to the inequalities

uTj

(
n∑
i=1

xix
T
i vi

)
uj ≤ β and uTj

(
−

n∑
i=1

xix
T
i vi

)
uj ≤ β . (41)

The constraint maxuj :‖uj‖2=1 |vT (Xuj)
2| ≤ β can be expressed as largest eigenvalue inequalities

λmax

(
n∑
i=1

xix
T
i vi

)
≤ β and λmax

(
−

n∑
i=1

xix
T
i vi

)
≤ β , (42)

3In special relativity, Lorentz cones describe the path that a flash of light, emanating from a single event traveling
in all directions takes through spacetime (see Figure 1.3.1 in [37]).
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where λmax denotes the maximum eigenvalue. Next, representing the largest eigenvalue constraints
as linear matrix inequality constraints, we arrive at the following maximization problem

max
v

− `∗(−v)

s.t.
n∑
i=1

xix
T
i vi − βId � 0, −

n∑
i=1

xix
T
i vi − βId � 0. (43)

Writing the Lagrangian for (43) as L(v, Z1, Z2) = −`∗(−v)−
∑n

i=1 vix
T
i (Z1−Z2)xi+β tr(Z1+Z2)

with Z1, Z2 ∈ Sd×d and maximizing with respect to v, we obtain the following convex problem

min
Z1,Z2�0

`
([
xT1 (Z1 − Z2)x1 . . . xTn (Z1 − Z2)xn

]T
, y
)

+ β tr(Z1 + Z2) . (44)

Replacing Z = Z1 − Z2, where Z1 � 0, Z2 � 0, we recall that any matrix Z can be uniquely
decomposed in this form thanks to the Moreau decomposition onto the cone of positive definite
matrices and its polar dual, which is the set of negative semidefinite matrices. In particular, suppose
that the eigenvalue decomposition of Z is Z =

∑
j λjzjz

T
j . Then, Z1 and Z2 are uniquely determined

by Z1 =
∑

j:λj>0 λjzjz
T
j and Z2 = −

∑
j:λj<0 λjzjz

T
j . Note that tr(Z1 + Z2) =

∑
j:λj>0 λj +∑

j:λj<0(−λj) =
∑

j |λj | = ‖Z‖∗ is the sum of the absolute values of the eigenvalues of Z, which is
equivalent to the nuclear norm for symmetric matrices. Consequently, this leads to the following
simplified problem with nuclear norm regularization:

min
Z=ZT

`(ŷ, y) + β‖Z‖∗

s.t. ŷi = xTi Zxi, i = 1, . . . , n . (45)

Theorem 5.1 states the main result for the global optimization of quadratic activation neural
networks. The rest of this section is devoted to the proof and interpretation of Theorem 5.1.

Theorem 5.1 (Globally optimal convex program for quadratic activation cubic regularization
networks). The solution of the convex problem in (45) provides a global optimal solution to the
non-convex problem for quadratic activation and cubic regularization given in (47) when the number
of neurons satisfies m ≥ m∗ where

m∗ = rank(Z∗). (46)

The optimal neural network weights are determined from the solution of the convex problem via
eigenvalue decomposition of Z∗ and the rescaling given in (51). The optimal number of neurons is
upper bounded by m∗ ≤ d since rank(Z∗) ≤ d.

5.1 Strong Duality for Quadratic Activation

We have shown that a lower bound on the non-convex problem for quadratic activation is given
by the nuclear norm regularized convex objective. Now we show that this lower bound is in fact
identical to the non-convex problem. Suppose that Z∗ is a solution to (45). Let us decompose Z∗

via eigenvalue decomposition as Z∗ =
∑

j λjzjz
T
j . We can generate an upper bound on the non-

convex problem by constructing neural network parameters as αj = λj , and uj = zj with objective

value `
(∑

j(Xzj)
2λj , y

)
+ β

∑
j |λj |. Noting that this value exactly matches the optimal value

of the convex objective in (45), we conclude that the optimal solution of (45) provides a global
optimal solution to the non-convex problem.
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5.2 Equivalent Non-convex Problem: Quadratic Activation with Cubic Regu-
larization

We now show that the non-convex problem with unit norm first layer weights and the `1 norm
regularized second layer weights is in fact equivalent to the non-convex problem with cubic regu-
larization on all the weights. Let us consider the unconstrained problem with cubic regularization:

p∗ := min
{αj ,uj}mj=1

`

 m∑
j=1

(Xuj)
2αj , y

+
β

c

m∑
j=1

(|αj |3 + ‖uj‖32) , (47)

where c = 2
1
3 + 2−

2
3 ≈ 1.88988. Rescaling the variables uj ← ujt

1/2
j and αj ← αj/tj ,∀j for tj > 0,

j = 1, . . . ,m yields

p∗ = min
{αj ,uj}mj=1

`

 m∑
j=1

(Xuj)
2αj , y

+
β

c

m∑
j=1

(|αj |3/t3j + ‖uj‖32t
3/2
j ) . (48)

Noting the regularization term is convex in tj for tj > 0 and optimizing it with respect to tj , we

obtain tj = 22/9
(
|αj |
‖uj‖2

)2/3
. Plugging the expression for tj in yields

p∗ = min
{αj ,uj}mj=1

`

 m∑
j=1

(Xuj)
2αj , y

+ β
m∑
j=1

|αj |‖uj‖22 . (49)

Now we define the scaled second layer weights α′j = αj‖uj‖22. Noting that (Xuj)
2αj = (X

uj
‖uj‖2 )2α′j

and defining u′j = uj/‖uj‖2, we obtain the equivalent problem with the `1 norm of the second layer
weights as the regularization term

p∗ = min
{α′

j , u
′
j}mj=1, s.t.‖u′j‖2=1, ∀j

`

 m∑
j=1

(Xu′j)
2α′j , y

+ β
m∑
j=1

|α′j | . (50)

5.2.1 Rescaling

We note that the weights αj and uj that the eigenvalue decomposition of the solution of (45) gives
are scaled versions of the weights of the problem with cubic regularization in (47). The solution to
the problem in (47) can be constructed by rescaling the weights as

uj ← uj

√
t′j , αj ←

αj
t′j

,where t′j = 22/9|αj |2/3 j = 1, . . . ,m. (51)

This concludes the proof of Theorem 5.1.

5.3 Comparison with Polynomial Activation Networks

In this subsection, we list the important differences between the results for quadratic activation and
polynomial activation neural networks. The convex program for the quadratic activation network
does not have the equality constraints that appear in the convex program for the polynomial
activation. In addition, for the quadratic activation, the upper bound on the critical width m∗ is
d while it is 2(d+ 1) for the polynomial activation case.
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We note that in the case of quadratic activation, the optimal neural network weights are deter-
mined from eigenvalue decomposition of Z∗. This results in the first layer weights to be orthonormal
because they can be chosen as the eigenvectors of the real and symmetric matrix Z∗. In contrast,
we do not have this property for polynomial activations as the associated optimal weights are
determined via neural decomposition. In this case, the resulting hidden neurons are not neces-
sarily orthogonal, which shows that the Neural Decomposition is a type of non-orthogonal matrix
decomposition. This can also be seen in Figure 6.

5.4 Constructing Multiple Globally Optimal Solutions in the Neural Network
Parameter Space

Once we find an optimal Z∗ using the SDP in (45), we can transform it to the neural network param-
eter space with at most d neurons using the eigenvalue decomposition of Z∗ as Z∗ =

∑d
j=1 uju

T
j αj .

However, we can also generate a neural network with an arbitrary number of neurons, which is also
optimal. We now describe this construction below for an arbitrary number of neurons m ≥ 2d. Let
us pick an arbitrary m/2× d matrix H with orthonormal columns, i.e.,

Id = HTH =

m/2∑
j=1

hjh
T
j , (52)

where h1, . . . , hm/2 are the rows of H and we assume m/2 ≥ d. One can generate such matrices
using randomized Haar ensemble, or partial Hadamard matrices. Then, we can represent Z∗ using

Z∗ = Z∗HTH

=

m/2∑
j=1

Z∗hjh
T
j .

Since Z∗ is a symmetric matrix,
∑m/2

j=1 Z
∗hjh

T
j is also symmetric, and we can write

Z∗ =
1

2

m/2∑
j=1

(Z∗hjh
T
j + hjh

T
j Z
∗) .

Finally, for each term in the above summation, we employ the symmetrization identity

xyT + yxT =
1

2

(
(x+ y)(x+ y)T − (x− y)(x− y)T

)
,

valid for any x, y ∈ Rd. We arrive at the representation

Z∗ =
1

4

m/2∑
j=1

((Z∗hj + hj)(Z
∗hj + hj)

T − (Z∗hj − hj)(Z∗hj − hj)T ) (53)

=
m∑
j=1

uju
T
j αj , (54)

where uj = Z∗hj + hj , αj = 1/4 for j = 1, . . . ,m/2 and uj = Z∗hj − hj , αj = −1/4 for j =
m/2 + 1, . . . ,m.

Since the matrix H is arbitrary, one can map an optimal Z∗ matrix from the convex semidefinite
program to infinitely many optimal solutions in the neural network parameterization space.
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6 Standard Weight Decay Formulation is NP-Hard

In Section 5, we have studied two-layer neural networks with quadratic activation and cubic regu-
larization and derive a convex program whose solution globally optimizes the non-convex problem.
In this section, we show that if, instead of cubic regularization, we have quadratic regularization
(i.e. weight decay), the resulting optimization problem is an NP-hard problem.

Theorem 6.1. The two-layer neural network optimization problem with quadratic activation and
standard `2-squared regularization, i.e., weight decay, in (55) is NP-hard for any value of m as
β → 0.

The remainder of this section breaks down the proof of Theorem 6.1. At the core of the proof
is the polynomial-time reduction of the problem to the NP-hard problem of phase retrieval.

6.1 Reduction to an Equivalent Problem

The optimization problem for training a two-layer fully connected neural network with quadratic
activation and quadratic regularization can be stated as

p∗ := min
{αj ,uj}mj=1

`

 m∑
j=1

(Xuj)
2αj , y

+
β

c

m∑
j=1

(|αj |2 + ‖uj‖22) , (55)

where the scaling factor c is the same as before (i.e. c = 2
1
3 +2−

2
3 ≈ 1.88988). Rescaling uj ← ujt

1/2
j

and αj ← αj/tj for tj > 0, j = 1, . . . ,m, we obtain the following equivalent optimization problem

p∗ = min
{αj ,uj}mj=1

`

 m∑
j=1

(Xuj)
2αj , y

+
β

c

m∑
j=1

(|αj |2/t2j + ‖uj‖22tj) . (56)

Note that the regularization term is convex in tj for tj > 0. Optimizing the regularization term

with respect to tj leads to tj = 21/3
(
|αj |
‖uj‖2

)2/3
and plugging this in yields

p∗ = min
{αj ,uj}mj=1

`

 m∑
j=1

(Xuj)
2αj , y

+ β
m∑
j=1

|αj |2/3‖uj‖4/32 . (57)

Defining scaled weights α′j = αj‖uj‖22 and u′j = uj/‖uj‖2, we obtain the equivalent problem

p∗ = min
{α′

j ,u
′
j}mj=1 s.t.‖u′j‖2=1, ∀j

`

 m∑
j=1

(Xu′j)
2α′j , y

+ β
m∑
j=1

|α′j |2/3 . (58)

This shows that solving the standard weight decay formulation is equivalent to solving a 2/3-
norm penalized problem with unit norm first layer weights.

6.2 Hardness Result

We design a data matrix such that the solution coincides with solving the phase retrieval problem
which is NP-hard (see [18]). We consider the equality constrained version of (58), i.e., β → 0,
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which is given by

min
{αj ,uj}mj=1 s.t. ‖uj‖2=1,∀j

m∑
j=1

|αj |2/3

s.t.

m∑
j=1

(Xuj)
2αj = y . (59)

6.2.1 Addition of a Simplex Constraint

Let the first d rows of the data matrix X be eT1 , . . . , e
T
d and let the first d entries of y be 1/d. Then,

the constraint
∑m

j=1(Xuj)
2 = y implies

m∑
j=1

u2jkαj = 1/d for k = 1, . . . , d . (60)

Summing the above for all k = 1, . . . , d, and noting that
∑d

k=1 u
2
jk = 1 lead to the constraint∑m

j=1 αj = 1.

6.2.2 Reduction to the NP-Hard Phase Retrieval and Subset Sum Problem

We let X = [I; X̃] and y = [1d 1̄; ỹ] to obtain the simplex constraint
∑m

j=1 αj = 1 as shown in the
previous subsection. In this case, the optimization problem reduces to

min
{αj ,uj}mj=1 s.t. ‖uj‖2=1,∀j

m∑
j=1

|αj |2/3

s.t.
m∑
j=1

(X̃uj)
2αj = ỹ

m∑
j=1

u2jkαj = 1/d, k = 1, . . . , d

m∑
j=1

αj = 1 . (61)

Suppose that there exists a feasible solution {α∗j , u∗j}mj=1, which satisfies ‖α∗‖0 = 1, where α∗1 = 1

and u∗1
Tu∗1 = 1 with only one nonzero neuron. Then, it follows from Lemma 6.2 that this solution

is strictly optimal. Consequently, the problem in (61) is equivalent to

find u1

s.t. (x̃Ti u1)
2 = ỹi, i = 1, . . . , (n− d)

u21k = 1/d, k = 1, . . . , d . (62)

Lemma 6.2 (`p minimization recovers 1-sparse solutions when 0 < p < 1).
Consider the optimization problem

min
α1,...,αm

m∑
i=1

|αi|p

s.t.
m∑
i=1

αi = 1, α ∈ C , (63)
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where C is a convex set and p ∈ (0, 1). Suppose that there exists a feasible solution α∗ ∈ C and∑
i α
∗
i = 1 such that ‖α∗‖0 = 1. Then, α∗ is strictly optimal with objective value 1. More precisely,

any solution with cardinality strictly greater than 1 has objective value strictly larger than 1.

6.2.3 NP-hardness Proof

Subset sum problem given in Definition 4 is a decision problem known to be NP-complete (e.g.
[18]). The decision version of the problem in (62) can be stated as follows: Does there exist a
feasible u1? We show that this decision problem is NP-hard via a polynomial-time reduction to the
subset sum problem.

Definition 4 (Subset sum problem). Given a set of integers A and an integer z, does there exist
a subset AS whose elements sum to z?

Lemma 6.3 establishes the reduction of the decision version of (62) to the subset sum problem.
The proof is provided in the appendix and follows the same approach used in the proof for the
NP-hardness of phase retrieval in [18], with the main difference being the additional constraints
u21k = 1/d, k = 1, . . . , d in (62). Finally, Lemma 6.3 concludes the proof of Theorem 6.1.

Lemma 6.3. Consider the problem in (62). Let the first d samples of X̃ ∈ R(d+1)×d, denoted
X̃D ∈ Rd×d, be any diagonal matrix with −1’s and +1’s on its diagonal, and let the (d + 1)’st

sample be x̃d+1 =
√
d
[
a1 . . . ad

]T
. Then, the decision version of the resulting problem returns

’yes’ if and only if the answer for the subset sum problem with A = {a1, . . . , ad} is ’yes’.

Remark 6.1. It follows from Theorem 6.1 that the two-layer neural network training problem with
polynomial activation and unit norm first layer weights and

∑
j |αj |p as the regularization term with

p < 1 is also NP-hard for β → 0 since it reduces to the quadratic activation case for the polynomial
coefficients a = 1, b = 0, c = 0.

7 Vector Output Networks

The derivations until this point have been for neural network architectures with scalar outputs,
i.e., yi ∈ R. In this section, we turn to the vector output case yi ∈ RC where C is the output
dimension, and derive a convex problem that has the same optimal value as the non-convex neural
network optimization problem. We exploit the same techniques described in the scalar output case
except for the part for constructing the vector second layer weights from the solution of the convex
program. In the scalar output case, the convex problem is over the symmetric matrices Z,Z ′ and
in the vector output case, the optimization is over C such matrix pairs Zk, Z

′
k, k = 1, . . . , C.

We begin our treatment of the vector output case by considering the neural network defined by

f(x) =
m∑
j=1

σ(xTuj)α
T
j , (64)

where αj ∈ RC , j = 1, . . . ,m are the vector second layer weights. Note that in the scalar output
case, the second layer weights αj were scalars. Taking the regularization to be the `1 norm of
the second layer weights, the neural network training requires solving the following non-convex
optimization problem

p∗ = min
{uj , αj}mj=1, s.t. ‖uj‖2=1,∀j

`

 m∑
j=1

σ(Xuj)α
T
j , Y

+ β

m∑
j=1

‖αj‖1 , (65)
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where Y ∈ Rn×C is the output matrix. Equivalently,

p∗ = min
{uj}mj=1 s.t. ‖uj‖2=1, ∀j

min
{αj}mj=1,Ŷ

`
(
Ŷ , Y

)
+ β

m∑
j=1

‖αj‖1 s.t. Ŷ =
m∑
j=1

σ(Xuj)α
T
j . (66)

The dual problem for the inner minimization problem is given by

max
v
−`∗(−v) s.t. |vTk σ(Xuj)| ≤ β , ∀j, k , (67)

where v ∈ Rn×C is the dual variable and vk ∈ Rn is the k’th column of v.
Theorem 7.1 gives the main result of this section.

Theorem 7.1 (Globally optimal convex program for polynomial activation vector output net-
works). The solution of the convex problem in (72) provides a global optimal solution for the vector
output non-convex problem in (65) when the number of neurons satisfies m ≥ m∗ where

m∗ =
C∑
k=1

(rank(Z∗k) + rank(Z ′k
∗
)). (68)

The optimal neural network weights are determined from the solution of the convex problem via
the neural decomposition procedure for each Z∗k and Z ′k

∗ and the construction given in (75). The
optimal number of neurons is upper bounded by m∗ ≤ 2(d+ 1)C.

Proof of Theorem 7.1. Applying the S-procedure for the constraints in the dual problem (67), we
obtain the following maximization problem

max− `∗(−v)

s.t.

[
ρk,1I − a

∑n
i=1 xix

T
i vi,k −1

2bX
T vk

−1
2bv

T
kX β − c 1̄T vk − ρk,1

]
� 0, k = 1, . . . , C[

ρk,2I + a
∑n

i=1 xix
T
i vi,k

1
2bX

T vk
1
2bv

T
kX β + c 1̄T vk − ρk,2

]
� 0, k = 1, . . . , C . (69)

Next, let us introduce the following Lagrange multipliers

Zk =

[
Zk,1 Zk,2
Zk,3 Zk,4

]
∈ S(d+1)×(d+1), Z ′k =

[
Z ′k,1 Z ′k,2
Z ′k,3 Z ′k,4

]
∈ S(d+1)×(d+1), k = 1, . . . , C. (70)

Then, the Lagrangian is

L
(
v, {ρk,1, ρk,2, Zk, Z ′k}Ck=1

)
=

= −`∗(−v) +
C∑
k=1

(
ρk,1 tr(Zk,1) + ρk,2 tr(Z ′k,1)

)
− a

C∑
k=1

n∑
i=1

vi,kx
T
i (Zk,1 − Z ′k,1)xi − b

C∑
k=1

vTkX(Zk,2 − Z ′k,2)+

+
C∑
k=1

(
(β − ρk,1)Zk,4 + (β − ρk,2)Z ′k,4

)
− c

C∑
k=1

n∑
i=1

vk,i(Zk,4 − Z ′k,4) . (71)

Finally maximizing the Lagrangian leads to the following convex SDP:

min
{Zk=Z

T
k ,Z

′
k=Z

′
k
T }Ck=1

`(Ŷ , Y ) + β
C∑
k=1

(Zk,4 + Z ′k,4)

s.t. Ŷik = axTi (Zk,1 − Z ′k,1)xi + bxTi (Zk,2 − Z ′k,2) + c(Zk,4 − Z ′k,4), i ∈ [n], k ∈ [C]

tr(Zk,1) = Zk,4, tr(Z ′k,1) = Z ′k,4, k = 1, . . . , C

Zk � 0, Z ′k � 0, k = 1, . . . , C . (72)
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We construct the neural network weights from the optimal solution of the convex program as
follows. We follow the neural decomposition procedure from Section 4 for extracting neurons from
each of the matrices Z∗k and Z ′k

∗, k = 1, . . . , C. The decompositions for Z∗k will be of the form

Z∗k,1 =

rk∑
j=1

uk,ju
T
k,jd

2
k,j , Z∗k,2 =

rk∑
j=1

uk,jd
2
k,j , Z∗k,4 =

rk∑
j=1

d2k,j . (73)

Then, the weights due to Z∗k , k = 1, . . . , C are determined as follows:

First layer weights: {u1,1, u1,2, . . . , u1,r1}, . . . , {uC,1, uC,2, . . . , uC,rC}
Second layer weights: {d21,1eT1 , d21,2eT1 , . . . , d21,r1e

T
1 }, . . . , {d2C,1eTC , d2C,2eTC , . . . , d2C,rCe

T
C} , (74)

where ek denotes the k’th C-dimensional unit vector, and rk is the rank of the matrix Z∗k . In short,
the matrix Z∗k with rank rk leads to the first layer weights {uk,1, uk,2, . . . , uk,rk} and the second
layer weights {d2k,1eTk , d2k,2eTk , . . . , d2k,rke

T
k }. The weights due to Z ′k

∗, k = 1, . . . , C are determined
the same way. Then, we reach the following neural network construction:

f(X) =
C∑
k=1

rk∑
j=1

σ(Xuk,c)d
2
k,je

T
k +

C∑
k=1

r′k∑
j=1

σ(Xu′k,c)d
′
k,j

2
eTk . (75)

Finally, the total number of neurons that the convex problem finds is
∑C

k=1(rk + r′k). The
maximum number of neurons occurs if all Z∗k and Z ′k

∗ are full rank, and this corresponds to a
maximum total of 2(d+ 1)C neurons.

We plug the decomposition expressions given in (73) in the convex program in (72) to conclude
that the optimal value of the convex program is an upper bound for the non-convex optimization
problem (65). The k’th entry of the estimate for the i’th training sample is

Ŷik = axTi

 rk∑
j=1

uk,ju
T
k,jd

2
k,j +

r′k∑
j=1

u′k,ju
′
k,j

T
(−d′k,j

2
)

xi + bxTi

 rk∑
j=1

uk,jd
2
k,j +

r′k∑
j=1

u′k,j(−d′k,j
2
)

+

+ c

 rk∑
j=1

d2k,j +

r′k∑
j=1

(−d′k,j
2
)


=

rk∑
j=1

σ(xTi uk,j)d
2
k,j +

r′k∑
j=1

σ(xTi u
′
k,j)(−d′k,j

2
) . (76)

It follows that the output vector for the i’th sample is

ŷi =
C∑
k=1

rk∑
j=1

σ(xTi uk,j)d
2
k,je

T
k +

C∑
k=1

r′k∑
j=1

σ(xTi u
′
k,j)(−d′k,j

2
)eTk . (77)

We note that this output is of the same form as the non-convex case (66). We also need to check
that the regularization term is equivalent to the sum of `1 norms of the second layer weights:

β

C∑
k=1

(Zk,4 + Z ′k,4) = β

C∑
k=1

rk∑
j=1

d2k,j + β

C∑
k=1

r′k∑
j=1

d′k,j
2

= β
C∑
k=1

rk∑
j=1

‖d2k,jeTk ‖1 + β
C∑
k=1

r′k∑
j=1

‖ − d′k,j
2
eTk ‖1 , (78)
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which is of the form β
∑m

j=1 ‖αj‖1. Hence, the neural network weights that we obtain via the neural
decomposition procedure lead to an upper bound for the original non-convex optimization problem.
This concludes the proof that the optimal solution of the convex problem (72) provides a global
optimal solution to the non-convex problem (65).

8 Convolutional Neural Networks

In this section, we consider two-layer convolutional networks with a convolutional first layer and a
fully connected second layer. We will denote the filter size by f . Let us denote the patches of a
data sample x by x1, . . . , xK where the patches have the same dimension as the filters, i.e., xk ∈ Rf .
The stride and padding do not affect the below derivations as they can be readily handled when
forming the patches. The output of this network is expressed as:

f(x) =

m∑
j=1

K∑
k=1

σ(xTk uj)αjk , (79)

where uj ∈ Rf denotes the j’th filter. We will take the regularization to be the `1 norm of the

second layer weights αj =
[
αj1 . . . αjK

]T ∈ RK , j = 1, . . . ,m:

p∗ = min
{uj}mj=1 s.t. ‖uj‖2=1, ∀j

min
{αj}mj=1,ŷ

`(ŷ, y) + β

m∑
j=1

‖αj‖1 s.t. ŷ =

m∑
j=1

K∑
k=1

σ(XT
k uj)αjk (80)

where we use Xk ∈ Rn×f to denote the matrix with the k’th patch of all the data samples. The
dual for the inner minimization problem is given by

max
v
−`∗(−v) s.t. |vTσ(Xkuj)| ≤ β , ∀j, k . (81)

We state the main result of this section in Theorem 8.1.

Theorem 8.1 (Globally optimal convex program for polynomial activation convolutional neural
networks). The solution of the convex problem in (85) provides a global optimal solution for the
non-convex convolutional neural network problem in (79) when the number of filters is at least
(rank(Z∗k) + rank(Z ′k

∗)) and equivalently, the number of neurons satisfies m ≥ m∗ where

m∗ = K

K∑
k=1

(rank(Z∗k) + rank(Z ′k
∗
)). (82)

The optimal neural network weights are determined from the solution of the convex problem via
the neural decomposition procedure for each Z∗k and Z ′k

∗. The optimal number of filters is upper
bounded by 2(f + 1)K and the optimal number of neurons is upper bounded by m∗ ≤ 2(f + 1)K2.

Proof of Theorem 8.1. We apply the S-procedure to replace the constraints of (81) with equivalent
LMI constraints and this yields

max− `∗(−v)

s.t.

[
ρk,1I − a

∑n
i=1 xi,kx

T
i,kvi −1

2bX
T
k v

−1
2bv

TXk β − c 1̄T v − ρk,1

]
� 0, k = 1, . . . ,K[

ρk,2I + a
∑n

i=1 xi,kx
T
i,kvi

1
2bX

T
k v

1
2bv

TXk β + c 1̄T v − ρk,2

]
� 0, k = 1, . . . ,K , (83)
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where xi,k ∈ Rf denotes the k’th patch of the i’th data sample. The Lagrangian is as follows

L
(
v, {ρk,1, ρk,2, Zk, Z ′k}Kk=1

)
=

= −`∗(−v) +
K∑
k=1

(
ρk,1 tr(Zk,1) + ρk,2 tr(Z ′k,1)

)
− a

K∑
k=1

n∑
i=1

vix
T
i,k(Zk,1 − Z ′k,1)xi,k − b

K∑
k=1

vTXk(Zk,2 − Z ′k,2)+

+

K∑
k=1

(
(β − ρk,1)Zk,4 + (β − ρk,2)Z ′k,4

)
− c

K∑
k=1

n∑
i=1

vi(Zk,4 − Z ′k,4) , (84)

where Zk, Z
′
k are (f + 1) × (f + 1) dimensional symmetric matrices. Maximizing the Lagrangian

with respect to v, ρk,1, ρk,2, k = 1, . . . ,K yields the convex SDP

min
{Zk=Z

T
k ,Z

′
k=Z

′
k
T }Kk=1

`(ŷ, y) + β

K∑
k=1

(Zk,4 + Z ′k,4)

s.t. ŷi = a
K∑
k=1

xTi,k(Zk,1 − Z ′k,1)xi,k + b
K∑
k=1

xTi,k(Zk,2 − Z ′k,2) + c
K∑
k=1

(Zk,4 − Z ′k,4), i ∈ [n]

tr(Zk,1) = Zk,4, tr(Z ′k,1) = Z ′k,4, k = 1, . . . ,K

Zk � 0, Z ′k � 0, k = 1, . . . ,K . (85)

We now show that the convex program in (85) provides an upper bound for the non-convex
problem via the same strategy that we have used for the vector output case in Section 7. We
construct the neural network weights from each of the matrices Z∗k and Z ′k

∗, k = 1, . . . ,K via
neural decomposition:

Z∗k,1 =

rk∑
j=1

uk,ju
T
k,jd

2
k,j , Z∗k,2 =

rk∑
j=1

uk,jd
2
k,j , Z∗k,4 =

rk∑
j=1

d2k,j , (86)

and the weights due to each Z∗k are

First layer filters: uk,1, uk,2, . . . , uk,rk

Second layer weights: {d2k,1, 0, 0, . . . , 0}, {0, d2k,2, 0, . . . , 0}, . . . , {0, 0, 0, . . . , d2k,rk} . (87)

To clarify, for each filter uk,j , we have K (scalar) weights in the second layer because we apply the
same filter to K different patches and the resulting K numbers (after being input to the activation
function) each are multiplied by a different second layer weight. The second layer weights associated
with the filter uk,j will be these K numbers: {0, . . . , 0, d2k,j , 0 . . . , 0}, where the only nonzero entry
is the j’th one. Consequently, each Z∗k matrix produces rank(Z∗k) filters and K rank(Z∗k) neurons.

Including the weights due to Z ′k
∗ as well, we will have

∑K
k=1(rk + r′k) filters and K

∑K
k=1(rk + r′k)

neurons in total. The optimal number of filters is upper bounded by 2(f + 1)K and the optimal
number of neurons is upper bounded by 2(f + 1)K2.

We omit the details of plugging the weights into the convex objective to show that it becomes
equivalent to the non-convex objective. The details are similar to the vector output case.

9 Average Pooling

In this section we will consider convolutional neural networks with average pooling. We will denote
the pool size by P . Let us consider a two-layer neural network where the first layer is a convolutional
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layer with filter size f . The convolutional layer is followed by the polynomial activation, average
pooling, and a fully connected layer. We will denote the number of patches per sample by K. The
output of this architecture can be expressed as

f(x) =

m∑
j=1

K/P∑
k=1

(
1

P

P∑
l=1

σ(xT(k−1)P+luj)

)
αjk . (88)

We note that the number of parameters in the second layer (i.e. αjk’s) is equal to mK
P . The

optimization problem for this architecture can be written as

p∗ = min
{uj}mj=1 s.t. ‖uj‖2=1,∀j

min
{αj}mj=1,ŷ

`(ŷ, y) + β
m∑
j=1

‖αj‖1 s.t. ŷ =
m∑
j=1

K/P∑
k=1

(
1

P

P∑
l=1

σ(X(k−1)P+luj)

)
αjk ,

(89)

where αj =
[
αj1 . . . αj,K/P

]T
, j = 1, . . . ,m. The dual of the inner minimization problem is

given by

max
v
−`∗(−v) s.t.

∣∣∣∣∣vT
(

1

P

P∑
l=1

σ(X(k−1)P+luj)

)∣∣∣∣∣ ≤ β , ∀j, k . (90)

Theorem 9.1 states our result for CNN with average pooling.

Theorem 9.1 (Globally optimal convex program for polynomial activation convolutional neural
networks with average pooling). The solution of the convex problem in (95) provides a global optimal
solution for the non-convex problem for the convolutional neural network with average pooling in
(89) when the number of neurons satisfies m ≥ m∗ where

m∗ =
K

P

K/P∑
k=1

(rank(Z∗k) + rank(Z ′k
∗
)). (91)

The optimal neural network weights are determined from the solution of the convex problem via
the neural decomposition procedure for each Z∗k and Z ′k

∗. The optimal number of neurons is upper

bounded by m∗ ≤ 2(f + 1)K
2

P 2 .

Proof of Theorem 9.1. We rewrite the constraints of the dual problem (90) as follows:

−β ≤ 1

P

P∑
l=1

(
uTj

(
a

n∑
i=1

xi,(k−1)P+lx
T
i,(k−1)P+lvi

)
uj + bvTX(k−1)P+luj + cvT 1̄

)
≤ β, ∀j, k .

(92)

S-procedure allows us to write this problem equivalently as

max− `∗(−v)

s.t.

[
ρk,1I − a 1

P

∑P
l=1

∑n
i=1 xi,(k−1)P+lx

T
i,(k−1)P+lvi −

1
2P b

∑P
l=1X

T
(k−1)P+lv

− 1
2P b

∑P
l=1 v

TX(k−1)P+l β − c 1̄T v − ρk,1

]
� 0, k = 1, . . . ,K/P[

ρk,2I + a 1
P

∑P
l=1

∑n
i=1 xi,(k−1)P+lx

T
i,(k−1)P+lvi

1
2P b

∑P
l=1X

T
(k−1)P+lv

1
2P b

∑P
l=1 v

TX(k−1)P+l β + c 1̄T v − ρk,2

]
� 0, k = 1, . . . ,K/P .

(93)
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The Lagrangian is as follows

L
(
v, {ρk,1, ρk,2, Zk, Z ′k}

K/P
k=1

)
=

= −`∗(−v) +

K/P∑
k=1

(
ρk,1 tr(Zk,1) + ρk,2 tr(Z ′k,1)

)
− a 1

P

K/P∑
k=1

P∑
l=1

n∑
i=1

vix
T
i,(k−1)P+l(Zk,1 − Z

′
k,1)xi,(k−1)P+l

− b 1

P

K/P∑
k=1

P∑
l=1

vTX(k−1)P+l(Zk,2 − Z ′k,2) +

K/P∑
k=1

(
(β − ρk,1)Zk,4 + (β − ρk,2)Z ′k,4

)
− c

K/P∑
k=1

n∑
i=1

vi(Zk,4 − Z ′k,4) ,

(94)

where Zk, Z
′
k are (f + 1) × (f + 1) dimensional symmetric matrices. Maximizing the Lagrangian

with respect to v, ρk,1, ρk,2, k = 1, . . . ,K/P yields the following convex SDP:

min
{Zk=Z

T
k ,Z

′
k=Z

′
k
T }K/P

k=1

`(ŷ, y) + β

K/P∑
k=1

(Zk,4 + Z ′k,4)

s.t. ŷi = a
1

P

K/P∑
k=1

P∑
l=1

xTi,(k−1)P+l(Zk,1 − Z
′
k,1)xi,(k−1)P+l + b

1

P

K/P∑
k=1

P∑
l=1

xTi,(k−1)P+l(Zk,2 − Z
′
k,2)+

+ c

K/P∑
k=1

(Zk,4 − Z ′k,4), i ∈ [n]

tr(Zk,1) = Zk,4, tr(Z ′k,1) = Z ′k,4, k = 1, . . . ,K/P

Zk � 0, Z ′k � 0, k = 1, . . . ,K/P . (95)

We omit the details of constructing the neural network weights from the solution of the convex
SDP Z∗k , Z

′
k
∗, k = 1, . . . ,K/P which follows in a similar fashion as the proof of Theorem 8.1.

We note that when we pick the pool size as P = 1, this is the same as not having average
pooling, and the corresponding convex program is the same as (85), derived in Section 8. The
other extreme for the pool size is when P = K and this corresponds to what is known as global
average pooling in which case the convex SDP simplifies to

min
Z=ZT ,Z′=Z′T

`(ŷ, y) + β(Z4 + Z ′4)

s.t. ŷi = a
1

K

K∑
l=1

xTi,l(Z1 − Z ′1)xi,l + b
1

K

K∑
l=1

xTi,l(Z2 − Z ′2) + c(Z4 − Z ′4), i ∈ [n]

tr(Z1) = Z4, tr(Z ′1) = Z ′4

Z � 0, Z ′ � 0. (96)

We note that the problem (96) has only two variables Z and Z ′. This should be contrasted with
the convolutional architecture with no pooling (85) which has 2K variables.

10 Numerical Results

In this section, we present numerical results that verify the presented theory of the convex formu-
lations along with experiments comparing the test set performance of the derived formulations. All
experiments have been run on a MacBook Pro with 16GB RAM.
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Solvers: We have used CVXPY [11, 1] for solving the convex SDPs. In particular, we have
used the open source solver SCS (splitting conic solver) [40, 41] in CVXPY, which is a scalable first
order solver for convex cone problems.

Furthermore, we have solved the non-convex problems via backpropagation for which we have
used PyTorch [42]. We have used the SGD algorithm for the non-convex models. For all the exper-
iments involving SGD in this section, we show only the results corresponding to the best learning
rate that we select via an offline hyperparameter search. The momentum parameter is 0.9. In the
plots, the non-convex models are either labeled as ’Backpropagation (GD)’ or ’Backpropagation
(SGD)’. The first one, short for gradient descent, means that the batch size is equal to the number
of samples n, and the second one, short for stochastic gradient descent, means that the batch size
is not n and the exact batch size is explicitly stated in the figure captions.

Polynomial approximation of activation functions: To obtain the degree-2 polynomial
approximation of a given activation function σ(u) such as the ReLU activation, one way is to select

the polynomial coefficients a, b, c that minimize the `2 norm objective ‖T
[
a b c

]T − s‖2 with

T =

 t
2
1 t1 1

...
t2N tN 1

 , s =

σ(t1)
...

σ(tN )

 , (97)

where ti’s are linearly spaced in [L,U ]. The lower and upper limits L and U specify the range in
which we would like to approximate the given activation function. For instance, when L = −5,
U = 5, N = 1000 and σ(u) is the ReLU activation, the optimal polynomial coefficients are a =
0.09, b = 0.5, c = 0.47. When we change the approximation range to a slightly narrower one with
L = −4, U = 4, the coefficients then become a = 0.12, b = 0.5, c = 0.38. Note that the training
data can be normalized appropriately to confine the range of the input to the neurons and control
the approximation error.

10.1 Results for Verifying the Theoretical Formulations

The first set of numerical results in Figure 7 is for verifying that the derived convex problems
have the same optimal value as their non-convex counterparts. The plots in Figure 7 show the
non-convex cost against time when 1) the non-convex problem is solved in PyTorch and 2) the
corresponding convex problem (see Table 1) is solved using CVXPY. The number of neurons for
the non-convex models in all of the plots in Figure 7 is set to the optimal number of neurons m∗

found by the convex problem.
Figure 7 demonstrates that solving the convex SDP takes less time than solving the associated

non-convex problem using backpropagation for all of the neural network architectures. Figure 7
also shows that the training of the non-convex models via the backpropagation algorithm does not
always yield the global optimal but instead may converge to local minima. In addition, we note
that the plots do not reflect the time it takes to tune the learning rate for the non-convex models,
which was performed offline.

10.2 Experiments on UCI datasets

We now show how the derived convex programs perform in the context of classification datasets.
The datasets used in this subsection are from the UCI machine learning repository [13]. The plots
in Figure 8 show the training and test set costs and classification accuracies for binary classification
datasets and the plots in Figure 9 are for multiclass classification datasets. The convex program
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Figure 7: The numbers in the sub-captions refer to the parameters (n, d,m∗). These figures show the
training cost against time for backpropagation (blue solid curves) and the convex problem (red cross
shows timing of the convex solver) for the following problems: a,b,c: Quadratic activation scalar
output, d,e,f: Polynomial activation scalar output, g,h,i: Polynomial activation vector output, j,k,l:
Polynomial activation convolutional. The data is artificially generated with 5 planted neurons and
the data matrix is the element-wise 4’th power of an i.i.d. Gaussian matrix. The regularization
coefficient is β = 0.1 in all of the experiments. The polynomial coefficients for the architectures with
polynomial activation are a = 0.09, b = 0.5, c = 0.47 (i.e. the ReLU approximation coefficients).

34



0 5 10 15 20
Time (sec)

50

100

150
Tr
ai
ni
ng

 c
os
t

Backpropagation (GD)
Convex SDP (optimal)

(a) DS1, training cost

0 5 10 15 20
Time (sec)

10

20

30

40

Te
st
 c
os
t

Backpropagation (GD)
Convex SDP (optimal)

(b) DS1, test cost

0 5 10 15 20
Time (sec)

0.4

0.6

0.8

Tr
ai
ni
ng

 a
cc
ur
ac
y

Backpropagation (GD)
Convex SDP (optimal)

(c) DS1, training accuracy

0 5 10 15 20
Time (sec)

0.4

0.5

0.6

0.7

Te
st
 a
cc
ur
ac
y

Backpropagation (GD)
Convex SDP (optimal)

(d) DS1, test accuracy

0 20 40
Time (sec)

50

100

150

200

Tr
ai
ni
ng

 c
os
t

Backpropagation (GD)
Convex SDP (optimal)

(e) DS2, training cost

0 20 40
Time (sec)

20

40

60
Te

st
 c
os
t

Backpropagation (GD)
Convex SDP (optimal)

(f) DS2, test cost

0 20 40
Time (sec)

0.5

0.6

0.7

0.8

Tr
ai
ni
ng

 a
cc
ur
ac
y

Backpropagation (GD)
Convex SDP (optimal)

(g) DS2, training accuracy
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Figure 8: Results on UCI binary classification datasets. DS1: dataset 1 is the breast cancer dataset
(n = 228, d = 9), DS2: dataset 2 is the credit approval dataset (n = 552, d = 15). Polynomial
activation with a = 0.09, b = 0.5, c = 0.47 is used. Number of neurons that the convex program
found is 16 and 18 for DS1 and DS2, respectively. The regularization coefficient is β = 0.01 and
β = 10 for DS1 and DS2, respectively.

used for solving the binary classification problem is the scalar output polynomial activation problem
given in (21) and for the multiclass problem it is the vector output version given in (72).

We note that the training cost plots of Figure 8 and 9 are consistent with the theoretical
results. The accuracy plots show that the convex programs achieve the same final accuracy of the
non-convex models or higher accuracies in shorter amounts of time.

Table 2 shows the classification accuracies of various fully connected neural network architec-
tures on binary classification UCI datasets. For each dataset, the training and validation partitions
are as pre-processed in [17]. The training and validation partitions are used to select the best
hyperparameters. The hyperparameter search for the non-convex models includes searching for the
best regularization coefficient β and learning rate. Gradient descent has been used to optimize the
non-convex models and the number of epochs is 1000. After determining the best hyperparame-
ters, we compute the 4-fold cross validation accuracy and report it in this table. The partitions for
the 4-fold cross validation are also the same as those pre-processed by [17]. Furthermore, for the
results shown in Table 2, the number of neurons for all the non-convex models is set to 2(d + 1),
which is the maximum number of neurons that the polynomial activation convex SDP could output
(see Theorem 3.1). Table 2 shows that the convex SDP achieves better or similar accuracy values
compared to the non-convex models on most of the datasets.

10.3 Comparison with ReLU Networks

We compare the classification accuracies for polynomial activation and ReLU activation in Figure 10
on three different binary classification UCI datasets. The regularization coefficient has been picked
separately for polynomial activation and ReLU activation networks to maximize the accuracy.
Figure 10 demonstrates that the convex SDP shows competitive accuracy performance and faster
run times compared to ReLU activation networks.
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dataset n d R-Q P-C Cvx 111 Cvx r-app Cvx s-app max(Cvx)

acute-inflammation 120 6 100.0 100.0 100.0 100.0 100.0 100.0
acute-nephritis 120 6 100.0 100.0 100.0 100.0 100.0 100.0
breast-cancer 286 9 69.37 73.59 73.59 72.89 72.89 73.59
breast-cancer-wisc-diag 569 30 79.05 95.95 95.42 96.13 96.13 96.13
breast-cancer-wisc-prog 198 33 80.1 79.08 77.55 79.59 77.55 79.59
congressional-voting 435 16 61.47 61.47 61.47 61.7 61.47 61.7
conn-bench-sonar-mines-rocks 208 60 79.81 79.33 81.73 79.81 75.0 81.73
cylinder-bands 512 35 75.59 75.2 75.59 76.95 76.37 76.95
echocardiogram 131 10 84.09 83.33 85.61 85.61 84.09 85.61
fertility 100 9 89.0 86.0 88.0 88.0 88.0 88.0
haberman-survival 306 3 73.03 73.68 71.38 73.36 72.04 73.36
heart-hungarian 294 12 83.56 83.9 83.22 84.25 84.25 84.25
hepatitis 155 19 80.13 89.1 80.13 77.56 80.13 80.13
horse-colic 368 25 81.67 81.0 81.67 80.33 84.0 84.0
ilpd-indian-liver 583 9 73.63 72.95 71.92 73.12 72.95 73.12
molec-biol-promoter 106 57 77.88 78.85 72.12 82.69 78.85 82.69
monks-1 556 6 84.68 70.16 75.81 81.45 81.45 81.45
parkinsons 195 22 90.82 87.24 88.27 86.73 91.33 91.33
pittsburg-bridges-T-OR-D 102 7 88.0 88.0 82.0 87.0 87.0 87.0
planning 182 12 71.67 71.11 71.67 71.11 71.11 71.67
spect 265 22 60.0 75.0 71.25 60.0 58.75 71.25
spectf 267 44 72.5 75.0 58.75 60.0 77.5 77.5
statlog-heart 270 13 82.46 85.07 81.72 83.58 83.21 83.58
vertebral-column-2clases 310 6 87.01 85.71 82.79 87.01 84.42 87.01

Table 2: Classification accuracies on binary classification UCI datasets. The first 3 columns are the
dataset name, the number of samples n in the dataset, and the dimension d of the samples. The re-
maining columns show the classification accuracies (percentage) for various models. The highest ac-
curacies for each dataset are shown in bold font. Abbreviations used in the table are as follows: R-Q:
Non-convex two-layer neural network model with ReLU activation and quadratic regularization (i.e.
weight decay), P-C: Non-convex two-layer neural network model with polynomial activation with
coefficients a = 0.09, b = 0.5, c = 0.47 and normalized first layer weights and `1 norm regularization
on the second layer weights, Cvx 111: Convex SDP with polynomial coefficients a = 1, b = 1, c = 1,
Cvx r-app: Convex SDP with polynomial coefficients a = 0.09, b = 0.5, c = 0.47 (approximating
ReLU activation), Cvx s-app: Convex SDP with polynomial coefficients a = 0.1, b = 0.5, c = 0.24
(approximating swish activation), max(Cvx): The highest accuracy among the convex SDPs.
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Figure 9: Results on UCI multiclass classification datasets. DS3: dataset 3 is the annealing dataset
(n = 638, d = 31, C = 5), DS4: dataset 4 is the statlog vehicle dataset (n = 676, d = 18, C = 4).
Polynomial activation with a = 0.09, b = 0.5, c = 0.47 is used. Number of neurons that the convex
program found is 172 and 107 for DS3 and DS4, respectively. The regularization coefficient is β = 1
both for DS3 and DS4.

10.4 CNN Experiments

Figure 11 shows the binary classification accuracy performance of the CNN architecture with global
average pooling on MNIST [32], Fashion MNIST [52], and Cifar-10 [29] datasets. Figure 11 com-
pares the non-convex tractable problem, the corresponding convex formulation, and the non-convex
weight decay formulation. By the weight decay formulation, we mean quadratic regularization on
both the first layer filters and the second layer weights. We observe that the accuracy of the con-
vex SDP is slightly better or the same as SGD while the run time for the convex SDP solution is
consistently shorter than the time it takes for SGD to converge.

10.5 Regularization Parameter

Figure 12 shows how the accuracy changes as a function of the regularization coefficient β for the
convex problem for two-layer polynomial activation networks. Figure 12 highlights that the choice
of the regularization coefficient is critical in the accuracy performance. In plot a, we see that
the value of β that maximizes the test set accuracy is β = 10 for which the optimal number of
neurons m∗ is near 20. We note that for the dataset in plot a, the optimal number of neurons is
upper bounded by m∗ ≤ 2(d+ 1) = 32. Similarly for plot b, the best choice for the regularization
coefficient is β = 1 and the optimal number of neurons for β = 1 is near 40. Furthermore, we
observe that a higher value for β tends to translate to a lower optimal number of neurons m∗

(plotted on the right vertical axis). Even though the convex optimization problem in (21) has a
fixed number of variables (in this case, 2(d + 1)2) for a given dataset, a low number of neurons is
still preferable for many reasons such as inference speed. We observe that the number of neurons
can be controlled via the regularization coefficient β.
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Figure 10: Comparison of classification accuracies for neural networks with ReLU activation, poly-
nomial activation (a = 0.09, b = 0.5, c = 0.47), and the convex SDP. DS1: dataset 1 is the
oocytes-merluccius-nucleus-4d (n = 817, d = 41), DS2: dataset 2 is the credit approval dataset
(n = 552, d = 15), DS3: dataset 3 is the breast cancer dataset (n = 228, d = 9).
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Figure 11: Binary classification with polynomial activation convolutional neural network with pool-
ing and the corresponding convex SDP. Legend labels are as follows. SGD - tractable: The non-
convex problem in (89), SGD - weight decay : Non-convex problem with quadratic regularization
on all weights, Convex SDP (optimal): The convex problem in (95). Polynomial coefficients are
a = 0.09, b = 0.5, c = 0.47. Filter size is f = 3, stride is 1, and no padding is used. Batch size
for SGD is 100. The regularization coefficient is β = 10−6. Constrained least squares form of the
convex program was used for speed (see section A.1) and the pre-computation step, not shown
in the plots, takes 2 minutes. Plots a, b show the binary classification accuracy on the first two
classes of the MNIST dataset where the classes are the digits 0 and 1 and there are 12600 gray-scale
images of size 28 × 28. Plots c, d show the binary classification accuracy on the first two classes
of Fashion-MNIST dataset where the classes are ’T-shirt/top’ and ’Trouser’ and there are 12000
gray-scale images of size 28 × 28. For plots e, f, the dataset is Cifar-2 (the first two classes of the
Cifar-10 dataset) and has 10000 RGB images each of size 32× 32× 3.
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Figure 12: Accuracy (left vertical axis) and optimal number of neurons (right vertical axis) against
the regularization coefficient β on binary classification datasets. These results have been obtained
using the convex program in (21).

10.6 Other Losses

We have so far evaluated the performance of the derived convex programs for squared loss, i.e.
`(ŷ, y) = ‖ŷ − y‖22. We reiterate that the derived convex programs are general in the sense the
formulations hold for any convex loss function `. To verify this numerically, we now present results
for additional loss functions such as Huber loss and `1 norm loss in Figure 13. More concretely,
Huber loss is defined as `(ŷ, y) =

∑n
i=1 Huber(ŷi − yi) where Huber(x) = 2|x| − 1 for |x| > 1 and

Huber(x) = x2 for |x| ≤ 1. The `1 norm loss is `(ŷ, y) = ‖ŷ − y‖1. We observe that in the case of
`1 norm loss, backpropagation takes longer to converge.

10.7 The Effect of Polynomial Coefficients

The plots in Figure 14 show the classification accuracy against the polynomial coefficients a, b, c
for the polynomial activation convex problem. In each plot, we vary one of the coefficients and fix
the other two coefficients as 1. We observe that the coefficient of the quadratic term a plays the
most important role in the accuracy performance. The accuracy is not affected by the choice of
the coefficient c.

11 Discussion

In this paper, we have studied the optimization of two-layer neural networks with degree two poly-
nomial activations. We have shown that regularization plays an important role in the tractability of
the problems associated with neural network training. We have developed convex programs for the
cases where the regularization leads to tractable formulations. Convex formulations are useful since
they have many well-known advantages over non-convex optimization such as having to optimize
fewer hyperparameters and no risk of getting stuck at local minima.

The methods presented in this work optimize the neural network parameters in a higher di-
mensional space in which the problem becomes convex. For fully connected neural networks with
quadratic activation, the standard non-convex problem requires optimizing m neurons (i.e. a d-
dimensional first layer weight and a 1-dimensional second layer weight per neuron). The convex
program for this neural network finds the optimal network parameters in the lifted space Sd×d. For
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Figure 13: Verifying the theoretical results for other convex loss functions: Huber and `1 norm
loss. An artificially generated dataset with dimensions n = 100, d = 20 is used. The regularization
coefficient is β = 0.1. The number of neurons m∗ is found to be 7 and 9 for plots a and b,
respectively.
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Figure 14: Training and test set classification accuracies against polynomial coefficients a, b, c. The
regularization coefficient is β = 0.1 and the dataset is oocytes-merluccius-nucleus-4d.
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polynomial activations, convex optimization takes place for Z and Z ′ in S(d+1)×(d+1). We note that
the dimensions of the convex programs are polynomial with respect to all problem dimensions. In
contrast, the convex program of [43] has 2dP variables where P grows exponentially with respect
to the rank of the data matrix.

We have used the SCS solver with CVXPY for solving the convex problems in the numerical
experiments. It is important to note that there is room for future work in terms of which solvers to
use. Solvers specifically designed for the presented convex programs could enjoy faster run times.

The scope of this work is limited to two-layer neural networks. We note that it is a promising
direction to consider the use of our convex programs for two-layer neural networks as building
blocks in learning deep neural networks. Many recent works such as [2] and [4] investigate layerwise
learning algorithms for deep neural networks. The training of individual layers in layerwise learning
could be improved by the presented convex programs since the convex programs can be efficiently
solved and eliminate much of the hyperparameter tuning involved in standard neural network
training.
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A Additional Discussion

A.1 Constrained Least Squares Form for the Squared Loss

Let us consider the polynomial activation scalar output case. In the case of squared loss `(ŷ, y) =
‖ŷ − y‖22, the convex program takes the following form:

min
Z=ZT ,Z′=Z′T

n∑
i=1

(
axTi (Z1 − Z ′1)xi + bxTi (Z2 − Z ′2) + c(Z4 − Z ′4)− yi

)2
+ β(Z4 + Z ′4)

s.t. tr(Z1) = Z4, tr(Z ′1) = Z ′4

Z � 0, Z ′ � 0 . (98)

Noting that axTi (Z1 − Z ′1)xi = vec(xix
T
i )T vec(Z1 − Z ′1), we can write the squared loss term as

n∑
i=1

[a vec(xix
T
i )T bxTi c

] vec(Z1 − Z ′1)
Z2 − Z ′2
Z4 − Z ′4

− yi
2

=

=
∥∥∥
a vec(x1x

T
1 )T bxT1 c

...
a vec(xnx

T
n )T bxTn c


vec(Z1 − Z ′1)

Z2 − Z ′2
Z4 − Z ′4

− y∥∥∥2
2

= ‖XV z − y‖22

where we have defined XV ∈ Rn×(d2+d+1) and z ∈ R(d2+d+1). The squared loss term is equal to
zTXT

VXV z − 2yTXV z + ‖y‖22.
If we pre-compute XT

VXV ∈ R(d2+d+1)×(d2+d+1) and XT
V y ∈ R(d2+d+1), then the objective no

longer has dependence on the number of samples n. We note that the pre-computation of XT
VXV

and XT
V y is useful when one is performing hyperparameter tuning for the regularization coefficient

β.

B Proofs

Proof of Lemma 2.1. We will denote the set in (17) as S1 and the set in (18) as S2 to simplify the
notation. We will prove S1 = S2 by showing S1 ⊆ S2 and S2 ⊆ S1.
We first show S1 ⊆ S2. Let us take a point S ∈ S1. This implies that S is a matrix of the form

t
m∑
j=1

[
uj
1

] [
uj
1

]T
αj = t

m∑
j=1

[
uju

T
j αj ujαj

uTj αj αj

]
=

[
t
∑m

j=1 uju
T
j αj t

∑m
j=1 ujαj

t
∑m

j=1 u
T
j αj t

∑m
j=1 αj

]
(99)

with
∑

j αj ≤ 1 and ‖uj‖2 = 1 for all j. We note that tr(t
∑m

j=1 uju
T
j αj) = t

∑m
j=1 tr(uju

T
j αj) =

t
∑m

j=1 tr(uTj uj)αj = t
∑m

j=1 αj ≤ t. This shows that S satisfies the equality condition in the
definition (18). Now, we show that S is a PSD matrix. Note that each of the rank-1 matrices[
uj
1

] [
uj
1

]T
is a PSD matrix and since the coefficients αj ’s and t are nonnegative, it follows

that S is PSD. This proves that S ∈ S2.
We next show S2 ⊆ S1. Let us take a point S ∈ S2. This implies that S is PSD and tr(S1) =
S4 = t0 ≤ t. We show in Section 4 that it is possible to decompose S via the neural decomposition
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procedure to obtain the expressions given in (36). It follows that we can write S in the following
form

S =
t0∑m
j=1 d

2
j

[∑m
j=1 uju

T
j d

2
j

∑m
j=1 ujd

2
j∑m

j=1 u
T
j d

2
j

∑m
j=1 d

2
j

]
, (100)

where the scaling factor t0∑m
j=1 d

2
j

is to ensure that tr(S1) = S4 = t0 ≤ t. It is obvious to see that

S is in S1 when t0 = t by the definition of S1 given in (17). When t0 < t, we still have that S is
in S1 which can be seen by noting that S1 is defined as the convex hull of rank-1 matrices and the
zero matrix. We can scale all the rank-1 matrices in the convex combination with t0

t and change
the weight of the zero matrix accordingly.

Proof of Lemma 6.2. Let α1, . . . , αm be any feasible point. First, note that for any s ≥ 0 and
α ∈ R, α 6= 0, we have (

s |α|
)p ≥ s |α|p , (101)

where equality holds if and only if s ∈ {0, 1}. The equality condition follows since |α| > 0 and

sp = s implies s ∈ {0, 1} for p ∈ (0, 1). Then, define si := |αi|∑
j |αj | , which satisfies

∑
i si = 1, and

observe that ∑
i

|αi|p =
∑
i

∣∣si(∑
j

|αj |
)∣∣p

≥
(∑

i

si

)(∑
j

|αj |
)p

=
(∑

i

|αi|
)p

≥
(∑

i

αi

)p
= 1 ,

where the first inequality holds with equality if and only if si ∈ {0, 1}, ∀i. Hence, in order for the
equality to hold, we necessarily have ‖α‖0 ≤ 1. Since

∑
i αi = 1, the all-zeros vector is infeasible.

This implies that ‖α‖0 = 1. Finally, note that all feasible vectors which are 1-sparse are of the form
(1, 0, . . . , 0), (0, 1, 0, . . . , 0), . . . , (0, . . . , 1) and achieve an objective value 1. We conclude that all
feasible vectors with cardinality strictly greater than 1 are suboptimal since they achieve objective
value strictly larger than 1.

Proof of Lemma 6.3. Let us define the set A = {a1, a2, . . . , ad} where ai are integers. We need to
show that the problem (62) finds a feasible solution u1 if and only if there exists a subset AS of
the set A that satisfies

∑
a∈AS

a = z.

We assume n = 2d+ 1 and hence X̃ is (d+ 1)× d and ỹ is (d+ 1) dimensional. Let X̃D ∈ Rd×d
denote the matrix with the first d rows of X̃, and x̃d+1 is the last sample in X̃. Let us define ỹi as

ỹi =

{
(ai/wi)

2, i = 1, . . . , d

(2z −
∑d

j=1 aj)
2, i = d+ 1 ,

(102)
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where w = X̃−TD x̃d+1 ∈ Rd.
Direction 1: Suppose there exists u1 ∈ Rd such that (x̃Ti u1)

2 = ỹi for every i = 1, . . . , d + 1
and u21k = 1/d for every k = 1, . . . , d. Then there exists a subset AS with

∑
a∈AS

a = z.

Proof of direction 1: Assuming X̃D is invertible, it follows that X̃X̃−1D =
[
Id w

]T
where Id is

the d×d identity matrix. Let us consider a feasible u1. Then, v = X̃Du1 satisfies ((X̃−TD x̃i)
T v)2 = ỹi

for i = 1, . . . , d + 1. Consequently, we have X̃−TD x̃i = ei for i = 1, . . . , d, and X̃−TD x̃d+1 = w. As a
result, we obtain the following relation between v and ỹ:

ỹi =

{
v2i , i = 1, . . . , d

(wT v)2, i = d+ 1 .

Next, because of (102), we have

|vi| =
∣∣∣∣ aiwi
∣∣∣∣ , i = 1, . . . , d, and |wT v| =

∣∣∣∣∣∣2z −
d∑
j=1

aj

∣∣∣∣∣∣ .
Let us define εi such that vi = εiai/wi for i = 1, . . . , d. Note that εi ∈ {−1, 1}. Then,∣∣∣∣∣∣2z −

d∑
j=1

aj

∣∣∣∣∣∣ = |wT v| =

∣∣∣∣∣
d∑
i=1

εiai

∣∣∣∣∣ =

∣∣∣∣∣ ∑
i:εi=1

ai −
∑

i:εi=−1
ai

∣∣∣∣∣ =

∣∣∣∣∣ ∑
i:εi=1

ai −
d∑
i=1

ai +
∑
i:εi=1

ai

∣∣∣∣∣
=

∣∣∣∣∣2 ∑
i:εi=1

ai −
d∑
i=1

ai

∣∣∣∣∣ .
This means we either have z =

∑
i:εi=1 ai or z = −

∑
i:εi=1 ai +

∑d
i=1 ai =

∑
i:εi=−1 ai. This

shows that the sum of the elements of AS is equal to z when AS is either equal to {ai|εi = 1} or
{ai|εi = −1}.

In proving direction 2, it is straightforward to show the existence of u1 that satisfies the con-
straint (x̃Ti u1)

2 = ỹi. To show that there is a u1 that satisfies the constraint u21k = 1
d , we pick X̃ in

a certain way that we discuss now: To prove direction 2, we will need to make sure |X̃−1D v| = 1̄ 1√
d

is satisfied, i.e., ∣∣∣∣∣∣
d∑
j=1

(X̃−1D )i,jεj
aj
wj

∣∣∣∣∣∣ =
1√
d

for i = 1, . . . , d .

We pick X̃D to be any diagonal matrix with arbitrary −1’s and +1’s on the diagonal and

pick x̃d+1 =
√
d
[
a1 . . . ad

]T
. Since w = X̃−TD x̃d+1, we will have |wi| = |x̃d+1,i| =

√
d|ai| for

i = 1, . . . , d. This choice for X̃D and x̃d+1 ensures that |X̃−1D v| = 1̄ 1√
d
.

Direction 2: Suppose there is a subset AS with
∑

a∈AS
a = z. Then there exists a feasible

u1 ∈ Rd.
Proof of direction 2: Define εi such that for ai in AS , it is equal to 1, and otherwise it is

equal to −1. Next,∣∣∣∣∣
d∑
i=1

εiai

∣∣∣∣∣ =

∣∣∣∣∣ ∑
i:εi=1

εiai +
∑

i:εi=−1
εiai

∣∣∣∣∣ =

∣∣∣∣∣ ∑
i:εi=1

ai −
∑

i:εi=−1
ai

∣∣∣∣∣ =

∣∣∣∣∣2 ∑
i:εi=1

ai −
d∑
i=1

ai

∣∣∣∣∣
=

∣∣∣∣∣2z −
d∑
i=1

ai

∣∣∣∣∣ . (103)
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Let us take vi = εiai/wi for i = 1, . . . , d. Now we show that the point defined by X̃−1D v is a feasible
point. First, we check if X̃−1D v satisfies the constraints (x̃Ti X̃

−1
D v)2 = ỹi for i = 1, . . . , i + 1. Note

that

(x̃Ti X̃
−1
D v)2 = (eTi v)2 = v2i =

a2i
w2
i

= ỹi for i = 1, . . . , d, and

(x̃Td+1X̃
−1
D v)2 = (wT v)2 = (

d∑
j=1

εjaj)
2 = (2z −

d∑
j=1

aj)
2 = ỹi+1 ,

where the last two equalities follow from (103) and the definition in (102). This shows that the
constraints (x̃Ti X̃

−1
D v)2 = ỹi for i = 1, . . . , d+ 1 are satisfied by X̃−1D v.

We now check for the other constraint; i.e. does X̃−1D v satisfy |X̃−1D v| = 1√
d

1̄ where the absolute

value is elementwise? This is true because |(X̃−1D v)i| = |
∑d

j=1(X̃
−1
D )i,jεj

aj
wj
| = 1√

d
for i = 1, . . . , d.

The second equality follows from how we picked X̃D and x̃d+1.

Proof of Corollary 3.3. Let us define the quadratic functions f1(u) = −uTQu−bTu+β and f2(u) =
‖u‖22 − 1. We note that f2(u) is strictly convex and takes both negative and positive values. Then
by Lemma 3.2, we have that the system −uTQu− bTu < −β (or uTQu + bTu > β) and ‖u‖2 = 1
is not solvable if and only if there exists λ such that −uTQu− bTu+ β + λ(‖u‖22 − 1) ≥ 0, ∀u.

Equivalently, we have max‖u‖2=1 u
TQu+ bTu ≤ β if and only if there exists λ such that

uT (λI −Q)u− bTu+ β − λ ≥ 0, ∀u. (104)

We note that if we make the change of variable u← u
c with c 6= 0, then (104) implies

1

c2
uT (λI −Q)u− 1

c
bTu+ β − λ ≥ 0, ∀u,∀c 6= 0

which is the same as

uT (λI −Q)u− cbTu+ c2(β − λ) ≥ 0, ∀u,∀c 6= 0.

We express this inequality in matrix form as follows

[
uT c

] [λI −Q −1
2b

−1
2b
T β − λ

] [
u
c

]
≥ 0, ∀u,∀c 6= 0. (105)

For the matrix in (105) to be PSD, we first need to show that (104) implies the inequality in (105)
for c = 0 as well. We note that (104) implies

uT

‖u‖2
(λI −Q)

u

‖u‖2
− bT u

‖u‖22
+
β − λ
‖u‖22

≥ 0, ∀u s.t. ‖u‖2 6= 0.

Next, taking the norm of u to infinity, we have

lim
‖u‖2→∞

(
uT

‖u‖2
(λI −Q)

u

‖u‖2
− bT u

‖u‖22
+
β − λ
‖u‖22

)
= uTn (λI −Q)un,

where un = u/‖u‖2 is unit norm. We note that uTn (λI −Q)un is non-negative for all unit norm un,
which is the same as the statement that it is non-negative for all un (not necessarily unit norm).
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Figure 15: SGD with minibatch size 13 for two UCI datasets, DS1 is the breast-cancer-wisc-
diag dataset with n = 455, d = 30 and DS2 is parkinsons dataset with d = 156, d = 22. The
regularization coefficient is set to β = 1 and β = 0.1 and the number of neurons m∗ is found as 34
and 27 for DS1 and DS2, respectively.

This shows that (104) implies uT (λI −Q)u ≥ 0 for all u, which, we note, is the same as (105) with

c = 0. Hence, because the inequality holds for all
[
uT c

]T
, we obtain the matrix inequality[

λI −Q −1
2b

−1
2b
T β − λ

]
� 0. (106)

The proof for the other direction of the if and only if statement is straightforward. We note
that, by the definition of a PSD matrix, (106) implies that uT (λI−Q)u−cbTu+c2(β−λ) ≥ 0, ∀u, c.
Setting c = 0, we obtain the inequality in (104).

C Additional Numerical Results

Figure 15 compares the costs and accuracy performance of the convex formulation with minibatch
SGD.
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