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Abstract

Matrices are exceptionally useful in various fields of study as they provide a
convenient framework to organize and manipulate data in a structured manner.
However, modern matrices can involve billions of elements, making their storage
and processing quite demanding in terms of computational resources and memory
usage. Although prohibitively large, such matrices are often approximately low
rank. We propose an algorithm that exploits this structure to obtain a low rank
decomposition of any matrix A as A ≈ LR, where L and R are the low rank
factors. The total number of elements in L and R can be significantly less than that
in A. Furthermore, the entries of L and R are quantized to low precision formats
– compressing A by giving us a low rank and low precision factorization. Our
algorithm first computes an approximate basis of the range space of A by randomly
sketching its columns, followed by a quantization of the vectors constituting
this basis. It then computes approximate projections of the columns of A onto
this quantized basis. We derive upper bounds on the approximation error of
our algorithm, and analyze the impact of target rank and quantization bit-budget.
The tradeoff between compression ratio and approximation accuracy allows for
flexibility in choosing these parameters based on specific application requirements.
We empirically demonstrate the efficacy of our algorithm in image compression,
nearest neighbor classification of image and text embeddings, and compressing the
layers of LlaMa-7b. Our results illustrate that we can achieve compression ratios
as aggressive as one bit per matrix coordinate, all while surpassing or maintaining
the performance of traditional compression techniques.

1 Introduction

Low-rank structures for matrices have proven to be incredibly valuable and ubiquitous across
numerous fields of study. Several real-world matrices approximately exhibit low-rank structure due to
inherent redundancy or patterns, allowing them to be approximated using low-rank factors. Udell and
Townsend [67] provide a potential justification by considering a generative model with latent variables
for real-world matrices. Applications where low-rank structures in matrices are exploited include, but
are not limited to, imaging (Lingala et al. [32]), fine-tuning large language models (Aghajanyan et al.
[1], Hu et al. [23], Karimi Mahabadi et al. [28], Valipour et al. [68], Wang et al. [74]), compressing
neural networks (Ben Noach and Goldberg [6], Idelbayev and Carreira-Perpinan [24], Mao et al.
[37], Phan et al. [45], Swaminathan et al. [61], Tahaei et al. [62], Wang et al. [75], Winata et al.
[76], Yu et al. [82]), obtaining efficient NN architectures (Jaderberg et al. [25], Tai et al. [63]), etc.

Given a matrix A ∈ Rn×d, a low-rank approximation is given by A ≈ LR, where L ∈ Rn×m,
R ∈ Rm×d denote the left and right low-rank factors with m≪ min{n, d}. Since m(n+ d)≪ nd,
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(a) Original image (b) Naïve quant. (c) DSVD (d) LPLR (ours) (e) LSVD (ours)

Figure 1: Compression of Shepp-Logan phantom (a standard test image for medical image reconstruction).
Naive quant. was done with 2-bits per pixel of this 103 × 103 image. Quantizing the SVD factors “directly" (i.e.,
DSVD) and (our) LPLR/LSVD algorithms factorize the image into a product of tall & wide matrices reduces the
total number of elements, allowing each entry to be represented using upto 8-bits of precision per pixel. Despite
the increase in precision per pixel, the total number of bits remains the same at 2 · 106.

the total number of entries in LR can be significantly smaller than A, enabling matrix compression.
The need for compression is driven by the overwhelming storage demands and computational
complexity linked to large matrices. In a comparable but distinct line of work, low-precision
(LP) representations have also been studied extensively as a means to reduce the memory footprint.
Quantization of a continuous valued variable using a small number of bits reduces storage requirement
while trading off accuracy. In addition, they also facilitate low latency for real-time inference and low
energy consumption (see Gholami et al. [19]). Works of Alimisis et al. [2], Safaryan et al. [53] have
studied various matrix compression operators for distributed optimization.

In this work, we introduce LPLR: Low-Precision Low-Rank factorization – a general matrix com-
pression algorithm that simultaneously exploits the low-rank structure of a matrix and quantizes it, to
obtain a low-rank factorization, such that the elements of the factors are represented using a small
number of bits. Although LPLR can generically refer to a class of algorithms whose main goal is to
obtain low-precision representations and exploiting low-rank structures in matrices, in the rest of the
paper, we reserve this acronym for our proposed algorithm in Alg. 1. Fig. 1 shows the effectiveness of
LPLR in preserving the semantic features in image compression. Other algorithms designed towards
achieving the same objective have been named and described appropriately throughout the paper.

1.1 Related Works

Low-rank approximation: The optimal rank-k approximation of a matrix A ∈ Rn×d, denoted
as Ak, can be obtained by performing the singular value decomposition (SVD) of A, which gives
A = UΣV⊤. To obtain Ak, we keep only the top k singular values along with their corresponding
left and right singular vectors, setting the remaining singular values to zero. In other words, Ak =

UkΣkV
⊤
k =

∑k
i=1 σiuiv

⊤
i , where σi, ui, and vi represent the i-th singular value, left singular

vector, and right singular vector, respectively. The matrix Ak minimizes the Frobenius norm
∥A− Â∥F under the constraint that the rank of Â is at most k. This result is known as the Eckart-
Young-Mirsky theorem [16], which states that ∥A−Ak∥2F =

∑
i>k σ

2
i . However, computing the

SVD has a high computational complexity of O(nd2) (n ≥ d without loss of generality), which can
be impractical for large matrices. Therefore, alternative methods such as in Jin et al. [26], Ye and Du
[80], Zhang et al. [83] have been proposed which solve variants of the minimization problem. Chi
et al. [9] provide a survey of optimization-based approaches for obtaining low-rank approximation.

Along a parallel line of work, randomized low-rank factorization algorithms have demonstrated
their effectiveness in handling massive datasets efficiently while maintaining competitive accuracy
levels. Several works, including those by Derezinski et al. [11], Drineas and Mahoney [14], Drineas
et al. [15], Halko et al. [21], Ma and Solomonik [35], Mahoney [36], Martinsson et al. [41], Tropp
et al. [65], Witten and Candès [77] have focused on reducing the complexity of computing SVD to
approximately O(nm2), where m ≪ d. These algorithms aim to approximate the range space of
matrix A by utilizing a sketched version AS, where S ∈ Rd×m is a random matrix with m≪ d. The
columns of A are then projected onto this approximate range space. By choosing m = k + p, where
p ≥ 2 is a small integer, the resulting low-rank approximation A ≈ LR provided by these algorithms
can be proven to be within a small multiplicative factor of the optimal rank-k approximation, stated
as E ∥LR−A∥2F ≤ (1 + δ) ∥Ak −A∥2F. The sketching matrix S is typically selected from the
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widely used class of Johnson-Lindenstrauss (JL) embeddings. A popular choice when A is dense is
to sample a Gaussian matrix where each entry Sij ∼ N (0, 1

m ).

Randomized quantization: JL embeddings also have practical uses in vector quantization. In this
context, when quantizing a vector x ∈ Rd, instead of quantizing x directly, the encoder quantizes
Sx, and then the decoder obtains an approximation of x through S⊤Q(Sx) ≈ x. This randomized
transformation equalizes the coordinate values of x, allowing for a smaller range of values and higher
precision for the quantizer Q under a fixed bit-budget. As a result, it leads to a smaller ℓ2 error
compared to independently quantizing each coordinate in a naive manner. Works such as Chen
et al. [8], Lyubarskii and Vershynin [34], Mayekar and Tyagi [42], Safaryan et al. [52], Saha et al.
[54, 55, 56], Studer et al. [58], Suresh et al. [59, 60], Vargaftik et al. [69, 70], Young et al. [81]
explore different variations of this concept for different applications.

2 Proposed Algorithm

Prior to detailing our algorithm, we first review the characteristics of the uniformly dithered quantizer
that we employ within our approach. Uniformly dithered quantization has been utilized in various
prior works Alistarh et al. [3], Bernardo et al. [7], Gray and Stockham [20], Mayekar and Tyagi
[42], Suresh et al. [59, 60], and is succinctly described in §(2.1) below.

2.1 Uniformly dithered quantizer

Let us consider quantizing a scalar x with |x| ≤ R. Given a bit-budget of B bits, the scalar quantizer
with dynamic range R is described by first specifying the M = 2B quantization points as:

q1 = −R, q2 = −R+∆, q3 = −R+ 2∆, . . . , qM = −R+ (M − 1)∆.

Here, the resolution is given by ∆ = 2R
M−1 , and the quantizer operation is defined as:

QR,B(x) =

{
qk+1 with probability r,

qk with probability 1− r,
(1)

where k = arg maxj{qj ≤ x}, i.e., x ∈ [qk, qk+1), and r = x−qk
∆ . Such a quantizer satisfies

E [QR,B(x)] = x and E (QR,B(x)− x)
2 ≤ ∆2

4
=

R2

(2B − 1)
2 , (2)

i.e., it is unbiased and the quantization error variance is dictated by R and B. Here, the E(·) is over
the randomness from dithering in (1) (ref. App. C). If the input x to the quantizer falls outside this
range, i.e., x > R or x < −R, the quantizer is said to be saturated. Finally, to quantize any matrix
X, we obtain QR,B(X) by quantizing each entry independently, i.e., [QR,B(X)]ij ≜ QR,B(Xij).

2.2 Proposed algorithm: LPLR

In order to comprehend low precision and low rank representations, we first introduce a simple
strategy, which we name as direct-SVD quant. This method involves two main steps: It first computes
the optimal rank-k decomposition Ak = UkΣkV

⊤
k , and then, it quantizes the low-rank factors

independently, namely, L = Q(UkΣk) and R = Q′(V⊤
k ). Here, Q and Q′ are uniform scalar

quantizers with respective bit-budgets B and B′. A detailed analysis of this direct-SVD quantization
approach can be found in Appendix H, along with pseudocode provided in Algorithm 2. Despite its
simplicity, this is not the optimal strategy due to two reasons. Firstly, it necessitates computing the
SVD of A, which is computationally expensive at O(nd2). Secondly, let us consider improving the
approximation to A when the first factor is fixed to Q(Uk) by solving the optimization problem:

X∗ = arg min
X∈Rk×d

∥Q(Uk)X−A∥2F = Q(Uk)
†A. (3)

This computes the projection of the columns of A onto the range space of Q(Uk). Suppose the
resulting projection coefficients are further quantized to get Q′(Q(Uk)

†A). Since X∗ is the solution
of (3), for a sufficiently large value of B′, it is evident that

∥∥Q(Uk)Q
′(Q(Uk)

†A)−A
∥∥2
F
≤∥∥Q(UkΣk)Q

′(V⊤
k )−A

∥∥2
F

, and hence, better than direct-SVD quant. However, this approach of
projecting onto the range space of Q(Uk) (which we refer to as LPLR-SVD and analyze in App.
I), still requires the computation of Uk, so we can replace Uk by AS, i.e., an approximation of the
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Algorithm 1: LPLR: Randomized Low-Precision Low-Rank factorization

Input :Matrix A ∈ Rn×d, sketch size m, Quantizers Q, Q′ with dynamic ranges RQ, RQ′ and
bit-budgets B,B′ respectively.

Output :Factorization: LR where L ∈ Rn×m, R ∈ Rm×d

1 Sample a Gaussian sketching matrix S ∈ Rd×m with entries Sij ∼ N
(
0, 1

m

)
.

2 Compute an approximate basis of column space of A by forming the sketch: AS.
3 Quantize the approximate basis with Q to get Q(AS).
4 Find W∗ = arg minW ∥Q(AS)W −A∥2F.
5 Quantize W∗ using quantizer Q′ to get Q′(W∗).

6 return Low-rank and low-precision approximation LR where L = Q(AS), R = Q′(W∗).

range space obtained through random linear combinations of the columns of A (also known as a
randomized rangefinder [40]). This leads us to our LPLR algorithm, described in Alg. 1, which finds
W∗ = arg minW∈Rk×d ∥Q(AS)W −A∥2F and forms the low-rank low-precision approximation
Q(AS)Q′(W∗) where Q,Q′ are quantization operators. While the solution of this problem is
available in closed form as W∗ = Q(AS)†A, one can also use an approximation of W∗ by solving
this least-squares minimization using an iterative method such as conjugate gradient descent.

In addition to the above argument supporting the superiority of LPLR compared to other baselines
(ref. to Tabs. 1 and 2), there exists another essential reason why LPLR outperforms them. This
reason directly relates to the selection of S as a Gaussian matrix, which is an integral component
of LPLR. Random Gaussian matrices are JL embeddings and possess an equalization property that
enhances the precision of uniform quantizers. In particular, let us consider an arbitrary vector x ∈ Rd
and obtain an estimate as x̂ = S⊤Q(Sx) using a uniform quantizer Q. It can be shown that the
vector quantization error remains constant and does not grow with the dimension d, expressed as
E ∥x̂− x∥22 = O(1). This represents a substantial improvement compared to the naïve strategy of
independently quantizing each coordinate of x, which leads to a quantization error growth rate of
O(d). We provide a detailed explanation of this phenomenon in App. D. Furthermore, even when
the quantization is 1-bit per coordinate, e.g., Q(Sx) = Sign(Sx), this embedding provides strong
near-isometric embedding properties due to the properties of random hyperplane tessellations [48].

While the strong equalization property of Gaussian embeddings is a known result, certain works such
as Saha et al. [55, 56], Suresh et al. [59, 60] opt for using randomized Hadamard embeddings instead
of Gaussian ones. The reason behind this choice is twofold: (i) Gaussian matrices are dense, requiring
O(d2) multiplications when computing Sx, and (ii) the entries of S are floating point numbers that
must be stored in full precision, contradicting the objective of quantizing x using fewer bits. However,
these concerns are not problematic for LPLR because the effects of S in the first low-rank factor are
neutralized by the second low-rank factor, and computing AS is not the rate determining step. In
fact, we exploit both the equalization property and the subspace approximation property of Gaussian
matrices to derive a superior upper bound for the approximation error, as discussed next in §3.

3 Approximation Error Analysis

We are now in a position to state the approximation error guarantee of LPLR Let us denote the ith

row of our input matrix A as a(i). For convenience of analysis, we make the following assumption.

Assumption 3.1. Rows of matrix A have bounded norm, i.e., ∥a(i)∥ ≤ R for some known R > 0.

The following result gives an informal upper bound on the expected Frobenius norm error of the
factorization returned by Alg. 1.
Theorem 3.2. LPLR approximation error (Informal) Suppose our input matrix A ∈ Rn×d with
∥a(i)∥ ≤ R = O(1) has singular values σ1, . . . , σr with r = rank(A) and target rank as k. Let
κ(A) = σ1/σr and κ(Ak) = σ1/σk respectively be the condition numbers of A and the best rank-k

approximation of A, and let us denote κ = min
{
κ(A), κ(Ak) (1− c4σk+1/σk)

−1
}

. Furthermore,

for a sufficiently small constant ϵ > 0, suppose the dynamic range of Q is set to be c1
√

log (n/ϵ) /m,
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and that of Q′ is set to 2κ
√
m/d. Then, the LPLR factorization returned by Alg. 1 satisfies

E ∥LR−A∥2F ≤
(
1 +

k

m− k − 1

)
∥Ak −A∥2F + ϵ,

while utilizing a total budget of log2

(
cκ(Ak)κ

ϵ
nm√
d

√
log
(
mn2

ϵ

))
bits for n ≈ d. Here, c1, c2, c3,

and c4 are constants that depend on R.

We provide a less formal version of our main result here, suitable for interpretation. The formal
statement of this result, including specific constant values, can be found in Thm. G.2 of App. G.
It does not necessitate the assumption n ≈ d and provides distinct thresholds for B and B′. Thm.
G.2 asserts that, for a target rank-k, as long as m ≥ k + 2, one can ensure an arbitrarily small
approximation error of ϵ by selecting the number of bits to be at least above a certain threshold
budget. The threshold depends on the error tolerance ϵ, dimensions n and d, the sketch size m, and
the spectrum of A. The value of κ is determined by taking the smaller of two quantities. In the case
of matrices with a sharp decline in singular values (e.g., matrices of exact rank-k), where the ratio
σk/σk+1 approaches zero, κ ≈ κ(Ak). For matrices with a smoother spectrum (e.g., all singular
values are equal), κ = κ(A), the condition number of the input matrix A.
Remark 1. We consider two distinct scenarios based on Asm. 3.1. The first case assumes that the
row norms are bounded by a constant, represented by R = O(1). This assumption is reasonable
when the rows of A correspond to different normalized features of a data point. The second case
assumes that the individual entries of A are bounded by a constant, i.e., Aij = O(1). This implies
that R = O(

√
d), which is a reasonable assumption for scenarios like images, where it is known

that each pixel value is bounded. In Tab. 1, we compare the performance of the algorithms when
R = O(1), while in Tab. 2, we assume R = O(

√
d). Thm. 3.2 assumes that R = O(1). The

expressions in Tab. 2 can be obtained in a similar manner from the formal version in Thm G.2.

3.1 Analysis outline

The derivation of the upper bound on the approximation error of LPLR is presented in App. G. In
this section we outline a brief proof sketch that highlights the main challenges of the proof. As
mentioned already in §2.2, the analysis of LPLR utilizes the subspace embedding and equalization
properties of random Gaussian matrices. A key component in Alg. 1 is the choice of dynamic range
for quantizers Q and Q′. Note that when either Q or Q′ gets saturated in lines 2 and 5 of Alg. 1,
a trivial factorization of LR = 0 is returned. We choose the dynamic ranges RQ and RQ′ to be
sufficiently high enough so that this happens with a very low probability. Lemma E.1 states this
formally for quantizer Q,

∥AS∥max ≤ R

√
2 log

(
16R2n2m

ϵ

)
m

with probability exceeding 1− ϵ

8nR2
.

Here, ∥AS∥max is max-norm of the matrix AS, i.e., the coordinate with maximum magnitude. This
concentration result is a consequence of the equalization property of Gaussian matrix S.

On the other hand, the input to the second quantizer is Q(AS)†A and Lemma E.2 provides a
concentration result for the max-norm of this matrix. Although in a general worst-case scenario, the
coordinate values of the pseudo-inverse of a matrix with small entries can be large (Alon and Vu
[4]), because we compute the pseudo-inverse of the matrix AS, which is rectangular (m≪ n) and
with random Gaussian entries, ∥(AS)

†∥2 does not shoot up arbitrarily as shown by Rudelson and
Vershynin [51]. We then show that ∥Q(AS)†∥2 is not too far from ∥(AS)†∥2, allowing us to derive

an expression for RQ′ . We get for γ = d
m and t =

√
2 log

(
32nR2

ϵ

)
m ,∥∥Q(AS)†A

∥∥
max
≤ 2κ
√
γ − 1− t

with probability exceeding 1− ϵ

4nR2
.

The second part of the analysis deals with upper bounding the approximation error when the second
low-rank factor is unquantized, i.e., ∥Q(AS)Q(AS)†A−A∥2F conditioned on the event that Q and
Q′ are unsaturated. We reduce this problem to analyzing the solution of the following:

X̃ = arg min
X

∥∥X⊤AkS−Q(AS)
∥∥2
F
. (4)
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Table 1: Comparison with baselines (row-norm bound is constant, i.e., ∥a(i)∥ = O(1)). k,m ≪ min{d, n}.
n: no. of rows, d: no. of columns, m: sketch size, ϵ: error tolerance, δ = k/(m− k − 1). The expressions for
bit-budget (per entry) ignores constant multiplicative factors inside the log2(·). We assume n ≥ d.

Algorithms Approximation error Bit-budget (per entry) Computation

Naïve uniform ϵ 1
2
log2

(
nd
ϵ

)
O(nd)

Direct-SVD ∥Ak −A∥2F + ϵ 1
2
log2

(
kσ2

1
ϵ

√
nd
)

O(nd2)

LPLR (ours) (1 + δ) ∥Ak −A∥2F + ϵ 1
2
log2

(
κ(Ak)κ

ϵ
nm√

d

√
log
(

mn2

ϵ

))
O(ndm)

Table 2: Comparison with baselines (individual entries of A are bounded by a constant, i.e., Aij = O(1)).
Dimension dependent terms are color highlighted for ease of comparison with Tab. 1.

Algorithms Approximation error Bit-budget (per entry) Computation

Naïve uniform ϵ 1
2
log2

(
nd
ϵ

)
O(nd)

Direct-SVD ∥Ak −A∥2F + ϵ 1
2
log2

(
kσ2

1
ϵ

√
nd
)

O(nd2)

LPLR (ours) (1 + δ) ∥Ak −A∥2F + ϵ 1
2
log2

(
κ(Ak)κ

ϵ
nm

√
d log

(
mn2d2

ϵ

))
O(ndm)

We refer to (4) as the sketched least squares problem with quantized response as it is a variant of the
generalized least squares problem, X∗ = arg minX

∥∥X⊤Ak −A
∥∥2
F

. This is potentially a problem
of independent interest, and we analyze the solution of (4) in detail in App. F. Exploiting the subspace
embedding property of S we show that∥∥∥X∗⊤Ak −A

∥∥∥2
F
≤ E

∥∥∥X̃⊤Ak −A
∥∥∥2
F
≤ m− 1

m− k − 1

∥∥∥X∗⊤Ak −A
∥∥∥2
F
+ quantization error term.

This leads us to the proof of Lemma G.1 which gives the approximation error of LPLR when Q and
Q′ are unsaturated. Finally, taking into account the low-probability saturation events, for which the
error is ∥A∥2F, we derive our main result in Thm. G.2. Subsequently, we discuss the approximation
made in App. G.2 and arrive at the informal result of Thm. 3.2.

3.2 Comparison with baselines

We are now in a position to compare the performance with baselines in Tabs. 1 and 2.

Naive quantization: The most straightforward baseline for matrix quantization is naïve quantization
where each coordinate of the matrix is quantized independently, agnostic to any low-rank structure in
the matrix A. In this, we allocate B bits to each coordinate of A and since there are nd entries in
the matrix, from (1), the Frobenius norm error is upper bounded by R2nd

(2B−1)2
. Note that this holds

true irrespective of whether R = O(1) or O(
√
d) because when ∥a(i)∥ ≤ R implies Aij ≤ R. To

ensure that the error is within a certain tolerance ϵ, we then require 1
2 log2

(
nd
ϵ

)
bits. In this, and also

other expressions for bit-budget requirements of algorithms in Tabs. 1 and 2, we have ignored the
multiplicative constant factors inside the log2(·) for simplicity of exposition. The exact expressions
can be found in the corresponding appendices where we derive them.

One of the primary reasons why both direct-SVD and LPLR are expected to perform better than naïve
is that the former strategies exploit the low-rank structure of the matrices to reduce the total number of
parameters being quantized, i.e., k(n+ d) for direct-SVD and m(n+ d) for LPLR, vs. nd for naïve.
Given a total number of bit-budget for the entire matrix A, since we now quantize fewer parameters
than before, we can allocate a higher number of bits to each parameter, enabling higher precision.
The price we pay for exploiting the low-rank structure of matrices is the additional ∥Ak − A∥2F
dependent term, which is usually very small for matrices that can be well approximated by a low-rank
structure. For matrices that are exactly rank k, this term is 0. As we see in our numerical simulations
in §4, several real-world matrices can be well-approximated by a low-rank structure.

Direct-SVD quant.: From Tab. 1, we see that to achieve an ϵ-quantization error, direct-SVD requires
1
2 log2(k

√
nd) bits per entry, which is greater than 1

2 log2

(
nm√
d

)
required by LPLR (ignoring the
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logarithmic terms). Evidently, LPLR demands fewer bits than direct-SVD because k,m≪ min{n, d}
for inherently low-rank matrices. For the regime presented in Tab. 2, the bit requirement for
direct-SVD remains unchanged. However, LPLR now requires 1

2 log2

(
nm
√
d
)

, slightly more than

direct-SVD, due to the additional
√
n factor. Thus, it makes sense to expect that direct-SVD can

perform better in this regime. This is supported by our numerical experiments in Tabs. 4 to 7, where
direct-SVD indeed outperforms LPLR in certain scenarios. Nevertheless, it is crucial to emphasize
that direct-SVD necessitates computing the SVD, which can be prohibitive for very large matrices
due to the current memory limitations of available GPUs, making LPLR the only viable option.

Computational complexity: Unsurprisingly, naïve quant. requires the least computation, i.e., O(nd),
as it does just a single pass over all the elements of A. The O(nd2) complexity of direct-SVD quant.
stems from the requirement of computing SVD (assuming n ≥ d). LPLR is the best of both worlds –
for the same bit-budget, LPLR has a smaller approximation error than both direct-SVD and naïve,
and a complexity of O(ndm), arising from the requirement to compute AS, i.e., a product of two
dense matrices of dimensions n× d and d×m, which is better than direct-SVD, since m≪ d.

4 Numerical Simulations

4.1 Overview

We evaluate the robustness of LPLR on multiple tasks, namely, image compression, binary, and
multi-class classification across disparate domains including vision, text and raw images, and neural
network weight matrices. We consider a range of input configurations to showcase the performance
and non linear effects of joint quantization and low rank approximation on a given dataset, especially
at lower bit budgets. LPLR provides competitive results at bit budgets as low as a single bit, providing
extreme model compression while maintaining non trivial performance for the task at hand.

Baselines. We employ naive quantization, which quantizes the input matrix by rounding to the nearest
scalar in the underlying data type’s quantization grid, as our primary benchmark. Naïve quant. and its
variants – Dettmers et al. [12], Yao et al. [79], are the most popular method in use across domains, as
their memory and computational run time requirements scale extremely well with model and dataset
sizes. In addition, we also evaluate the performances of direct-SVD quantization and LPLR-SVD to
disambiguate between the entangled effects of quantization and exploiting low rank structure.

Metrics. We evaluate LPLR performance using task specific goodness of fit metrics, as well as
relative Frobenius norm error between the original and matrix reconstructed from its low-rank factors,
i.e., ∥LR−A∥2F. In addition to this, we enforce parity between the number of bits used by all
quantization schemes, so that the total space required (in bits) for storing the approximated matrix is
identical across LPLR, LPLR-SVD, direct-SVD quant., and naïve quant.

Notation. In all our experiments, we denote the bit budget for the left low rank factor L as B, for the
right low rank factor R as B′, and the corresponding bit budget for naive quantization as Bnq. For
simplicity, we maintain equal bit budgets B = B′ for both quantizers Q and Q′. Wherever necessary,
we also abbreviate direct-SVD quant. as DSVD, LPLR-SVD as LSVD., and naïve quant. as NQ.

The main algorithm is implemented in Pytorch (Paszke et al. [44]), and utilizes Hugging Face [78]
implementations of all datasets and large language models. All experiments were performed on a
single GPU NVIDIA TITAN RTX. Further simulations and experimental details can be found in App.
J. Our code is available at https://github.com/pilancilab/matrix-compressor.

4.2 Image Compression

Image compression is a prototypical application of low rank matrix compression, as images are known
to be significantly rank deficient in many practical scenarios (Zhang et al. [84], Zhou et al. [85]). In
this task, we apply LPLR on 1000× 1000 dimensional Shepp Logan phantom images from Gach
et al. [18]. These are a set of synthetic 2D images designed to simulate the typical characteristics and
structures found in computed tomography (CT) scans. They consist of geometric shapes, including
circles and ellipses, representing different tissues or organs within the scanned object.

The main results are summarized in Tab. 3. To ensure a fair comparison, we adjust the rank of the
matrix so that bit budgets are identical between naïve quant. and LPLR. This allows us to preserve the
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original datatype of the image (consequently a large dynamic range R), while substantially reducing
the pixels used to represent the image, as low as 1 bit per pixel (on average). Specifically, in Figure
1, we can observe the least visual distortion in the case of LPLR, which preserves critical semantic
features of the images, such as the small ellipses. It is clear that LPLR outperforms both techniques at
lower naive quantization bit budgets. We attribute the better visual and quantitative performance to the
higher dynamic range available to LPLR as well as structure preserved in the low rank decomposition.

Table 3: Comparison of LPLR and LPLR-SVD (LSVD) Frobenius norm errors with baselines, for different
input LPLR bit budgets. Each triplet (B,B′,Bnq) of configurations has an identical compression ratio. Here,
B = B′. The second column specifies the sketch size m for LPLR, and target rank k for DSVD or LSVD. We
provide results for input bit budgets at a finer granularity to identify regimes where naïve quant. is outperformed.

B
Target Rank (k) /
Sketch Size (m)

Bnq LPLR DSVD LSVD NQ B
Target Rank (k) /
Sketch Size (m)

Bnq LPLR DSVD LSVD NQ

32 15 1 0.610 0.553 0.506 0.532 32 31 2 0.447 0.523 0.392 0.312
28 17 1 0.557 0.546 0.490 0.532 28 35 2 0.434 0.521 0.380 0.312
24 20 1 0.540 0.537 0.454 0.532 24 41 2 0.401 0.517 0.358 0.312
20 25 1 0.485 0.529 0.426 0.532 20 50 2 0.371 0.513 0.331 0.312
16 31 1 0.447 0.523 0.391 0.532 16 62 2 0.341 0.509 0.308 0.312

12 41 1 0.402 0.518 0.360 0.532 12 83 2 0.310 0.506 0.286 0.312

8 62 1 0.340 0.508 0.326 0.532 8 125 2 0.267 0.499 0.284 0.312

4.3 Embeddings extracted from pre-trained models

The efficacy of pre-trained embeddings is well established in vision (Li et al. [31], Parisi et al. [43]),
text (Qi et al. [49], Rezaeinia et al. [50]) for rapid feature computation as an input to a variety of
downstream tasks. Embeddings also play a crucial role in a number of software applications, including
but not limited to, open source vector search libraries (Liu [33], Marqo [39]), semantic search engines
(Amazon AWS [5]), vector databases (Pinecone [47]). Since most applications rely on proximity
in “embedded space”, it is essential that common operations on embeddings be computationally
efficient. Specifically, one would like to optimize nearest neighbor (NN) searches which solve the
optimization problem arg mini ∥xi − y∥22 (reducible to arg maxiXy where X is the matrix with
training vectors {xi} as its rows, and y is the query vector). The time complexity of NN search
scales linearly with dimensions of X ∈ Rn×d and number of neighbors (k). By embedding the data
matrix in a dimension m≪ d, we directly speedup the run-time and reduce storage costs. Moreover,
as datasets grow exponentially in size (especially document databases) and transfer learning becomes
the dominant modality of training new models, embedding compression becomes a necessity for
storing data without a corresponding exponential increase in hardware requirements.

4.3.1 Embedding Classification

In this experiment, we evaluate several embeddings of standard datasets, namely CIFAR-10, CIFAR-
100, IMDB and Emotion datasets. CIFAR-10 consists of 60,000 color images divided into 10
classes, with each class containing 6,000 images. The dataset is split into 50,000 training images
and 10,000 test images, with a resolution of 32x32 pixels. CIFAR-100 increases the number of
classes to 100 categories for an identical training and test size as CIFAR-10. The IMDB dataset
consists of 25,000 train and test sentences containing annotated binary sentiment labels for movie
reviews, plot summaries and other rating information. The Emotion dataset is a sentiment analysis
dataset, containing 16,000 train and 2000 test sentences, each exemplifying a singular emotion, which
represents the sentiment label for that sentence.

For CIFAR-10 and CIFAR-100, we embed the entire dataset using MobileNet v3 (Howard et al.
[22]) pretrained on ImageNet (Deng et al. [10]) producing an embedding matrix of dimension
60000× 1024, which we compress using LPLR and compare with the baselines in §4.1. To evaluate
the goodness of embeddings, we build a 3-NN, a KNN Classifier using K = 3 nearest neighbors
under Euclidean distance). We report the performance of the model using standard classification
metrics – classification accuracy and weight averaged F1 score. We utilize a uniform bit budget
B = B′ = 8 bits for the quantizers Q,Q′ across all cases. Tabs. 4 and 5 present our results under this
setup. For each case we benchmark absolute performance using a 3-NN classifier on the training set.
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Similarly, we embed text sentences from IMDB and Emotion databases using BeRT (Devlin et al.
[13]) into 512 dimensional vectors, and construct a 3-NN classifier using Euclidean distance to
perform binary and multi-class classification on the respective embeddings, and report classification
metrics in Tabs. 6 and 7. We see that LPLR outperforms direct-SVD quant. and naïve quant at lower
bit budgets, and has performance parity as we increase Bnq to 4 bits. We find that we match (and even
exceed) the unquantized benchmark at single bit precision, which we attribute to the dominating low
rank factorization, and its regularizing effect on data under extreme rank constraints. It is important
to note that performance parity with direct-SVD quant. is also a successful outcome, since LPLR
provides runtime improvements over taking an SVD to compress the data.

Table 4: CIFAR10 embeddings generated by MobileNetV3 with an unquantized accuracy and F1 score
91%:Results on LPLR and LPLR-SVD with B = B′ = 8 bits 1

Frobenius Norm Error Accuracy (%) Weighted F1 Score (%)

Bnq LPLR LSVD DSVD NQ LPLR LSVD DSVD NQ LPLR LSVD DSVD NQ
1 1.05 1.08 1.09 7.17 92 92 92 11 92 92 92 4
2 1.08 1.1 1.1 2.29 92 92 91 30 92 92 91 23
4 1.1 1.11 1.11 1.15 91 92 91 91 91 92 91 91

Table 5: CIFAR100 embeddings generated by MobileNetV3 with an unquantized accuracy and F1 score
76%:Results on LPLR and LPLR-SVD with B = B′ = 8 bits

Frobenius Norm Error Accuracy (%) Weighted F1 Score (%)

Bnq LPLR LSVD DSVD NQ LPLR LSVD DSVD NQ LPLR LSVD DSVD NQ
1 1.04 1.08 1.09 6.75 79 82 82 1 79 82 82 0
2 1.08 1.1 1.12 2.18 80 80 80 1.7 80 80 80 1.3
4 1.11 1.12 1.14 1.17 79 78 77 75 79 78 78 75

Table 6: IMDB embeddings generated by BERT with an unquantized accuracy and F1 score 75% and
74% respectively: Results on LPLR and LPLR-SVD with B = B′ = 8 bits

Frobenius Norm Error Accuracy (%) Weighted F1 Score (%)

Bnq LPLR LSVD DSVD NQ LPLR LSVD DSVD NQ LPLR LSVD DSVD NQ
1 0.313 0.241 0.229 6.63 73 74 75 50 74 74 75 33
2 0.235 0.178 0.161 1.016 74 74 74 50 74 74 74 50
4 0.148 0.122 0.098 0.417 75 74 75 73 74 74 75 73

Table 7: Emotion embeddings generated by BERT with an unquantized accuracy and F1 score 43% and
40% respectively: Results on LPLR and LPLR-SVD with B = B′ = 8 bits

Frobenius Norm Error Accuracy (%) Weighted F1 Score (%)

Bnq LPLR LSVD DSVD NQ LPLR LSVD DSVD NQ LPLR LSVD DSVD NQ
1 0.383 0.296 0.286 5.109 41 43 43 29 38 40 40 13
2 0.291 0.215 0.202 1.561 42 43 43 33 39 40 40 30
4 0.187 0.137 0.121 0.367 42 43 43 41 39 40 40 38

4.3.2 Compressing Weight Matrices of a Large Language Model

In this section, we present results on a major application of matrix compression – compressing
the weight matrices of deep neural networks. We choose LlaMa by Touvron et al. [64], a popular
foundation Large Language Model (LLM) as the network of our choice. LLMs are a natural candidate
for matrix compression, due to their massive stacked transformer layers, rendering them difficult
to deploy on several GPUs, let alone a single GPU. Many methods have emerged to quantize and
compress these models in order to make them amenable to single GPU deployment and inference,
including naive quantization with outlier exclusion (Dettmers et al. [12]), second order methods
(Frantar et al. [17]), low rank parameter reduction (Hu et al. [23]), amongst others.

We apply LPLR to the 2-dimensional weight tensors, i.e., matrices in LlaMa, leaving any other
tensor, which does not lend itself to a low rank decomposition, unquantized. Figs. 2a and 2b (better

1LPLR-SVD used in the simulations computes the left low-rank factor L as Q(UkS) where Sij ∼
N (0, 1/m) instead of simply Uk in order to exploit the equalization property of Gaussian embeddings.
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Figure 2: Comparison of LPLR and LPLR SVD on LlaMa weights, ordered by the original sequence of layers

Table 8: Average relative Frobenius norm error on LlaMa weight matrices

B = B′ = 8 bits, Bnq = 4 bits

Metric LPLR LPLR-SVD Naive Quant.

Mean 0.672 0.537 0.836
Std Dev 0.080 0.079 0.470

B = B′ = Bnq = 4 bits

Metric LPLR LPLR-SVD Naive Quant.

Mean 0.548 0.540 0.836
Std Dev 0.053 0.055 0.470

resolution in App. J) showcase our results on applying LPLR and LPLR-SVD with bit budgets of 8
bits and 4 bits respectively, using relative Frobenius norm error as the metric. While it is clear that
LPLR and LPLR-SVD perform significantly better across all layers (on average), there are outliers
where naïve quant. is the better choice. We can a observe periodic structure in the error profile of
naïve quant., implying that the low rank structure is a function of the index of attention layer in
transformer blocks. It is important to note that a low Frobenius norm error is not a direct indicator of
performance for other task specific metrics. It is possible to construct a holistic compression strategy
using error profiles similar to Figures 3,4 to adopt a per-layer quantization strategy, minimizing both
task specific metrics as well as relative Frobenius norm error. We discuss this further in Appendix K.

5 Conclusions

In this work, we have considered the problem of obtaining a low-precision and low-rank factorization
of a matrix. Such a factorization of a matrix into a product of tall and wide matrices has several
advantages, including compression of the original matrix. We proposed a fast randomized algorithm to
obtain this factorization which requires O(nmd) computations – considerably faster than alternative
methods. Our algorithm employs a Gaussian sketch to estimate the range space of matrices that are
approximately low-rank. By utilizing the properties of subspace approximation and equalization in
Gaussian embeddings, we established an upper bound on the approximation error attained by our
algorithm, and show that it can be significantly smaller than its counterparts. Finally, we empirically
evaluate our method on several vision and text datasets, where we show significant task performance
at highly compressed bit budgets as low as a single bit. This provides a novel pragmatic approach
to work with large datasets and models in real world settings, making them more accessible to
researchers and deployment on regular consumer hardware.
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A Notations

We first gather some common notations in linear algebra and probability theory that have been used
throughout the paper. Boldface upper and lowercase letters, A and a denote matrices and vectors
respectively. Id denotes the d× d identity matrix. The subscript may be dropped if the dimension
is clear from the context. For any matrix A, its ith row and jth column are denoted by a(i) and aj
respectively. The singular values of A are denoted by σmax(A) = σ1 ≥ σ2 ≥ . . . ≥ σr = σmin(A),
where r = rank(A). Similarly, the eigenvalues are denoted as λ1(A), . . . , λr(A). The max-
norm of A is defined as ∥A∥max = maxi,j |Aij |, the spectral norm of A is defined as ∥A∥2 =

sup∥x∥=1 ∥Ax∥ = σmax(A), and the Frobenius norm is ∥A∥F =
(∑

i,j A
2
ij

)1/2
= Tr

[
A⊤A

]
=(∑

k∈[r] σ
2
k

)1/2
. For any vector x, ∥x∥ =

(
x2
i

)1/2
denotes the ℓ2-norm, and ∥x∥∞ = maxi |xi|

denotes the ℓ∞-norm. We use the notations ≽ and ≼ for the positive semi-definite (PSD) cone
ordering (or the Loewner ordering) of symmetric matrices, i.e., for any symmetric matrices X and
Y, X ≽ Y ⇐⇒ X −Y is PSD. X† denotes the Moore-Penrose pseudo-inverse of a matrix X.
log(·) denotes the natural logarithm, i.e., base e. log2(·), i.e., with base 2 is specified explicitly.
A normal distribution with mean µ and variance σ2 is denoted as N (0, σ2), while a multivariate
normal distribution in Rd is denoted as N (µ,Σ). E[·] denotes expectation of a random variable. The
probability measure over which the expectation is taken is described in text. We also use big-‘oh’
notation O(·) that hides constants for asymptotic expressions, while Õ(·) also hides terms that
depends logarithmically on dimension.

We now list some notations that are either less commonly known or used specifically in this paper,
along with some remarks such as their occurrence in the paper. Several of these notations have also
been introduced in-context, but they are additionally collected here for easy reference.

Table 9: Notations used in this paper
Notation Description Remarks

A, L, R Input matrix, left and right LPLR
factors

LR is an approximation of A. Entries of
L and R are represented in low-precision
formats

n, d Dimensions of input matrix A ∈ Rn×d.
k Target rank Often, k ≪ min{n, d}, but not necessarily.

A = UΣV⊤ Full SVD of the matrix A ∈ Rn×d U ∈ Rn×n, Σ ∈ Rn×d, and V ∈ Rd×d.
Ak = UkΣkV

⊤
k Best rank-k approximation of A U ∈ Rn×k and V ∈ Rn×k consists of top-

k left and right singular vectors respectively.
Σ ∈ Rk×k consists of top-k singular values.

m Sketch size m = k + p, where k is the target rank, and
p is the oversampling factor.

S ∈ Rd×m Sketching matrix In this work, Sij ∼ N
(
0, 1

m

)
.

Q,Q′ Quantizers for the first and second
low-rank factors with bit-budgets B
and B′, and dynamic ranges RQ and
RQ′ respectively.

—

κ(A) Condition number of input matrix A κ(A) = σ1, σr

κ(Ak) Condition number of best rank-k ap-
proximation Ak

κ(Ak) = σ1/σk

κ A quantity that depends on the spec-
trum of A

κ = min

{
κ(A), κ(Ak)

(1−O(1)σk+1/σk)

}
, de-

fined in Thm. G.2
γ Aspect ratio of the sketch γ = d

m
, defined in Thm. G.2.

δ Target rank and sketch-size depen-
dent quantity

δ = k
m−k−1

W(Ψ, d) Wishart distribution with covariance
matrix Ψ and degree of freedom d

Refer to §B.2.2.
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B Preliminaries

B.1 Linear algebra inequalities

We state (with proofs) some standard inequalities from linear algebra that will be useful in proving
our main results.

Lemma B.1. (Frobenius norm of matrix products) For any matrices A and B, we have
∥AB∥F ≤ ∥A∥F ∥B∥2 .

Proof. Note that:

∥AB∥2F =
∑
j

∥(AB)j∥22 ≤
∑
j

∥ABj∥22
(i)

≤ ∥A∥22
∑
j

∥Bj∥22 = ∥A∥22 ∥B∥
2
F . (5)

Here, (i) follows from the definition of spectral norm of a matrix, and this completes the proof.

Lemma B.2. (Loewner ordering for matrix products) For any matrix A and B, we have
σ2
min(A) B⊤B ≼ B⊤A⊤AB ≼ σ2

max(A) B⊤B.

Proof. For any vector x ̸= 0, we have,
x⊤B⊤A⊤ABx = ∥ABx∥22 ≥ σ2

min(A)∥Bx∥22 = x⊤ (σ2
min(A) B⊤B

)
x. (6)

The other direction holds similarly. This completes the proof.

Lemma B.3. (Max-norm spectral-norm inequality) For any matrix A ∈ Rn×d, ∥A∥max ≤ ∥A∥2.

Proof. Let ei ∈ Rn and êj ∈ Rd denote the ith and jth canonical basis vectors in Rn and Rd
respectively. Then, using Cauchy-Schwarz inequality, we have,

∥A∥max = max
i,j

∣∣e⊤i Aêj
∣∣ ≤ max

i,j
∥ei∥ ∥Aêj∥ = max

j
∥Aêj∥ ≤ sup

∥x∥=1

∥Ax∥ = ∥A∥2 , (7)

completing the proof.

Lemma B.4. (Submultiplicativity of spectral norm) For any two matrices A and B, we have
∥AB∥2 ≤ ∥A∥2 ∥B∥2 .

Moreover, an analogous “reverse-submultiplicativity" result for the minimum singular value of a
matrix product also holds true, i.e.,

σmin(AB) ≥ σmin(A)σmin(B).

Proof. Using Lemma B.2, we have,

∥AB∥22 = λmax

(
B⊤A⊤AB

) (i)

≤ ∥A∥22 · λmax

(
B⊤B

)
= ∥A∥22 ∥B∥

2
2 , (8)

completing the proof. The lower bound on σmin(AB) also follows a similar argument.

Lemma B.5. (Lower bound on minimum singular value of matrix sums) For any matrices A
and B, we have

σmin(A+B) ≥ σmin(A)− ∥B∥2 .

Proof. We have the following chain of inequalities,

σmin(A+B) = inf
∥x∥=1

∥(A+B)x∥
(i)

≥ inf
∥x∥=1

(∥Ax∥ − ∥Bx∥)

≥ inf
∥x∥=1

∥Ax∥ − sup
∥x∥=1

∥Bx∥ = σmin(A)− ∥B∥2 .,

where (i) is the reverse triangle inequality. This completes the proof.

Lemma B.6. (Rotation invariance of singular values) For a given matrix A, σi(A) = σi(UA)
for all i = 1, . . . , rank (A) for any unitary matrix U.
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Proof. For i = 1, . . . , rank(A), since U⊤U = I, we have

σi(UA) =
√
λi (A⊤U⊤UA) =

√
λi (A⊤A) = σi(A),

completing the proof.

Lemma B.7. (Rotation invariance of Frobenius norm) For a given matrix A, ∥UA∥F = ∥A∥F
for any unitary matrix U.

Proof. We have,
∥UA∥2F = Tr

[
A⊤U⊤UA

]
= Tr

[
A⊤A

]
= ∥A∥2F . (9)

B.2 Probability and random matrix theory

We restate some results from probability and random matrix theory which will be useful in deriving
the main result of our paper.

B.2.1 Tail bound for Gaussian distribution

Gaussian distributions have strong concentration properties which we exploit in deriving the results
of this paper. The following tail bound on a Gaussian random variable can be found in standard texts
such as Wainwright [73, §2.1.2], and is restated here.

Lemma B.8. (Chernoff bound for centered Gaussian) For X ∼ N
(
0, σ2

)
, we have,

Pr (|X| ≥ t) ≤ 2e−
t2

2σ2 . (10)

The proof of this follows from a direct application of Chernoff bound.

B.2.2 Inverse Wishart distribution

Consider a matrix S ∈ Rd×m, each row of which is drawn independently from the distribution
N (0,Ψ), where Ψ ∈ Rm×m. Then, the probability distribution of the m×m random matrix S⊤S
is called the Wishart distribution with d degrees of freedom, denoted asW (Ψ, d). Moreover, the
distribution of the matrix

(
S⊤S⊤)−1

is called the inverse Wishart distribution and is denoted by
W−1

(
Ψ−1, d

)
. These distributions have been studied extensively and further details can be found in

Mardia et al. [38] or Siskind [57].

Lemma B.9. (Expected trace of inverse Wishart matrix) Suppose S ∈ Rd×m matrix, each entry of
which is drawn independently from N

(
0, 1

m

)
. Then, the matrix S⊤S ∈ Rm×m follows the Wishart

distributionW
(

1
mIm, d

)
that satisfies,

E Tr
[(
S⊤S

)−1
]
=

m2

d−m− 1
. (11)

Proof. From Mardia et al. [38, eq. 3.8.3], if X ∼ W−1
(
Ψ−1, d

)
, then,

E
[(
S⊤S

)−1
]
=

Ψ−1

d−m− 1
. (12)

Here, Ψ = 1
mIm, implying Tr

[
Ψ−1

]
= m2, which completes the proof.

B.2.3 Random Gaussian matrices

The spectral norm of random matrices with Gaussian entries have interesting concentration properties.
In this section, we present a lemma from Vershynin [71] that formally states this result.

Lemma B.10. Let the entries of matrix S ∈ Rd×m be distributed according to Sij ∼ N
(
0, 1

m

)
.

Then for every t ≥ 0, with probability at least 1− 2e−
mt2

2 , we have,√
d

m
− 1− t ≤ σmin(S) ≤ σmax(S) ≤

√
d

m
+ 1 + t. (13)
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The above lemma is a straightforward modification of the result in Vershynin [71, Corr. 5.35], which
states the concentration result when the entries are distributed according to N (0, 1). Note that given
S with entries Sij ∼ N

(
0, 1

m

)
as above, the matrix Ŝ =

√
m S will have entries Ŝij ∼ N (0, 1).

Furthermore, σi(Ŝ) =
√
m σi (S) and the conclusion is immediate.

B.2.4 Subgaussian random variables

Subgaussian random variables refer to a class of distributions that are dominated by the distribution of
a centered Gaussian random variable. There are several equivalent ways to characterize subgaussian
random variables which can be found in several textbooks (see for example, Vershynin [72, Prop.
2.5.2]). We will focus on the following definition. More formally, the distribution of a random
variable X is subgaussian if the moment generating function of X2 is bounded at some point, i.e.,

E
[
eX

2/K2
]
≤ 2. (14)

Definition B.11. (Subgaussian norm) The subgaussian norm of a subgaussian random variable X ,
denoted by ∥X∥ψ2

is defined to be the smallest K in (14). In other words,

∥X∥ψ2
≜ inf

{
t ≥ 0 | E

[
eX

2/t2
]
≤ 2
}
. (15)

It can be shown that any bounded random variable X is subgaussian, and satisfies,

∥X∥ψ2
≤
∥X∥∞
log 2

. (16)

We next present a result that upper bounds the spectral norm of a matrix with subgaussian entries.

Lemma B.12. (Vershynin [72, Thm 4.4.5]) Let X be a d×m random matrix whose entries Xij are
independent, zero-mean, subgaussian random variables. Then, for any t > 0, we have,

∥X∥2 ≤ CK
(√

d+
√
m+ t

)
with probability exceeding 1− 2e−t

2

. Here, K = maxi,j ∥Aij∥ψ2
and C is an absolute constant.

C Quantization error of uniformly dithered scalar quantizer

For a scalar x ∈ [−R,+R], let us denote the quantization error of uniformly dithered scalar quantizer
with a bit-budget of B bits as ϵ = QR,B(x)−x. Clearly, the quantization error is bounded as |ϵ| ≤ ∆.
The following result further characterizes its mean and variance of this error.

Lemma C.1. The uniformly dithered scalar quantizer as described in (1) satisfies,

E [ϵ] = 0 and Var (ϵ) ≤ R2

(2B − 1)
2 ,

where the E(·) is over the randomness due to dithering in the quantizer operation.

Proof. Suppose x ∈ [qk, qk+1) and qk+1 = qk +∆, where ∆ = 2R
2B−1 . Then,

E QR,B(x) = qk+1
x− qk
∆

+ qk

(
1− x− qk

∆

)
=

(qk +∆) (x− qk) + qk (∆− x+ qk)

∆
= x.

To evaluate the variance,

Var (QR,B(x)− x)
2
= (qk+1 − x)2

(x− qk)

∆
+ (qk − x)2

(
1− x− qk

∆

)
≤ (qk+1 − x) (x− qk)

≤ sup
x∈[qk,qk+1)

(qk+1 − x) (x− qk)

=

(
qk+1 −

qk + qk+1

2

)(
qk + qk+1

2
− qk

)
=

∆2

4
=

R2

(2B − 1)
2 .

This completes the proof.
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D Gaussian embeddings: Application of equalization to vector quantizers

In this section, we show a result on how Gaussian embeddings help in reducing the ℓ2-quantization
error of a uniformly dithered vector quantizer. We consider a clipped version of the uniform scalar
quantizer with bit-budget B described in §2.1 and App. C. In order to quantize a vector x ∈ Rd
with ∥x∥2 ≤ R using a uniform scalar quantizer (as described above), the quantization operation is
applied to each coordinate of the vector independently, i.e.,

QR(x) = [QR(x1), . . . ,QR(xd)]. (17)
Here, the subscript B is dropped because the bit-budget is evident from the context. Furthermore,
since ∥x∥2 ≤ R implies xi ∈ [−R,+R] for every i ∈ [d], the quantizer QR does not saturate. From
Lemma C.1, the expected quantization error is given by,

E ∥QR(x)− x∥22 =
∑
i∈[d]

E
[
(QR(xi)− xi)

2
]
≤ R2d

(2B − 1)
2 . (18)

Quantizing Gaussian embeddings: Suppose instead of quantizing x ∈ Rd directly, we quantize
u = Sx ∈ Rm, where S ∈ Rm×d with Sij ∼ N

(
0, 1

m

)
. Note that for every j ∈ [m], we have

uj ∼ N
(
0, 1

m ∥x∥
2
2

)
. Since uj can be anything in (−∞,+∞), there is a finite probability that the

uniform scalar quantizer might get saturated. For this reason, for any scalar u ∈ (−∞,+∞), we
define the clipped uniformly dithered quantizer with clipping parameter t as follows:

Q(u) =


Qt(u) if |u| ≤ t

t if u > t

−t if u < −t.
(19)

The dynamic range of the quantizer is parameterized by t, which is to be chosen appropriately. Note
that it is just for this section for the purposes of illustration, that we choose the clipped variant of
the quantizer. In LPLR, we choose the dynamic range to be high enough so in practice it remains
unsaturated with a very high probability. The following proposition upper bounds the quantization
error of quantizing Gaussian embeddings.

Proposition D.1. For a given vector x ∈ Rd with ∥x∥ ≤ R, the clipped uniformly dithered quantizer
described in (19) with t = R√

m
satisfies

E ∥Q(Sx)− Sx∥22 ≤
R2

(2B − 1)
2 +

R2
√
2√

πe
,

where the expectation is over the randomness in the construction of S and the quantization dither.

Proof. Since {ui}i∈[m] are independently and identically distributed, let us denote the distribution as

f(u) = 1
σ
√
2π

e−
u2

2σ2 , where σ =
∥x∥2

2

m . The expected quantization error for the clipped quantizer is
then given by,

ES,Qt

[
(Q(u)− u)

2
2

]
=

∫
|u|≤t

EQt

[
(Q(u)− u)

2
2

]
f(u)du+ 2

∫
u>t

(t− u)
2
f(u)du (20)

Here, the expectation is over the stochasticity of the quantization dither, as well as the random matrix
S. The factor of 2 in the second term appears due to symmetry of clipping and that of Gaussian
distribution. Using (18), the first term on the R.H.S. can be upper bounded as,∫

|u|≤t
EQt

[
(Q(u)− u)

2
2

]
f(u)du ≤ t2

(2B − 1)
2

∫
|u|≤t

f(u)du ≤ t2

(2B − 1)
2 . (21)

To analyze the second term, note that,
1

σ
√
2π

∫ ∞

t

(t− u)2e−
u2

2σ2 du =
1

2

(
σ2 + t2

)(
1− erf

(
t

σ
√
2

))
− σt√

2π
e−

t2

2σ2 ≜ Ψ(t, σ), (22)

where erf(z) denotes the error function defined as,

erf(z) =
2√
π

∫ x

0

e−x
2

dx (23)
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Simple calculation would show,
∂Ψ(t, σ)

∂σ

=σ

(
1− erf

(
t

σ
√
2

))
− σt√

2π
e−

t2

2σ2 +
t√
2π

(
1 +

t2

σ2

)
e−

t2

2σ2 − t√
2π

e−
t2

2σ2 − t3

σ2
√
2π

e−
t2

2σ2

=σ

(
1− erf

(
t

σ
√
2

))
≥ 0. (24)

Since ∂Ψ(t,σ)
∂σ ≥ 0, Ψ(t, σ) is a non-decreasing function of σ. Since σ2 =

∥x∥2
2

m ≤ R2

m , we have the
upper bound,

2

∫
u>t

(t− u)
2
f(u)du ≤

(
R2

m
+ t2

)(
1− erf

(
t
√
m

R
√
2

))
− Rt

√
2√

πm
e−

mt2

2R2

=

(
R2

m
+ t2

)
erfc

(
t
√
m

R
√
2

)
− Rt

√
2√

πm
e−

mt2

2R2 , (25)

where erfc(z) = 1− erf(z) is the complementary error function.

Quantization error of a scalar Gaussian sketch: Since x ∈ Rd with ∥x∥2 ≤ R, let s ∼ N (0, 1
mId).

We first consider the quantization of x⊤s, and upper bound the error E
[(
Q(x⊤s)− x⊤s

)2
2

]
. Clearly,

x⊤s ∼ N (0, R2

m ). Consequently, using (21) and (25), for any t ≥ 0, we have,

E
[(
Q(x⊤s)− x⊤s

)2
2

]
≤ t2

(2B − 1)
2 +

(
R2

m
+ t2

)
erfc

(
t
√
m

R
√
2

)
− Rt

√
2√

πm
e−

mt2

2R2

(i)

≤ t2

(2B − 1)
2 +

(
R2

m
+ t2

)
R
√
2

t
√
πm

e−
mt2

2R2 − Rt
√
2√

πm
e−

mt2

2R2

=
t2

(2B − 1)
2 +

R3
√
2

m3/2t
√
π
e−

mt2

2R2 . (26)

Here, (i) follows from the upper bound erfc(z) ≤ e−z2

√
πz

from Karagiannidis and Lioumpas [27].

Quantization error of a vector Gaussian sketch: We now consider for any t ≥ 0, the expected
quantization error for x ∈ Rd with ∥x∥2 ≤ R and S ∈ Rm×d with Sij ∼ N

(
0, 1

m

)
. Each row of S

now independently plays the role of s in (26). Using (26), the vector quantization error is simply m
times the scalar quantization error, and is now given by,

E ∥Q(Sx)− Sx∥22 ≤
mt2

(2B − 1)
2 +

R3
√
2

t
√
πm

e−
mt2

2R2 . (27)

Choice of dynamic range t: Setting t = R√
m

in (27) yields,

E ∥Q(Sx)− Sx∥22 ≤
R2

(2B − 1)
2 +

R2
√
2√

πe
. (28)

This completes the proof.

Note that since E[S⊤S] is an identity matrix, an estimate x̂ of x can be recovered from Q(Sx) as
S⊤Q(Sx). We can use the O(1) bound on ∥Q(Sx)− Sx∥2 to get a bound on ∥S⊤Q(Sx)− x∥2 as
follows:

∥S⊤Q(Sx)− x∥2 ≤ ∥Q(Sx)− Sx∥2 + ∥S⊤Q(Sx)∥2 − ∥Q(Sx)∥2 + ∥x∥2 − ∥Sx∥2

≤ ∥Q(Sx)− Sx∥2 + ∥S⊤Q(Sx)∥2 + ∥x∥2

≤ ∥Q(Sx)− Sx∥2 +R2(σ2
max(S) + 1) (29)

From properties of random Gaussian matrices, we know that σ2
max(S) ≤ d

m with high probability.
Hence, the error ∥S⊤Q(Sx)− x∥2 only depends on the aspect ratio d/m, and not the dimension d
directly. Although the reconstruction error ∥S⊤Q(Sx)− x∥2 scales as d/m, it does not necessarily
increase with d if we choose the sketch size m to be proportional to d, i.e., m = O(d).
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Despite this, Gaussian embeddings are not used practically for vector quantization because S is
dense matrix and computing Sx entails a complexity of O(d2). The entries of S themselves are
floating point numbers that have to be stored in full precision, hence this defeats the whole purpose
of quantizing x using fewer bits. However, this is not an issue for matrix compression because in
LPLR, we do not explicitly compute the S⊤Q(SA) anywhere. In other words, the effects of S in
the first low-rank factor is nullified by the second low-rank factor. Unlike vector quantization, the
corresponding sketch size m for LPLR only needs to be the same order as the inherent rank k, which
can be much smaller than min{n, d}, i.e., the dimensions of the matrix being compressed.

E Dynamic range of quantizers

We now derive high probability upper bounds on the maximum magnitude of the input to uniform
quantizers Q and Q′. Choosing these upper bounds to be the dynamic range of the uniform scalar
quantizers will ensure that the quantizer remains unsaturated with a high probability, which is our
desired regime of operation.

E.1 Quantization for the first low-rank factor

We first look at the choice of dynamic range for the quantizer Q, which is used to obtain the first
low-rank factor. The input to the quantizer is AS ∈ Rn×m where A ∈ Rn×d and S ∈ Rd×m, and
the entries of S are i.i.d. as Sij ∼ N

(
0, 1

m

)
. Lemma E.1 below gives a high probability upper bound

on the max norm of AS. This probability is computed over the randomness in the construction of S.

Lemma E.1. (Max norm of AS) Given matrix A ∈ Rn×d with bounded row norms, i.e.,
∥∥a(i)∥∥ ≤ R,

and S ∈ Rd×m with entries distributed as Sij
i.i.d.∼ N

(
0, 1

m

)
, with probability exceeding 1− ϵ

8nR2 ,
the max norm of AS satisfies,

∥AS∥max ≤ R

√
2 log

(
16R2n2m

ϵ

)
m

. (30)

Proof. Since (AS)ij = s⊤j a
(i), where a(i) ∈ Rd is the ith row of A and sj ∈ Rd is the jth column

of S, we have (AS)ij ∼ N
(
0,

∥ai∥2
2

m

)
. Using Lemma B.8 and an application of union bound gives,

Pr
(∣∣∣(AS)ij

∣∣∣ ≥ t
)
≤ 2e

− mt2

2∥a(i)∥2
2 ≤ 2e−

mt2

2R2 . (31)

A subsequent application of union bound over all the entries of AS yields,

Pr (∥AS∥max ≥ t) ≤ 2nme−
mt2

2R2 . (32)

Setting t = R

√
2 log

(
16R2n2m

ϵ

)
m in the above completes the proof.

E.2 Quantization for the second low-rank factor

We now obtain a high-probability upper bound on the max norm of Q(AS)†A, which is the input to
the second quantizer Q′. Let us define Q to be the event that the quantizer Q does not saturate. From
Lemma E.1, Q occurs with a sufficiently high probability. An appropriate choice of dynamic range
for Q′ will ensure that conditioned on the event that Q occurs, the quantizer Q′ also does not saturate
with a high probability. The following lemma states this formally.

Lemma E.2. (Max norm of Q(AS)
†
A) Let our input matrix A ∈ Rn×d have non-zero singular

values σ1, . . . , σk, σk+1, . . . , σr, where r = rank(A), and bounded row norms
∥∥a(i)∥∥ ≤ R. Let

κ(A) = σ1/σr and κ(Ak) = σ1/σk respectively be the condition numbers of A and the best rank-k
approximation of A, and for some small ϵ > 0, let us denote

t =

√
2 log

(
32nR2

ϵ

)
m

, κ = min

κ(A),
κ(Ak)

1− σk+1

σk

(√
γ+1+t√
γ−1−t

)
 , (33)
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where γ = d/m is the aspect ratio of the sketching matrix S ∈ Rd×m with Sij
i.i.d.∼ N

(
0, 1

m

)
.

Furthermore, suppose the dynamic range of the quantizer Q is set to R

√
2 log

(
16R2n2m

ϵ

)
m as dictated

by Lemma E.1, and suppose for some absolute constant C, the bit-budget B satisfies,

B ≥ log2

 4CR

max
{
σr, σk − σk+1

(√
γ+1+t√
γ−1−t

)}
log 2

(√
γ + 1 + t/

√
2

√
γ − 1− t

)√
2 log

(
16R2n2m

ϵ

)
+ 1

 .

(34)
Then, we have,∥∥Q(AS)†A

∥∥
max
≤ 2κ
√
γ − 1− t

with probability exceeding 1− ϵ

4nR2
. (35)

Proof. We have the following chain of inequalities:∥∥∥Q(AS)
†
A
∥∥∥
max

(i)

≤
∥∥∥Q(AS)

†
A
∥∥∥
2

(ii)

≤
∥∥∥Q(AS)

†
∥∥∥
2
σ1(A), (36)

where (i) and (ii) follow from Lemmas B.3 and B.4 respectively. We now need to upper bound∥∥∥Q(AS)
†
∥∥∥
2
, which is done as follows:∥∥∥Q(AS)
†
∥∥∥
2

(i)
= (σmin (Q (AS)))

−1
= (σmin (AS+E))

−1
(ii)

≤ (σmin(AS)− ∥E∥2)
−1 (37)

Here, E = Q(AS) − AS ∈ Rn×m is the quantization error matrix from Q, (i) follows because
the singular values of Q(AS)

† are inverses of the singular values of Q(AS) (assuming Q(AS) is
invertible), and (ii) follows from Lemma B.5.

Lower bounding σmin(AS): It now suffices to derive the a lower bound on σmin(AS), which we
do next. We derive two different lower bounds, either of which could be tighter depending on the
singular value profile of A. The final lower bound will be the maximum of both.

For the first lower bound, let A = UΣV⊤ be the full singular value decomposition of A, where
U ∈ Rn×n, Σ ∈ Rn×d, and V ∈ Rd×d. Then, denoting S̃ = V⊤S, we have,

σmin(AS) = σmin (AkS+ (A−Ak)S)
(i)

≥ σmin(AkS)− ∥(A−Ak)S∥2
(ii)

≥ σmin(AkS)− σk+1 ∥S∥2 , (38)
where Ak is the best rank-k approximation of A. Here, once again, (i) follows from Lemma B.5 and
(ii) follows from Lemma B.4. In order to further lower bound σmin(AkS), let us denote the SVD
of Ak as Ak = UΣkV

⊤
k . Since the best rank-k approximation is obtained by retaining the top-k

singular values of A and zeroing out the rest, we have U ∈ Rn×n, Σk ∈ Rn×k and Vk ∈ Rd×k.
Let us further denote S̃ = V⊤

k S. Then we have

σmin (AkS) = σmin

(
UΣkV

⊤
k S
)
= σmin

(
UΣkS̃

)
(i)
= σmin

(
ΣkS̃

) (ii)

≥ σkσmin(S̃), (39)

where (i) follows from Lemma B.6, and (ii) follows from Lemma B.4. Note that the (i, j)th entry of
S̃ is S̃ij = v⊤

i sj , where vi is the ith column of Vk. Clearly, S̃ij is a Gaussian random variable with

mean, E
[
S̃ij

]
=
∑
ℓ Vℓi E[Sℓj ] = 0, and variance, Var

(
S̃ij

)
=
∑
ℓ V 2

ℓiVar (Sℓj) = 1
m

∑
ℓ V

2
ℓi =

1
m , where the last equality follows from the fact that the columns of Vk are orthonormal. In other
words, the entries of S̃ ∈ Rd×m are distributed according to S̃ij ∼ N

(
0, 1

m

)
. Using (39), (38) can

be further lower bounded as

σmin(AS) ≥ σkσmin(S̃)− σk+1 ∥S∥2
(i)
= σkσmin(S)− σk+1 ∥S∥2 , (40)

where (i) once again follows from the rotation invariance of spectrum, i.e., Lemma B.6.

On the other hand, let r = rank (A) and σr by the smallest non-zero singular value of A. Then,
A = UΣV⊤ = UΣrV

⊤
r and using the same arguments as in (39), we also have

σmin (AS) = σmin

(
UΣrV

⊤
r S
)
= σmin

(
ΣrV

⊤
r S
)
≥ σrσmin (S) . (41)
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Combining (40) and (41), we get
σmin (AS) ≥ max{σrσmin (S) , σkσmin(S)− σk+1 ∥S∥2} (42)

All we are left with now is to utilize the concentration bounds on the singular values of S. As a
consequence of Lemma B.10 and recalling γ = d/m, with probability exceeding 1− 2e−

mt2

2 ,√
γ − 1− t ≤ σmin (S) ≤ ∥S∥2 ≤

√
γ + 1 + t. (43)

Substituting this in (42), with probability exceeding 1− 2e−
mt2

2 ,
σmin(AS) ≥ max {σr (

√
γ − 1− t) , σk (

√
γ − 1− t)− σk+1 (

√
γ + 1 + t)} . (44)

Upper bounding ∥E∥2: Finally, conditioned on the eventQ, the entries of E are bounded. Choosing
the dynamic range of Q as dictated by the upper bound on ∥AS∥max in Lemma E.1, we have, with
probability exceeding 1− ϵ

8nR2 ,

|Eij | ≤ ∆ =
2R

(2B − 1)

√
2 log

(
16R2n2m

ϵ

)
m

for all i ∈ [n] and j ∈ [m]. (45)

Since Eij is a bounded w.h.p., it is also subgaussian w.h.p. (ref. eq. (16)) with subgaussian norm
given by,

∥Eij∥ψ2
≤ ∆

log 2
=

2R

(log 2) (2B − 1)

√
2 log

(
16R2n2m

ϵ

)
m

. (46)

From Lemma B.12 we get for some absolute constant C,

∥E∥2 ≤
2CR

(√
d+
√
m+ t̃

)
(2B − 1) log 2

√
2 log

(
16R2n2m

ϵ

)
m

w.p. exceeding 1− ϵ

8nR2
− 2e−t̃

2

or, ∥E∥2 ≤
2CR

(√
γ + 1 + t̃

)
(2B − 1) log 2

√
2 log

(
16R2n2m

ϵ

)
w.p. exceeding 1− ϵ

8nR2
− 2e−mt̃

2

.

(47)

Completing the proof: Finally, combining (36), (37), (44) and (47), we get with probability exceed-
ing 1− ϵ

8nR2 − 2e−
mt2

2 − 2e−mt̃
2

,∥∥Q(AS)†A
∥∥
max
≤ σ1 [max{σr (

√
γ − 1− t) , σk (

√
γ − 1− t)− σk+1 (

√
γ + 1 + t)} (48)

−
2CR

(√
γ + 1 + t̃

)
(2B − 1) log 2

√
2 log

(
16R2n2m

ϵ

)]−1

≤ σ1√
γ − 1− t

[
max

{
σr, σk − σk+1

(√
γ + 1 + t
√
γ − 1− t

)}

− 2CR

(2B − 1) log 2

(√
γ + 1 + t̃
√
γ − 1− t

)√
2 log

(
16R2n2m

ϵ

)]−1

=
σ1√

γ − 1− t

[
µ− 2CR

(2B − 1) log 2

(√
γ + 1 + t̃
√
γ − 1− t

)√
2 log

(
16R2n2m

ϵ

)]−1

,

(49)

where we denote µ = max
{
σr, σk − σk+1

(√
γ+1+t√
γ−1−t

)}
. Let us choose our bit-budget B of quantizer

Q to be such that it satisfies ∥E∥2 ≤
µ
2 , i.e.,

B ≥ log2

(
4CR

µ log 2

(√
γ + 1 + t̃
√
γ − 1− t

)√
2 log

(
16R2n2m

ϵ

)
+ 1

)
. (50)

Then, ∥∥Q(AS)†A
∥∥
max
≤ 2σ1(√

γ − 1− t
)
µ

(51)
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Setting

t =

√
2 log

(
32nR2

ϵ

)
m

and, t̃ =

√
log
(
32nR2

ϵ

)
m

=
t√
2
, (52)

it follows that with probability exceeding 1− ϵ
4nR2 ,∥∥Q(AS)†A

∥∥
max
≤ 2
√
γ − 1− t

min

κ(A),
κ(Ak)

1− σk+1

σk

(√
γ+1+t√
γ−1−t

)
 (53)

This completes the proof.

F Sketched least squares with quantized response

Since the approximation error guarantees of sketched least squares with quantized response might be
a problem of independent interest, this is a standalone section, and the notations used in this section
are independent of the rest of the paper.

Consider the generalized least squares problem
X∗ = arg min

x∈Rp×q

∥ΦX−Y∥2F , (54)

where Φ ∈ Rℓ×p and Y ∈ Rℓ×q . The sketched variant of (54) with quantized response is given by,
X̃ = arg min

X∈Rp×q

∥GΦX−Q(GY)∥2F , (55)

where G ∈ Rm×ℓ is a Gaussian sketch matrix with entries are distributed as Gij ∼ N
(
0, 1

m

)
, and

Q ≡ QR,B is the uniformly dithered quantizer as described in (1). We assume that the dynamic range
R ≥ ∥GY∥max so that Q is unsaturated. The solution of (55) can be obtained in closed form as,

X̃ = (GΦ)†Q(GY) (56)

The following lemma provides a characterization of the accuracy of X̃ with respect to the original
problem (54).
Lemma F.1. Let G ∈ Rm×ℓ be a random Gaussian matrix with entries distributed as Gij ∼
N
(
0, 1

m

)
, and Q ≡ QR,B be a uniformly dithered quantizer with dynamic range R and bit-budget B.

Furthermore, suppose Φ ∈ Rℓ×p and Y ∈ Rℓ×q be given, and let us denote
X∗ = arg min

X∈Rp×q

∥ΦX−Y∥2F and X̃ = arg min
X∈Rp×q

∥GΦX−Q(GY)∥2F .

Let E = Q(GY)−GY be the quantization error matrix. Then, if R ≥ ∥GY∥max, we have

∥ΦX∗ −Y∥2F ≤ E
∥∥∥ΦX̃−Y

∥∥∥2
F
≤ m− 1

m− r − 1
∥ΦX∗ −Y∥2F +

q∆2

4

σ2
max

σ2
min

m2

(ℓ−m− 1)
,

where r = rank(Φ), and σmax and σmin are the maximum and minimum singular values of Φ
respectively.

Proof. The solution of the generalized least squares problem (54) can be written as:
X∗ = [x∗

1 . . .x
∗
q ], where, x∗

i = arg min
x∈Rp

∥Φx− yi∥2 , (57)

where yi ∈ Rp denote the ith column of Y. Consequently, we will first analyze the standard least
squares problem

x∗ = arg min
x∈Rp

∥Φx− y∥2 , (58)

and generalize the results by concatenating x∗
i to obtain X∗. The sketched variant of (58) with

quantized response is given by,
x̃ = arg min

x∈Rp

∥GΦx−Q(Gy)∥2 . (59)

The solution of (59) is available in closed form as x̃ = (GΦ)†Q(Gy). Let us denote the quantization
error as ϵ ≜ Q(Gy)−Gy ∈ Rm. We then have,

E∥Φx̃− y∥22 = E∥Φ(GΦ)†Q(Gy)− y∥22 = E∥Φ(GΦ)† (Gy + ϵ)− y∥22
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(i)
= E∥Φ(GΦ)†Gy − y∥22 + E∥Φ(GΦ)†ϵ∥22. (60)

Here, (i) follows as the cross term disappears because,
E
[
(Φ(GΦ)†Gy − y)⊤Φ(GΦ)†ϵ

]
= EG

[
(Φ(GΦ)†Gy − y)⊤Φ(GΦ)†EQ[ϵ]

]
= 0, (61)

where the last equality follows from (2), since EQ[ϵ] = 0 when Q is a uniformly dithered quantizer.

Let us denote the quantization error matrix by E = Q(GY)−GY ∈ Rm×q. Generalizing (60) to
the generalized least squares problem by treating each column yi separately and adding, we have,

E
∥∥∥ΦX̃−Y

∥∥∥2
F
= E

∥∥Φ(GΦ)†GY −Y
∥∥2
F
+ E

∥∥Φ(GΦ)†E
∥∥2
F

(i)
=

m− 1

m− r − 1
∥ΦX∗ −Y∥2F + E∥Φ(GΦ)†E∥2F. (62)

Here, (i) follows from known results on the approximation error of sketched generalized least squares
Halko et al. [21], Pilanci [46], and r is the rank of A.

Upper bounding E∥Φ(GΦ)†E∥2F: The remainder of the proof concerns upper bounding the final
term in (62). Since ∥X∥2F = Tr

[
X⊤X

]
for any matrix X, using the cyclic property of trace,

E
∥∥Φ(GΦ)†E

∥∥2
F
= E

[
Tr
(
E⊤ ((GΦ)†

)⊤
Φ⊤Φ(GΦ)†E

)]
= E

[
Tr
((

(GΦ)†
)⊤

Φ⊤Φ(GΦ)†EE⊤
)]

= EG

[
Tr
((

(GΦ)†
)⊤

Φ⊤Φ(GΦ)†EQ

[
EE⊤])] (63)

Since R ≥ ∥GY∥max, from (2), the (i, j)th-entry of the quantization error matrix E satisfies,

E [Eij ] = 0, and Var(Eij) ≤
∆2

4
=

R2

(2B − 1)
2 . (64)

So,

E
[(
EE⊤)

ij

]
=

q∑
k=1

E [EikEjk] =

{
q Var(Eik) ≤ q∆2

4 for i = j

0 for i ̸= j.
(65)

In other words, EQ

[
EE⊤] is a diagonal matrix whose diagonal elements are upper bounded by q∆2

4 .

Let us denote Λ =
(
(GΦ)†

)⊤
Φ⊤Φ(GΦ)†. Then, (63) simplifies to,

EG

[
Tr
(
Λ · EQ

[
E⊤E

])]
= EG

[
m∑
i=1

Λii
(
EQ

[
E⊤E

])
ii

]
≤ q∆2

4
EG [Tr(Λ)] . (66)

Furthermore,

EG [Tr (Λ)] = EG

[∥∥Φ(GΦ)†
∥∥2
F

] (i)

≤ EG

[∥∥(GΦ)†
∥∥2
F

]
σ2
max (Φ)

= EG

[
Tr

[(
GΦΦ⊤G⊤

)−1
]]

σ2
max (Φ)

(ii)

≤ σ2
max(Φ)

σ2
min(Φ)

Tr
(
E
[(
GG⊤)−1

])
(iii)
=

σ2
max

σ2
min

m2

(ℓ−m− 1)
. (67)

Here, (i) follows from Lemma B.1, (ii) is consequence of Lemma B.2, and (iii) follows from Lemma
B.9. Combining (63), (66) and (67) yields,

E
∥∥Φ(GΦ)†E

∥∥2
F
≤ q∆2

4

σ2
max

σ2
min

m2

(ℓ−m− 1)
. (68)

This completes the proof.
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G LPLR algorithm: Approximation error analysis

To prove Thm. 3.2, we will first prove the result when both quantizers Q and Q′ are unsaturated.
We first prove Lemma G.1, which gives us an upper bound on the approximation error when Q and
Q′ are unsaturated. Since we can ensure that they remain unsaturated with high probability (with
appropriate choices of dynamic ranges), the final approximation error upper bound in Thm. 3.2 is
slightly worse than Lemma G.1.

Lemma G.1. Let our matrix A ∈ Rn×d have non-zero singular values σ1, . . . , σk, σk+1, . . . , σr,
where r = rank(A), and bounded row norms

∥∥a(i)∥∥ ≤ R. Let κ(A) = σ1/σr and κ(Ak) = σ1/σk
respectively be the condition numbers of A and the best rank-k approximation of A, and let us denote

t =

√
2 log

(
32nR2

ϵ

)
m

, κ = min

κ(A),
κ(Ak)

1− σk+1

σk

(√
γ+1+t√
γ−1−t

)
 ,

for some sufficiently small ϵ that satisfies 0 < ϵ ≤ 4nR2κ(A)2

γ . Here γ = d/m is the aspect ratio

of the sketching matrix S ∈ Rd×m with Sij
i.i.d.∼ N

(
0, 1

m

)
. Suppose the dynamic ranges of the

quantizers Q and Q′ are set to R

√
2 log

(
16R2n2m

ϵ

)
m and 2κ√

γ−1−t as dictated by Lemmas E.1 and E.2
respectively, and suppose their bit-budgets B and B′ satisfy

B ≥ max{B1,B2} and, B′ ≥ log2

(
4Rκ(√

γ − 1− t
)√nd

ϵ
+ 1

)
,

where,

B1 = log2

 2Rκ(Ak)
√
2n√

ϵ
(
γ − 1− 1

m

)
√
log

(
16R2n2m

ϵ

)
+ 1

 ,

and B2 is equal to

log2

 4CR

max
{
σr, σk − σk+1

(√
γ+1+t√
γ−1−t

)}
log 2

(√
γ + 1 + t/

√
2

√
γ − 1− t

)√
2 log

(
16R2n2m

ϵ

)
+ 1

 .

Furthermore, let E be the event that both quantizers Q and Q′ are unsaturated. Then,

E
[∥∥Q(AS)Q′ (Q(AS)†A

)
−A

∥∥2
F
1E

]
≤
(
1 +

k

m− k − 1

)
∥Ak −A∥2F +

3ϵ

4
,

where 1(·) is the indicator function.

Proof. Let us denote the quantization error matrices from Q and Q′ as E ∈ Rn×m and E′ ∈ Rm×d

respectively, i.e., E = Q(AS)−AS and E′ = Q′ (Q(AS)†A
)
−Q(AS)†A. Since 1E = 1 implies

that Q and Q′ are unsaturated, E[E] = 0 and E[E′] = 0. Then,
E
[
∥Q(AS)Q′ (Q(AS)†A

)
−A∥2F 1E

]
= ES

[
EQ,Q′

[
∥Q(AS)Q′ (Q(AS)†A

)
−A∥2F

]
1E
]
.

Then,
EQ,Q′

[
∥Q(AS)Q′ (Q(AS)†A

)
−A∥2F

]
1E

= EQ,Q′
[
∥Q(AS)

(
Q(AS)†A+E′)−A∥2F

]
1E

(i)
= EQ

[
∥Q(AS)Q(AS)†A−A∥2F

]
1E︸ ︷︷ ︸

T1

+EQ,Q′
[
∥Q(AS)E′∥2F

]
1E︸ ︷︷ ︸

T2

(69)

The cross terms disappear in (i) because,

EQ,Q′

[
Tr
[(
Q(AS)Q(AS)†A−A

)⊤
Q(AS)E′

]]
1E

= Tr
(
EQ

[(
Q(AS)Q(AS)†A−A

)⊤
Q(AS) EQ′ [E′]

])
1E

(ii)
= 0, (70)

where, (ii) follows from EQ′ [E′] = 0 as the quantizer Q′ is unbiased when unsaturated.
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Analyzing the term T1: Recall that Ak is the best rank-k approximation of A obtained using
computing the full-SVD of A and subsequently making all singular values of A less than σk as 0.
We next analyze the first term in (69) as

∥Q(AS)Q(AS)†A−A∥2F ≤ ∥Q(AS)(AkS)
†Ak −A∥2F

= ∥A⊤
k (S

⊤A⊤
k )

†Q(S⊤A⊤)−A⊤∥2F
= ∥A⊤

k X̃−A⊤∥2F, (71)

where X̃ ≜ arg minX∥S⊤A⊤
kX−Q(S⊤A⊤)∥2F. This minimization problem is a Gaussian sketched

variant of a generalized least squares problem with the response matrix quantized as seen in App. F.
Corresponding to the notations in App. F, here we have S⊤ instead of G, A⊤

k instead of Φ, and A⊤

instead of Y. As a consequence of Lemma F.1, we have the upper bound,

EQ

[
∥Q(AS)Q(AS)†A−A∥2F

]
1E ≤

m− 1

m− k − 1
∥Ak −A∥2F +

n∆2

4

σ2
1

σ2
k

m2

(d−m− 1)
(72)

Analyzing the term T2: The term T2 can be written as,

EQ,Q′

[
∥Q(AS)E′∥2F

]
1E

= EQ,Q′

[
∥(AS+E)E′∥2F

]
1E

= EQ′

[
∥ASE′∥2F

]
1E + EQ,Q′

[
∥EE′∥2F

]
1E +Tr

(
EQ′

[
(ASE′)

⊤ EQ[E] E′
])

1E

(i)
= E

[
∥ASE′∥2F

]
1E + E

[
∥EE′∥2F

]
1E , (73)

where, (i) follows once again since EQ′ [E′]1E = 0. The first term in (73) can be rewritten as

E
[
∥ASE′∥2F 1E

]
= E

[
Tr
(
E′⊤S⊤A⊤ASE′)1E

]
= E

[
Tr
(
S⊤A⊤ASE′E′⊤)1E

]
= Tr

(
ES

[
S⊤A⊤AS EQ′

[
E′E′⊤]1E

])
= ES

[
Tr
(
S⊤A⊤AS EQ′

[
E′E′⊤]1E

)]
(74)

Similar to (65) in the proof of Lemma F.1, EQ′
[
E′E′⊤]1E is a diagonal matrix with

EQ′

[(
E′E′⊤)

ij

]
1E =

d∑
k=1

EQ′
[
E′
ikE

′
jk

]
1E =

{
d ·Var(Eik) ≤ d∆′2

4 for i = j

0 for i ̸= j.
(75)

Let us denote Γ ≜ S⊤A⊤AS. Then using the fact that 1E ≤ 1, we get,

ES

[
Tr
(
Γ EQ′

[
E′E′⊤]1E

)]
= ES

[
m∑
i=1

Γii
(
EQ′

[
E′E′⊤])

ii

]
1E

≤ d∆′2

4
Tr (ESΓ)

=
d∆′2

4
Tr
(
A⊤AES

[
SS⊤]) (i)

=
d∆′2

4
∥A∥2F . (76)

Here, the last equality follows as ES

[
SS⊤] = Id. This is because the (i, j)th entry of ES

[
SS⊤] is

E
[(
SS⊤)

ij

]
=

m∑
k=1

E [SikSjk] =

{
m E

[
S2
ik

]
= m Var (Sik) = 1 for i = j∑m

i=1 E[Sik]E[Sjk] = 0 for i ̸= j.

Furthermore, the second term EQ,Q′
∥∥EE′⊤

∥∥2
F
1E can be simplified as follows,

EQ,Q′ ∥EE′∥2F 1E = EQ,Q′
[
Tr
(
E′⊤E⊤EE′)]1E = EQ

[
Tr
(
E⊤E EQ′

(
E′E′⊤))]1E

(i)
= EQ

[
m∑
i=1

(
E⊤E

)
ii

(
EQ′

[
E′E′⊤])

ii

]
1E

31



(ii)

≤ d∆′2

4

m∑
i=1

EQ

[(
E⊤E

)
ii

]
1E

≤ nmd∆2∆′2

16
. (77)

Here, (i) follows since EQ′
[
E′E′⊤]1E is a diagonal matrix as seen before, and (ii) follows from the

upper bound derived on E
[(
E⊤E

)
ii

]
1E in (65).

Combining all of the above, the approximation error of our low-precision low-rank approximation
scheme can be upper bounded as,

E∥Q(AS)Q′ (Q(AS)†A
)
−A∥2F

≤ (m− 1)

(m− k − 1)
∥Ak −A∥2F︸ ︷︷ ︸

T3

+
n∆2

4

σ2
1

σ2
k

m2

(d−m− 1)︸ ︷︷ ︸
T4

+
d∆′2

4
∥A∥2F︸ ︷︷ ︸

T5

+
nmd∆2∆′2

16︸ ︷︷ ︸
T6

. (78)

Here, the first term T3 is the low-rank approximation error, whereas the remaining terms, i.e., T4,T5

and T6 appear due to quantization. We now analyze each of them separately.

Analyzing the term T4: Since we choose the dynamic range of quantizer Q to be R

√
2 log

(
16R2n2m

ϵ

)
m

(ref. Lemma E.1), we have
n∆2

4

σ2
1

σ2
k

m2

(d−m− 1)
≤ 2nmR2κ(Ak)

2

(2B − 1)
2
(d−m− 1)

log

(
16R2n2m

ϵ

)
(i)

≤ ϵ

4
. (79)

Here, we can ensure (i) holds true, i.e., that this term does not exceed ϵ/4 if we set the bit-budget B
to satisfy,

B ≥ log2

 2Rκ(Ak)
√
2n√

ϵ
(
γ − 1− 1

m

)
√
log

(
16R2n2m

ϵ

)
+ 1

 . (80)

Analyzing the term T5: Since we choose the dynamic range of the quantizer Q′ to be equal to
2κ√
γ−1−t (ref. to Lemma E.2), where t and κ are defined as in (33), we have

d∆′2

4
∥A∥2F ≤

ndR2

(2B′ − 1)
2

4κ2(√
γ − 1− t

)2 (i)

≤ ϵ

4
, (81)

where we have made use of Asm. 3.1. Once again, in order to ensure (i), it suffices to choose the
bit-budget B′ to be

B′ ≥ log2

(
4Rκ(√

γ − 1− t
)√nd

ϵ
+ 1

)
(82)

Note that in order for the dynamic range of quantizer Q′ to hold true in Lemma E.2, we also require
B to satisfy (34), i.e.,

B ≥ log2

 4CR

max
{
σr, σk − σk+1

(√
γ+1+t√
γ−1−t

)}
log 2

(√
γ + 1 + t/

√
2

√
γ − 1− t

)√
2 log

(
16R2n2m

ϵ

)
+ 1

 .

(83)

Analyzing the term T6: Using bit-budgets B and B′ as in (80) and (82), the final term is

nmd
∆2

4

∆′2

4
≤ nmd

ϵ

4

(
γ − 1− 1

m

nmκ(Ak)

)
ϵ

4ndR2
≤ ϵ2γ

16nR2κ(Ak)2

(i)

≤ ϵ

4
(84)

Here, (i) is ensured by choosing ϵ to be sufficiently small – specifically, ϵ ≤ 4nR2κ(A)2

γ .
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Tying it all together: Combining (79), (81), and (84), with the bit-budgets set appropriately as
dictated by (80), (83), and (82), eq. (78) simplifies to

E∥Q(AS)Q′ (Q(AS)†A
)
−A∥2F ≤

(
1 +

k

m− k − 1

)
∥Ak −A∥2F +

3ϵ

4
. (85)

This completes the proof.

G.1 LPLR approximation error: Proof of Thm. 3.2

We now formally state our main approximation result.

Theorem G.2. (LPLR approximation error (formal)) Let our matrix A ∈ Rn×d have non-zero
singular values σ1, . . . , σk, σk+1, . . . , σr, where r = rank(A), and bounded row norms

∥∥a(i)∥∥ ≤ R.
Let κ(A) = σ1/σr and κ(Ak) = σ1/σk respectively be the condition numbers of A and the best
rank-k approximation of A, and let us denote

t =

√
2 log

(
32nR2

ϵ

)
m

, κ = min

κ(A),
κ(Ak)

1− σk+1

σk

(√
γ+1+t√
γ−1−t

)
 ,

for some sufficiently small ϵ that satisfies 0 < ϵ ≤ 4nR2κ(A)2

γ . Here γ = d/m is the aspect ratio

of the sketching matrix S ∈ Rd×m with Sij
i.i.d.∼ N

(
0, 1

m

)
. Suppose the dynamic ranges of the

quantizers Q and Q′ are set to R

√
2 log

(
16R2n2m

ϵ

)
m and 2κ√

γ−1−t respectively, and suppose their
bit-budgets B and B′ satisfy

B ≥ max{B1,B2} and, B′ ≥ log2

(
4Rκ(√

γ − 1− t
)√nd

ϵ
+ 1

)
,

where,

B1 = log2

 2Rκ(Ak)
√
2n√

ϵ
(
γ − 1− 1

m

)
√
log

(
16R2n2m

ϵ

)
+ 1

 ,

and B2 is equal to

log2

 4CR

max
{
σr, σk − σk+1

(√
γ+1+t√
γ−1−t

)}
log 2

(√
γ + 1 + t/

√
2

√
γ − 1− t

)√
2 log

(
16R2n2m

ϵ

)
+ 1

 .

Then, the low-precision and low-rank factorization returned by Alg. 1 satisfies

E ∥LR−A∥2F ≤
(
1 +

k

m− k − 1

)
∥Ak −A∥2F + ϵ, (86)

where the expectation is over the random sketching matrix S, as well as the inherent stochasticity
from quantizers Q and Q′.

Proof. For the purpose of analysis, we assume that Alg. 1 returns L = 0 and R = 0 if either
quantizer Q or Q′ gets saturated. In practical implementation, it can easily be checked if either
quantizer Q or Q′ gets saturated or not, and the algorithm can be repeated again with a new realization
of the sketching matrix S and stochastic quantizer Q. Since the choice of dynamic ranges for Q and
Q′ ensures that they remain unsaturated with a high probability, “reasonably few" realizations of S
would suffice to get at least one good realization in which Q and Q′ are unsaturated.

However, in what follows, we assume that that if either quantizer Q or Q′ gets saturated, then the
algorithm returns 0 as an estimate of A, resulting in a Frobenius norm error of ∥A∥F. Since this
happen with a very small probability, we show that its contribution to the expected Frobenius norm
error of Alg. 1 is small as well. With this in mind, the expected approximation error can be written as

E ∥LR−A∥2F = E
[∥∥∥Q(AS)Q′

(
Q(AS)

†
A
)
−A

∥∥∥2
F
1E

]
+ E

[
∥A∥2F 1EC

]
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(i)

≤ E
[∥∥∥Q(AS)Q′

(
Q(AS)

†
A
)
−A

∥∥∥2
F
1E

]
+ nR2 Pr (1EC ) . (87)

Inequality (i) follows from Asm. 3.1 and the fact that the expectation of indicator function of an
event is the probability of the event. From Lemma G.1, the first term can be upper bounded as:

E
[∥∥Q(AS)Q′ (Q(AS)†A

)
−A

∥∥2
F
1E

]
≤
(
1 +

k

m− k − 1

)
∥Ak −A∥2F +

3ϵ

4
. (88)

Since Lemmas E.1 and E.2 state the probabilities of quantizers Q and Q′ being unsaturated, Pr (1EC )
can be obtained by an application of union bound as

Pr (1EC ) ≤ ϵ

8nR2
+

ϵ

8nR2
=

ϵ

4nR2
. (89)

Then, (87) can be written as:

E ∥LR−A∥2F ≤
(
1 +

k

m− k − 1

)
∥Ak −A∥2F + ϵ. (90)

This completes the proof.

G.2 Informal version of Thm. G.2

From Thm. G.2, we can get a (simplified) asymptotic dependence of the bit-budgets B and B′. We
have B ≥ max{B1,B2},

B1 = log2

 2Rκ(Ak)
√
2n√

ϵ
(
γ − 1− 1

m

)
√

log

(
16R2n2m

ϵ

)
+ 1


(i)
=

1

2
log2

(
κ(Ak)

2nm

ϵ (d−m− 1)
log

(
mn2

ϵ

))
(ii)
=

1

2
log2

(
κ(Ak)

2

ϵ

nm

d
log

(
mn2

ϵ

))
, (91)

where we have ignored the constant terms inside the log2(·) in (i) and considered the regime m≪ d
in (ii). Furthermore, B2 is

B2 = log2

 4CR

max
{
σr, σk − σk+1

(√
γ+1+t√
γ−1−t

)}
log 2

(√
γ + 1 + t/

√
2

√
γ − 1− t

)√
2 log

(
16R2n2m

ϵ

)
+ 1


(i)
=

1

2
log2

(
1

(max {σr, σk − σk+1c′})2
log

(
mn2

ϵ

))
. (92)

where c′ is approximately a constant. Here, (i) follows because when m≪ d, we have
√
γ + 1 + t
√
γ − 1− t

=

√
d+
√
m+O

(√
log
(
n
ϵ

))
√
d−
√
m−O

(√
log
(
n
ϵ

)) = O(1). (93)

Similarly,
√
γ+1+t/

√
2√

γ−1−t = O(1). Comparing (91) and (92), we have

B ≥ 1

2
log2

(
κ(Ak)

2

ϵ

nm

d
log

(
mn2

ϵ

))
. (94)

Moreover, the bit-budget B′ is

B′ ≥ log2

(
4Rκ(√

γ − 1− t
)√nd

ϵ
+ 1

)

(i)
= log2

 κ
√
ndm

√
ϵ
(√

d−
√
m−

√
n
ϵ

)
 (ii)

=
1

2
log2

(
κ2nm

ϵ

)
, (95)

where once again, to get (i) we have ignored the constants, and (ii) holds true when m ≪ d.
Moreover, suppose n ≈ d (if they are not equal, then the total bit-budget should be computed as a
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weighted average, since the L has nm elements and the second low-rank factor has md elements).
Then, for some constant c3 that depends on R, the total bit-budget is

B ≥ 1

4
log2

(
c23κ(Ak)

2κ2

ϵ2
n2m2

d
log

(
mn2

ϵ

))
=

1

2
log2

(
c3κ(Ak)κ

ϵ

nm√
d

√
log

(
mn2

ϵ

))
.

Furthermore, the dynamic range of quantizer Q is c1

√
log(n

ϵ )
m and that of quantizer Q′ when m≪ d

is
2κ

√
γ − 1− t

= 2

√
m

d
min

{
κ(A),

κ(Ak)

1− c4
σk+1

σk

}
,

for constants c1, c2 and c4 that depend on R, where additive logarithmic terms are ignored with
respect to m. This gives us the result in Thm. 3.2.

H Direct-SVD Quantization: Approximation error analysis

In this section, we consider the baseline scheme for obtaining low-precision low-rank factorization
by first computing the optimal low-rank factorization using SVD and individually quantizing the
low-rank factors with uniform scalar quantizers. For any given matrix, A ∈ Rn×d, we compute the
full SVD as A = UΣV⊤. The best (unquantized) rank-k approximation can be obtained from this
by considering the singular vectors corresponding to the top-k singular vectors, and constructing the
matrix Ak = (UΣ)kV

⊤
k . Here, (UΣ)k ∈ Rn×k is the sub-matrix obtained by selecting the first

k columns of UΣ, and V⊤
k ∈ Rk×d is the sub-matrix obtained by selecting the first k rows of V⊤.

Subsequently, these low-rank factors are quantized with uniform scalar quantizers Q and Q′ (having
bit-budgets B and B′ respectively). The algorithm pseudocode is given in Alg. 2 and we provide an
upper bound to the approximation error in Proposition H.1. We use the notation Ũ = UΣ ∈ Rn×d.

Algorithm 2: Direct-SVD quant.: Directly quantizing the optimal low-rank factorization

Input :Matrix A ∈ Rn×d, target rank k, Quantizers Q and Q′

Output :Factorization: LR where L ∈ Rn×k, R ∈ Rk×d

1 Compute SVD and get A = UΣV⊤

2 Extract the top-k left (scaled) and right singular vectors and get Ũk = (UΣ)k and V⊤
k

3 Quantize the factors individually and get L← Q(Ũk) and R← Q′ (Vk)

4 return L ∈ Rn×k,R ∈ Rk×d

Proposition H.1. (Direct-SVD quant. approximation error (formal)) Let our matrix A ∈ Rn×d
have maximum singular value σ1. Suppose our target rank is k, and for some small ϵ such that
0 < ϵ ≤ 3kσ2

1 , the dynamic ranges of quantizers Q and Q′ are set to be σ1 and 1 respectively with
bit-budgets satisfying

B ≥ log2

(
σ1

√
3nk

ϵ
+ 1

)
and, B′ ≥ log2

(
σ1

√
3dk

ϵ
+ 1

)
.

Then, the factorization returned by direct-SVD quantization in Alg. 2 satisfies
E ∥LR−A∥2F ≤ ∥Ak −A∥2F + ϵ,

where the expectation is over the inherent stochasticity of the quantizers Q and Q′.

Proof. Let us denote the quantization error matrices as E = Q(Ũk)− Ũk and E′ = Q′(V⊤
k )−V⊤

k .
The approximation error is given by

E
∥∥∥Q(Ũk)Q

′ (V⊤
k

)
−A

∥∥∥2
F
= E

∥∥∥Q(Ũk)
(
V⊤
k +E′)−A

∥∥∥2
F

(i)
= E

∥∥∥Q(Ũk)V
⊤
k −A

∥∥∥2
F︸ ︷︷ ︸

T1

+E
∥∥∥Q(Ũk)E

′
∥∥∥2
F︸ ︷︷ ︸

T2

, (96)
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where the cross term disappears in (i) because when Q′ is unsaturated, EQ′ [E′] = 0, and

EQ′

[
Tr

((
Q(Ũk)V

⊤
k −A

)⊤
Q(Ũk) EQ′ [E′]

)]
= 0.

Analyzing term T1: The first term in (96) can be upper bounded as

E
∥∥∥Q(Ũk)V

⊤
k −A

∥∥∥2
F
= E

∥∥∥(Ũk +E
)
V⊤
k −A

∥∥∥2
F

(i)
= ∥Ak −A∥2F + E

∥∥EV⊤
k

∥∥2
F
. (97)

Here, in (i), we utilize the fact that Ak = ŨkV
⊤
k and the cross term vanishes once again as quantizer

Q is unsaturated, i.e., E[E] = 0 and,

Tr

((
ŨkV

⊤
k −A

)⊤
EQ[E]V⊤

k

)
= 0.

The second term in (97) is

E
∥∥EV⊤

k

∥∥2
F
= E

[
Tr
(
EV⊤

k VkE
⊤)] (i)

= Tr
(
E[E⊤E]

)
=

k∑
i=1

(
E[E⊤E]

)
ii

(ii)

≤ nk
∆2

4
. (98)

Here, (i) follows because V⊤
k Vk = Ik, and (ii) follows because E[E⊤E] is a diagonal matrix as(

E[E⊤E]
)
ij
=

n∑
ℓ=1

E[EℓiEℓj ] =

{
n Var

(
E2
ℓi

)
≤ n∆2

4 for i = j,∑n
ℓ=1 E[Eℓi]E[Eℓj ] = 0 for i ̸= j.

(99)

So, (97) can be upper bounded as

E
∥∥∥Q(Ũk)V

⊤
k −A

∥∥∥2
F
≤ ∥Ak −A∥2F + nk

∆2

4
. (100)

Analyzing term T2: We upper bound the second term in (96) as

E
∥∥∥Q(Ũk)E

′
∥∥∥2
F
= E

∥∥∥(Ũk +E
)
E′
∥∥∥2
F

(i)
= E

∥∥∥ŨkE
′
∥∥∥2
F
+ E ∥EE′∥2F , (101)

where the cross term vanishes in (i) because EQ′

[
Tr
(
(ŨkE

′)⊤ EQ[E] E′
)]

= 0. The first term in
(101) is

E
∥∥∥ŨkE

′
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F
= E

[
Tr
(
E′⊤Ũ⊤

k ŨkE
′
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= E
[
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Ũ⊤
k ŨkE
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(i)
=
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(
Ũ⊤
k Ũk

)
ii

(
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)
ii
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4
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(
Ũ⊤
k Ũk

)
ii

(iii)

≤ d
∆′2

4

k∑
i=1

σ2
i ≤ dkσ2

1

∆′2

4
. (102)

Here, (i) and (ii) follow because E[E′E′⊤] is a diagonal matrix following the same argument as (99),
i.e., (

E[E′E′⊤]
)
ij
=

n∑
ℓ=1

E[E′
iℓE

′
jℓ] =

{
d Var

(
E′2
iℓ

)
≤ d∆′2

4 for i = j,∑d
ℓ=1 E[E′

iℓ]E[E′
jℓ] = 0 for i ̸= j.

(103)

Finally, (iii) follows because the ith column of Ũk is σiui, so
(
Ũ⊤
k Ũk

)
ii

= (σiui)
⊤
(σiui) =

σ2
i ∥ui∥

2
2 = σ2

i .

The second term in (101) is
E ∥EE′∥2F = E

[
Tr
(
E′⊤E⊤EE′)]

= EQ

[
Tr
(
E⊤E EQ′

[
E′E′⊤])]

(i)
= EQ

[
k∑
i=1

(
E⊤E

)
ii

(
EQ′ [E′E′⊤]

)
ii

]
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≤ d∆′2

4

k∑
i=1

EQ

[(
E⊤E

)
ii

] (ii)

≤ k
n∆2

4

d∆′2

4
. (104)

Here, (i) and (ii) follow because E[E′E′⊤] and E[E⊤E] are diagonal, which can be seen using
similar arguments as in (99). So, (101) is

E
∥∥∥Q(Ũk)Q

′ (V⊤
k

)
−A

∥∥∥2
F
≤ ∥Ak −A∥2F + nk

∆2

4
+ dkσ2

1

∆′2

4
+ ndk

∆2

4

∆′2

4
. (105)

Choice of dynamic range for quantizers Q and Q′: Using Lemma B.3, the max-norm of the input
to the first quantizer can be upper bounded as ∥Ũk∥max ≤ ∥Ũk∥2 = σ1, and that of the second
quantizer is ∥Vk∥max ≤ ∥Vk∥2 = 1. Therefore, choosing the dynamic ranges of Q and Q′ to be σ1

and 1 respectively, would ensure that they remain unsaturated, and (105) can be rewritten as

E
∥∥∥Q(Ũk)Q

′ (V⊤
k

)
−A

∥∥∥2
F
≤ ∥Ak −A∥2F +

nkσ2
1

(2B − 1)
2 +

dkσ2
1

(2B′ − 1)
2 + k

n∆2

4

d∆′2

4
. (106)

Choice of bit-budgets B and B′: For a given ϵ > 0, suppose we choose B and B′ so that

B ≥ log2

(
σ1

√
3nk

ϵ
+ 1

)
and, B′ ≥ log2

(
σ1

√
3dk

ϵ
+ 1

)
.

With such a choice, the second and third terms in (106) would not exceed ϵ. Furthermore, the last
term of (106) will be

k
n∆2

4

d∆′2

4
≤ dnk

ϵ

3nk

ϵ

3dkσ2
1

≤ ϵ

3
whenever ϵ < 3kσ2

1 .

This completes the proof.

Prop. H.1 states that when n ≈ d, in order to guarantee an ϵ-additive error approximation with
respect to the best rank-k approximation, we require (ignoring constant multiplicative factors inside
the log2(·)), a total budget (ref. to Tab. 1) of

n

n+ d
B+

d

n+ d
B′ ≈ 1

2
(B + B′) =

1

2
log2

(
3kσ2

1

ϵ

√
nd

)
bits. (107)

I LPLR-SVD algorithm: Approximation error analysis

LPLR-SVD is a simpler variant of our LPLR algorithm in which instead of approximating the range
space of A using AS, we compute the full-SVD of A ∈ Rn×d as A = UΣV⊤, where U ∈ Rn×n,
Σ ∈ Rn×d, and V ∈ Rd×d. The pseudocode of LPLR-SVD is provided in Alg. 3.

We first compute the SVD, A = UΣV⊤, followed by quantizing the singular vectors corresponding
to the top-k singular values, scaled by the singular values. We denote Ũ = UΣ, and the sub-matrix
formed by the first k columns as Ũk. We quantize this basis to get L = Q(Ũk) as the first low-rank
factor. Subsequently, we project the columns of A onto the subspace spanned by this quantized basis,
i.e., we solve the optimization problem

min
W∈Rk×d

∥∥∥Q(Ũk)W −A
∥∥∥2
F

(108)

The solution of this is given by W∗ = Q(Ũk)
†A. The second low rank factor is given by quantizing

it again as R = Q′
(
Q(Ũk)

†A
)

.

The following result provides an upper bound on the approximation error of LPLR-SVD. The proof
of this result is similar to Thm. 3.2 without the complications arising from Gaussian concentration.

Theorem I.1. (LPLR-SVD approximation error (formal)) Let our matrix A ∈ Rn×d have singular
values σ1 ≥ . . . σk ≥ . . ., and bounded row norms

∥∥a(i)∥∥ ≤ R. Let κ(Ak) = σ1/σk be the condition
number of the Ak, i.e., the best rank-k approximation of A. Consider some sufficiently small ϵ that
satisfies 0 < ϵ < 4kσ2

1 , and suppose the dynamic ranges of quantizers Q and Q′ are set to be σ1 and
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Algorithm 3: LPLR-SVD: LPLR factorization via Singular Value Decomposition

Input :Matrix A ∈ Rn×d, target rank k, Quantizers Q and Q′

Output :Factorization: LR where L ∈ Rn×k, R ∈ Rk×d

1 Compute SVD and get A = UΣV⊤

2 Extract the top-k left to get an approximate basis for the range space of A as Ũk = (UΣ)k
3 Quantize and get an approximate basis Q(Ũk)

4 Find W∗ = arg minW

∥∥∥Q(Ũk)W −A
∥∥∥2
F

5 Quantize W∗ using quantizer Q′ to get Q′(W∗)

6 return Low-rank and low-precision approximation LR where L = Q(Ũk), R = Q′(W∗).

2κ(Ak) respectively. Furthermore, suppose the bit-budgets of the quantizers satisfy

B ≥ max {B1,B2} and, B′ ≥ log2

(
4σ1κ(Ak)

√
dk

ϵ
+ 1

)
,

where,

B1 = log2

(
2σ1

√
nk

ϵ
+ 1

)
,

and,

B2 = log2

(
4Cκ(Ak)

log 2

(
√
n+
√
k +

√
log

(
8nR2

ϵ

))
+ 1

)
.

Then, the low-precision and low-rank factorization returned by Alg. 3 satisfies
E ∥LR−A∥2F ≤ ∥Ak −A∥2F + ϵ.

Proof. Since the solution of W∗ = arg minW

∥∥∥Q(Ũk)W −A
∥∥∥2
F

is available in closed form as

W∗ = Q(Ũk)
†A, we have the low rank factorization as A ≈ Q(Ũk)Q

′
(
Q(Ũk)

†A
)

. Let us denote

the quantization error matrices as E′ = Q′
(
Q(Ũk)

†A
)
−Q(Ũk)

†A, and E = Q(Ũk)− Ũk. Then,
the approximation error is

E
∥∥∥Q(Ũk)Q

′
(
Q(Ũk)

†A
)
−A

∥∥∥2
F
= E

∥∥∥Q(Ũk)
(
Q(Ũk)

†A+E′
)
−A

∥∥∥2
F

= E
∥∥∥Q(Ũk)Q(Ũk)

†A−A
∥∥∥2
F︸ ︷︷ ︸

T1

+E
∥∥∥Q(Ũk)E

′
∥∥∥2
F︸ ︷︷ ︸

T2

, (109)

where the last equality follows the because the quantizer Q′ is unbiased. Here, the E is over the
stochasticity of the quantizers. This decomposition is similar to (69), and can be treated similarly.
The term T1 consists of the low rank approximation error and the error from the first quantizer,
whereas the term T2 consists of error from the second quantizer. We follow steps similar to the proof
of Lemma G.1 which are detailed below.

Analyzing term T1: Using similar reasoning as (71), this term can be written as

E
∥∥∥Q(Ũk)Q(Ũk)

†A−A
∥∥∥2
F
≤ E

∥∥∥Q(Ũk)Ũ
†
kAk −A

∥∥∥2
F
= E

∥∥∥Q(Ũk)V
⊤
k −A

∥∥∥2
F

(110)

This is the same as (100) in the analysis of direct-SVD quant., and hence can be upper bounded as

E
∥∥∥Q(Ũk)Q(Ũk)

†A−A
∥∥∥2
F
≤ ∥Ak −A∥2F + nk

∆2

4
. (111)

38



Analyzing term T2: This term is again the same as (101) in the analysis of direct-SVD quant., and
can be upper bounded as

E
∥∥∥Q(Ũk)E

′
∥∥∥2
F
≤ dkσ2

1

∆′2

4
+ k

n∆2

4

d∆′2

4
. (112)

Using (111) and (112), we get:

E
∥∥∥Q(Ũk)Q

′
(
Q(Ũk)

†A
)
−A

∥∥∥2
F
≤ ∥Ak −A∥2F + nk

∆2

4︸ ︷︷ ︸
T3

+ dkσ2
1

∆′2

4︸ ︷︷ ︸
T4

+ k
n∆2

4

d∆′2

4︸ ︷︷ ︸
T5

. (113)

Choice of dynamic range for quantizers Q: Since the input to the quantizer is Ũk, we need an
upper bound on ∥Ũk∥max. The ith column of Ũk is (Ũk)i = σiui, where 1 ≤ i ≤ k. From Lemma
B.3,

∥Ũk∥max ≤ ∥Ũk∥2 = σ1. (114)
Note that this upper bound is tight in the worst-case sense, i.e., if we consider all matrices with
bounded spectral norm, we have supX : X=UΣV⊤,∥X∥2≤r∥Ũk∥max = r. Hence, the dynamic range
of quantizer Q is set as σ1.

Choice of dynamic range for quantizers Q′: On the other hand, the input to quantizer Q′ is
Q(Ũk)

†A. We adopt an approach similar to the proof of Lemma E.2 to upper bound the max-norm
of Q(Ũk)

†A as follows:∥∥∥Q(Ũk)
†A
∥∥∥
max

(i)

≤
∥∥∥Q(Ũk)

†A
∥∥∥
2

(ii)

≤
∥∥∥Q(Ũk)

†
∥∥∥
2
σ1, (115)

where (i) and (ii) follow from Lemmas B.3 and B.4 respectively. We upper bound
∥∥∥Q(Ũk)

†
∥∥∥
2

as:∥∥∥Q(Ũk)
†
∥∥∥
2

(i)

≤
(
σmin

(
Q(Ũk)

))−1

=
(
σmin

(
Ũk +E

))−1

(ii)

≤
(
σmin(Ũk)− ∥E∥2

)−1

= (σk − ∥E∥2)
−1. (116)

Here, (i) follows because the singular values of Q(Ũk)
† are inverses of the singular values of Q(Ũk),

and (ii) follows from Lemma B.5.

We are now left with upper bounding ∥E∥2. Since a choice of σ1 for the dynamic range of Q ensures
that quantizer Q remains unsaturated, the entries of E are bounded as:

|Eij | ≤ ∆ =
2σ1

2B − 1
for all i ∈ [n] and j ∈ [k]. (117)

Since Eij is a bounded w.h.p., it is also subgaussian w.h.p. (ref. eq. (16)) with subgaussian norm
given by,

∥E∥ψ2
≤ 2σ1

(2B − 1) log 2
. (118)

From Lemma B.12 we get for some absolute constant C,

∥E∥2 ≤
2Cσ1

(2B − 1) log 2

(√
n+
√
k + t

)
with probability exceeding 1− 2e−t

2

. (119)

Setting t =
√
log
(
8nR2

ϵ

)
, we get:

∥E∥2 ≤
2Cσ1

(2B − 1) log 2

(
√
n+
√
k +

√
log

(
8nR2

ϵ

))
with probability exceeding 1− ϵ

4nR2
.

(120)
Let us choose our bit-budget B of quantizer Q to be such that ∥E∥2 ≤

σk

2 , i.e.,

B ≥ log2

(
4Cκ(Ak)

log 2

(
√
n+
√
k +

√
log

(
8nR2

ϵ

))
+ 1

)
, (121)
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where κ(Ak) = σ1/σk is the condition number of the best rank-k approximation of A. Then, using
(116), we have:∥∥∥Q(Ũk)

†A
∥∥∥
max
≤ 2κ(Ak) with probability exceeding 1− ϵ

4nR2
. (122)

So, if we choose the dynamic range of quantized Q′ to be 2κ(Ak), it will remain unsaturated with
probability exceeding 1− ϵ

4nR2 , provided that the bit-budget of first quantizer satisfies B satisfies
(121).

Choice of bit-budgets B and B′: Referring to (113), the term T3 is,

nk
∆2

4
= nk

σ2
1

(2B − 1)
2 ≤

ϵ

4
if B ≥ log2

(
2σ1

√
nk

ϵ
+ 1

)
. (123)

The term T4 is:

dkσ2
1

∆′2

4
= dkσ2

1

4κ(Ak)
2

(2B′ − 1)
2 ≤

ϵ

4
if B′ ≥ log2

(
4σ1κ(Ak)

√
dk

ϵ
+ 1

)
. (124)

With the above choices of B and B′, the term T5 is:

ndk
∆2

4

∆′2

4
≤ ndk

ϵ

4nk

ϵ

4dkσ2
1

≤ ϵ

4
if ϵ ≤ 4kσ2

1 . (125)

Tying it all together: Similar to what is done in the proof of Thm. G.2, for the purpose of analysis,
we assume that Alg. 3 returns L = 0 and R = 0 if quantizer Q′ gets saturated. In practical
implementation, it can easily be checked if either quantizer Q or Q′ gets saturated or not, and the
algorithm can be repeated again with a new realization of the stochastic quantizer Q. Since the choice
of dynamic ranges for Q ensures that it remains unsaturated with a high probability, “reasonably few"
realizations would suffice to get at least one good realization in which Q is unsaturated.

However, in what follows, we assume that that if quantizer Q gets saturated, then the algorithm
returns 0 as an estimate of A, resulting in a Frobenius norm error of ∥A∥F. Since this happen with a
very small probability, we show that its contribution to the expected Frobenius norm error of Alg. 3
is small as well. Let us denote the event that quantizer Q is unsaturated as E . Then, the expected
approximation error can be written as

E ∥LR−A∥2F = E
[∥∥∥Q(Ũk)Q

′
(
Q(Ũk)

†A
)
−A

∥∥∥2
F
1E

]
+ E

[
∥A∥2F 1EC

]
(i)

≤ E
[∥∥∥Q(Ũk)Q

′
(
Q(Ũk)

†A
)
−A

∥∥∥2
F
1E

]
+ nR2 Pr (1EC )

(ii)

≤ ∥Ak −A∥2F + nk
∆2

4
+ dkσ2

1

∆′2

4
+ k

n∆2

4

d∆′2

4
+ nR2 Pr (1EC ) , (126)

where inequality (i) follows from Asm. 3.1 and the fact that the expectation of indicator function of
an event is the probability of the event, and (ii) follows from (113). Using appropriate choices of B
and B′ and small enough ϵ, from (122), (123), (124), and (125), we have

E ∥LR−A∥2F ≤ ∥Ak −A∥2F +
ϵ

4
+

ϵ

4
+

ϵ

4
+ nR2 ϵ

4nR2
= ∥Ak −A∥2F + ϵ. (127)

Note that from (123) and (121), the bit-budget of the quantizers must satisfy:

B ≥ max {B1,B2}, and B′ ≥ log2

(
4σ1κ(Ak)

√
dk

ϵ
+ 1

)
(128)

where,

B1 = log2

(
2σ1

√
nk

ϵ
+ 1

)
, (129)

and,

B2 = log2

(
4Cκ(Ak)

log 2

(
√
n+
√
k +

√
log

(
8nR2

ϵ

))
+ 1

)
. (130)

This completes the proof.
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I.1 Informal version of Thm. I.1

Consider n ≈ d. From Thm. I.1, we can get a (simplified) asymptotic dependence of the bit-budgets
B and B′. In what follows, we ignore the constant multiplicative factors inside log2(·). Comparing
the expressions for B1 and B2, we have

B ≥ log2

(
σ1

√
nk

ϵ

)
, (131)

and,

B′ ≥ log2

(
σ1κ(Ak)

√
dk

ϵ

)
. (132)

This gives a total bit-budget of
1

2
log2

(
σ2
1κ(Ak)

k

ϵ

√
nd

)
bits. (133)

J Additional numerical simulations

J.1 Image Compression

In addition to Fig. 1 in the main paper, we also provide additional image compression experiments
on images of different dimensions in Figs. 6, 5, 7, and 8. The values of B and B′ are provided
in the respective captions of these figures. For every image, the sketch size/target rank m and the
bit-budgets B and B′ are chosen so as to ensure parity with a naïve quantizer with bit budget Bnq. In
other words, for an n× d dimensional image, B · nm+B′ ·md = Bnq · nd. The values of n and d
are also provided in the corresponding captions.

For image compression, we also perform a normalize and shift operation of our DSVD/LPLR/LSVD
output in order to adjust the scale and bias of the output image, as described next.

Normalize and shift: Let us denote the factorization obtained from executing DSVD/LPLR/LSVD
on the input matrix X ∈ Rn×d by Y = LR. Then, we can improve the estimate provided by this
factorization by considering αY + βIn×d. The overhead in storing these two additional scalars in
full-precision is negligible when n and d are large. The optimal values of α and β can be found as:

(α∗, β∗) = arg min
α,β

∥αY + βI−X∥2F . (134)

Closed-form expressions for (α∗, β∗) can be obtained by equating the derivatives of
∥αY + βI−X∥2F to zero, and solving the resulting linear equations. Doing this algebra yields,

α∗ =

(
∥Y∥2F −

⟨Y, I⟩2

nd

)−1(
⟨X,Y⟩ − ⟨X, I⟩ ⟨Y, I⟩

nd

)
,

and, β∗ =
⟨X, I⟩
nd

− ⟨Y, I⟩
nd

α∗. (135)

J.2 Wall-clock time for compressing image embeddings

We now report the wall-clock time for computing the low-rank quantized factors via LPLR, LSVD, and
DSVD for embedding compression in Tab. 10. This reinforces the validity of our theoretical assertions
concerning the computational advantage of LPLR when compared to its alternative methods.

J.3 High-resolution figures for Llama weight compression

We now provide higher resolutions figures of Figs. 2a and 2b as Figs. 3 and 4, respec-
tively. The code to reproduce these numerical simulations is available at our github repository
https://github.com/pilancilab/matrix-compressor.
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Figure 3: Comparison of LPLR and LPLR-SVD on LlaMa weight matrices with B = B′ = 8 bits, Bnq = 4
bits, ordered by the original sequence of layers on the “Layer" - axis. We observe consistently better Frobenius
norm error using LPLR and LPLR-SVD, with the exception of specific layers which lend themselves to naïve
quantization.
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Figure 4: Comparison of LPLR and LPLR-SVD on LlaMa weight matrices with B = B′ = Bnq = 4 bits,
ordered by the original sequence of layers on the “Layer" - axis. LPLR and LPLR-SVD demonstrate equivalent
performance on a uniform compression budget of 4 bits, while outperforming naïve quant. on almost all layers.
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Table 10: Comparison of wall-clock time for computing low rank quantized factors via LPLR, LSVD and
DSVD. Each image embedding forms a row of the input matrix, with low rank factors computed for each class
of the input dataset. Bit-budgets used are B = B′ = 8,Bnq = 1. We report mean and standard deviation.

Dataset LPLR DSVD LSVD
CIFAR-10 71± 11 ms 306± 26 ms 312± 8 ms

CIFAR-100 14± 3 ms 51± 3 ms 56± 3 ms

(a) Original image (b) Naïve (0.312) (c) DSVD (0.507) (d) LPLR (0.264) (e) LSVD (0.260)

Figure 5: Compression of Shepp-Logan phantom (a standard test image for medical image reconstruction,
courtesy: Phantominator, PyPI). B = 4, B′ = 8, Bnq = 2,m = 166. Orig. image dim.: 1000× 1000

(a) Original image (b) Naïve (0.508) (c) DSVD (0.508) (d) LPLR (0.311) (e) LSVD (0.301)

Figure 6: Compression of Shepp-Logan phantom (a standard test image for medical image reconstruction,
courtesy: Phantominator, PyPI). B = 4, B′ = 8, Bnq = 1,m = 83. Orig. image dim.: 1000× 1000

(a) Original image (b) Naïve (0.701) (c) DSVD (0.724) (d) LPLR (0.346) (e) LSVD (0.351)

Figure 7: Compression of a Jupiter image showing its Great Red Spot and Ganymede’s shadow (courtesy:
NASA/ESA Hubble Space Telescope). B = 2, B′ = 8, Bnq = 1,m = 110. Orig. image dim.: 1102× 1102

(a) Original image (b) Naïve (0.711) (c) DSVD (0.556) (d) LPLR (0.329) (e) LSVD (0.321)

Figure 8: Compression of an MR image of the human brain (courtesy: User Asnaebsa, Wikipedia). B = 4,
B′ = 8, Bnq = 1,m = 124 maintains parity. Orig. image dim.: 1534× 1433
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K Limitations and further discussions

On uniformly dithered quantizer: We would like to point out that the approximation error upper
bound for our algorithm (derived in Thm. G.2), as well as for the baselines such as direct-SVD
quantization (refer to Prop. H.1) holds true only for randomized rounding, or uniformly dithered
quantizers. Dithering is preferred due to its ability to produce an unbiased estimate of the input. It
offer an advantage by introducing a non-zero probability of quantizing an input to either its ceiling or
floor, resulting in reduced variance when averaging multiple independent realizations. Moreover, the
unbiasedness of the quantizer output simplifies the analysis. In our experiments, we did not observe
any difference while using deterministic rounding instead of dithered rounding.

Comparison with LPLR with direct-SVD and LPLR-SVD: As we see from the numerical eval-
uations (ref. to Tab. 6 and Tab. 7), direct-SVD quant. and LPLR-SVD performs better than our
proposed LPLR algorithm (that computes a Gaussian sketch). Intuitively, one would expect the
performance of LPLR-SVD and LPLR (with Gaussian sketch) to be similar because the core idea
behind both of them is the same – Quantize the first low-rank factor, and then project the columns
of A onto the quantized (first) low-rank factor. For LPLR-SVD the basis being quantized (top-k
singular vectors) is the exact top-k rangefinder (for the column space of A), whereas in LPLR, we
sketch using the Gaussian matrix to get an approximate rangefinder. This sketching error might make
LPLR worse over LPLR-SVD. But because sketching also introduces “equalization effect of the
Gaussian matrices", we can improve the resolution of the uniform scalar quantizers by choosing
a smaller dynamic range. Hence, there is a tradeoff when comparing LPLR and LPLR-SVD – a
tradeoff between sketching error and the quantization error.

Let us now focus on LPLR-SVD and direct-SVD quant. We will extrapolate this intuition to a
comparison between LPLR and direct-SVD quant. The factorization obtained using direct-SVD
quant. is A ≈ Q(Ũk)Q

′(V⊤
k ), where the approximation obtained using LPLR-SVD is A ≈

Q(Ũk)Q
′
(
Q(Ũk)

†A
)

. Here, Ũk is the n × k matrix obtained using the first k columns of UΣ,

where A = UΣV⊤ is the full SVD of A. Let us assume B′ →∞ so that we don’t have to worry
about the second quantizer. Then, we are left to compare the approximations: A ≈ Q(Ũk)V

⊤
k

and A ≈ Q(Ũk)Q(Ũk)
†A. Clearly, the latter has smaller Frobenius norm error because it is the

minima of the minimization problem arg minW

∥∥∥Q(Ũk)W −A
∥∥∥2
F

. So, for B′ →∞, it is evident
that direct-SVD can only perform as good as LPLR-SVD, and not better than that. Furthermore, note
that this difference in performance will be small when the bit-budget of the first quantizer, B is large,
and it will be large when B is small. When B → ∞, this difference will be exactly zero. In other
words, direct-SVD quant. and LPLR-SVD will be the same factorization when B→∞ and B′ →∞.
When both B and B′ are finite, direct-SVD can outperform LPLR-SVD depending on which one out
of Q′

(
Q(Ũk)

†A
)

and Q′(V⊤
k ) is closer to the optimal solution, i.e., Q(Ũk)

†A. A limitation of
our analysis is that we cannot always definitively predict which one will perform better, because we
derive upper bounds on the approximation error.

Comparison of LPLR with naive quantization: In Tables 1 and 2, we have compared LPLR with
other benchmarks. In the column denoting approximation errors, aside from the common quantization
error ϵ present across all rows, DSVD and LPLR introduce an additional term representing the error
from low-rank approximation. Consequently, it might appear that naive quantization consistently
outperforms these methods. However, it’s essential to recognize that compression techniques based
on low-rank factorization hold value exclusively when the matrix being compressed is inherently
low-rank, meaning that ∥Ak − A∥2F starts off as small. If ∥Ak − A∥F = 0, LPLR can achieve
identical error levels as naive quantization, while demanding fewer bits than the latter. In other words,
given the same bit-budget, LPLR can achieve a lower level of error compared to naive quantization.

Matrix compression with and without any computation constraints: In situations where com-
putational resources are limited, employing the naive strategy emerges as the most cost-effective
approach for matrix quantization. Nevertheless, due to its failure to capitalize on a matrix’s inherent
low-rank arrangement, naive quantization may prove considerably suboptimal. As matrices increase
in dimension, accommodating them in memory becomes impractical, rendering approaches like
DSVD or LSVD unviable. In such scenarios, our LPLR method stands as a viable alternative,

44



demanding slightly more computational effort than naive quantization, yet capable of harnessing the
low-rank structure for improved approximation accuracy.

If there is no scarcity of computation resources in being able to compute the SVD, and our goal is to
just compress an input matrix A, then it is possible to compress the matrix with all the strategies, and
choose the best one. However, it must be kept in mind that LPLR provides significant savings with
respect to computational complexity, i.e., O(ndm), compared to LPLR-SVD, which has a complexity
of O(nd2). Consequently, if the matrix being compressed is very large, it might not even be feasible
to do direct-SVD quant. or LPLR-SVD, given the current memory limitations of available GPUs, and
LPLR (with Gaussian sketch) becomes our only option.

Furthermore, a careful examination of Tabs. 6 and 7 shows that even though LPLR-SVD and direct-
SVD quant. have a smaller Frobenius norm error than LPLR, the accuracy and weighted F1 scores
are still comparable. One aspect of quantization that we have not studied in detail is its inherent
regularization effect when testing the performance on test datasets. Whether LPLR leads to a better
regularization effect that the other baselines is an open question that will be studied in future works.

Comparison with existing works on quantized random projections for approximate nearest
neighbor search: Prior works of Li and Li [29] and Li and Li [30] consider the idea of quantized
random projections specifically for the the application of approximate nearest neighbor search.
Although related, the goals of these works are different from matrix compression considered in our
work. These prior works approximate the matrix vector product Ax by Q(A)Q′(S⊤x). For their
setup, in addition to Q(AS), the random matrix S needs to be stored in full-precision, in order to
process an incoming query x. So, their storage requirement is nm quantized and dm full-precision
parameters. In contrast, LPLR stores only the quantized entries of L and R, i.e., m(n+ d) quantized
entries, and A ≈ LRx, implying a smaller storage requirement. Furthermore, since LPLR involves
computation of Rx, where R consists of md quantized values, it can leverage modern advancements
in hardware primitives for speeding up low-precision computations, such as half and mixed-precision
compute.

Extension to streaming settings: LPLR as presented in this paper, is used for compression when the
entire matrix A is available. An interesting extension is to consider a variant of LPLR to streaming
data settings in order to handle new data points. It is possible to do so using sketching based low
rank approximations [66]. The left factor L is updated with the concatenation of an additional row
corresponding to the newly arriving datapoint. The second factor R, which is the solution of a new
least squares minimization problem, can be updated using Woodbury matrix inversion lemma.
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