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Summary

Approximate computation methods with provable performance guarantees are becoming
important and relevant tools in practice. In this chapter, we focus on sketching methods
designed to reduce data dimensionality in computationally intensive tasks. Sketching can
often provide better space, time, and communication complexity trade-offs by sacrificing
minimal accuracy. This chapter discusses the role of information theory in sketching
methods for solving large-scale statistical estimation and optimization problems. We
investigate fundamental lower bounds on the performance of sketching. By exploring
these lower bounds, we obtain interesting trade-offs in computation and accuracy. We
employ Fano’s inequality and metric entropy to understand fundamental lower bounds
on the accuracy of sketching, which is parallel to the information-theoretic techniques
used in statistical minimax theory.

4.1 Introduction

In recent years we have witnessed an unprecedented increase in the amount of avail-
able data in a wide variety of fields. Approximate computation methods with provable
performance guarantees are becoming important and relevant tools in practice to attack
larger-scale problems. The term sketching is used for randomized algorithms designed
to reduce data dimensionality in computationally intensive tasks. In large-scale prob-
lems, sketching allows us to leverage limited computational resources such as memory,
time, and bandwidth, and also explore favorable trade-offs between accuracy and
computational complexity.

Random projections are widely used instances of sketching, and have attracted sub-
stantial attention in the literature, especially very recently in the machine-learning,
signal processing, and theoretical computer science communities [1–6]. Other popular
sketching techniques include leverage score sampling, graph sparsification, core sets,
and randomized matrix factorizations. In this chapter we overview sketching meth-
ods, develop lower bounds using information-theoretic techniques, and present upper
bounds on their performance. In the next section we begin by introducing commonly
used sketching methods.
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This chapter focuses on the role of information theory in sketching methods for
solving large-scale statistical estimation and optimization problems, and investigates
fundamental lower bounds on their performance. By exploring these lower bounds, we
obtain interesting trade-offs in computation and accuracy. Moreover, we may hope to
obtain improved sketching constructions by understanding their information-theoretic
properties. The lower-bounding techniques employed here parallel the information-
theoretic techniques used in statistical minimax theory [7, 8]. We apply Fano’s inequality
and packing constructions to understand fundamental lower bounds on the accuracy of
sketching.

Randomness and sketching also have applications in privacy-preserving queries
[9, 10]. Privacy has become an important concern in the age of information where
breaches of sensitive data are frequent. We will illustrate that randomized sketch-
ing offers a computationally simple and effective mechanism to preserve privacy in
optimization and machine learning.

We start with an overview of different constructions of sketching matrices in Sec-
tion 4.2. In Section 4.3, we briefly review some background on convex analysis and
optimization. Then we present upper bounds on the performance of sketching from an
optimization viewpoint in Section 4.4. To be able to analyze upper bounds, we introduce
the notion of localized Gaussian complexity, which also plays an important role in the
characterization of minimax statistical bounds. In Section 4.5, we discuss information-
theoretic lower bounds on the statistical performance of sketching. In Section 4.6,
we turn to non-parametric problems and information-theoretic lower bounds. Finally,
in Section 4.7 we discuss privacy-preserving properties of sketching using a mutual
information characterization, and communication-complexity lower bounds.

4.2 Types of Randomized Sketches

In this section we describe popular constructions of sketching matrices. Given a sketch-
ing matrix S, we use {si}mi=1 to denote the collection of its n-dimensional rows. Here
we consider sketches which are zero mean, and are normalized, i.e., they satisfy the
following two conditions:

(a) ESTS = Id×d, (4.1)

(b) ES = 0n×d. (4.2)

The reasoning behind the above conditions will become clearer when they are applied
to sketching optimization problems involving data matrices.

A very typical use of sketching is to obtain compressed versions of a large data matrix
A. We obtain the matrix SA ∈ Rm×d using simple matrix multiplication. See Fig. 4.1 for
an illustration. As we will see in a variety of examples, random matrices preserve most
of the information in the matrix A.

4.2.1 Gaussian Sketches

The most classical sketch is based on a random matrix S ∈ Rm×n with i.i.d. standard
Gaussian entries. Suppose that we generate a random matrix S ∈Rm×n with entries drawn
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d

Figure 4.1 Sketching a tall matrix A. The smaller matrix SA ∈ Rm×d is a compressed version of
the original data A ∈ Rn×d .

from i.i.d. zero-mean Gaussian random variables with variance 1/m. Note that we have
ES = 0m×d and also ESTS =

∑m
i=1EsisT

i =
∑m

i=1 Id(1/m) = Id. Analyzing the Gaussian
sketches is considerably easier than analyzing sketches of other types, because of the
special properties of the Gaussian distribution such as rotation invariance. However,
Gaussian sketches may not be the most computationally efficient choice for many data
matrices, as we will discuss in the following sections.

4.2.2 Sub-Gaussian Sketches

A generalization of the previous construction is a random sketch with rows, drawn from
i.i.d. sub-Gaussian random variables. In particular, a zero-mean random vector s ∈ Rn is
1-sub-Gaussian if, for any u ∈ Rn, we have

P[〈s, u〉 ≥ ε‖u‖2
] ≤ e−ε

2/2 for all ε ≥ 0. (4.3)

For instance, a vector with i.i.d. N(0,1) entries is 1-sub-Gaussian, as is a vector with
i.i.d. Rademacher entries (uniformly distributed over {−1,+1}). In many models of
computation, multiplying numbers by random signs is simpler than multiplying by
Gaussian variables, and only costs an addition operation. Note that multiplying by
−1 only amounts to flipping the sign bit in the signed number representation of the
number in the binary system. In modern computers, the difference between addition
and multiplication is often not appreciable. However, the real disadvantage of sub-
Gaussian and Gaussian sketches is that they require matrix–vector multiplications with
unstructured and dense random matrices. In particular, given a data matrix A ∈ Rn×d,
computing its sketched version SA requires O(mnd) basic operations using classical
matrix multiplication algorithms, in general.

4.2.3 Randomized Orthonormal Systems

The second type of randomized sketch we consider is the randomized orthonormal
system (ROS), for which matrix multiplication can be performed much more efficiently.

In order to define an ROS sketch, we first let H ∈ Rn×n be an orthonormal matrix with
entries Hi j ∈ [(−1/

√
n), (1/

√
n)]. Standard classes of such matrices are the Hadamard
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or Fourier bases, for which matrix–vector multiplication can be performed in O(n logn)
time via the fast Hadamard or Fourier transforms, respectively. For example, an n× n
Hadamard matrix H =Hn can be recursively constructed as follows:

H2 =
1
√

2

[
1 1
1 −1

]
, H4 =

1
√

2

[
H2 H2

H2 −H2

]
, H2t = H2⊗H2⊗ · · ·⊗H2︸�����������������︷︷�����������������︸

Kronecker product t times

.

From any such matrix, a sketching matrix S ∈ Rm×n from a ROS ensemble can be
obtained by sampling i.i.d. rows of the form

sT =
√

neT
j HD with probability 1/n for j = 1, . . . ,n,

where the random vector e j ∈ Rn is chosen uniformly at random from the set of all
n canonical basis vectors, and D = diag(r) is a diagonal matrix of i.i.d. Rademacher
variables r ∈ {−1,+1}n, where P[ri = +1] = P[ri = −1] = 1

2 ∀i. Alternatively, the rows
of the ROS sketch can be sampled without replacement and one can obtain similar
guarantees to sampling with replacement. Given a fast routine for matrix–vector
multiplication, ROS sketch SA of the data A ∈ Rn×d can be formed in O(nd logm) time
(for instance, see [11]).

4.2.4 Sketches Based on Random Row Sampling

Given a probability distribution {p j}nj=1 over [n] = {1, . . . ,n}, another choice of sketch
is to randomly sample the rows of the extended data matrix A a total of m times with
replacement from the given probability distribution. Thus, the rows of S are independent
and take on the values

sT =
eT

j
√

p j
with probability p j for j = 1, . . . ,n,

where e j ∈ Rn is the jth canonical basis vector. Different choices of the weights {p j}nj=1
are possible, including those based on the leverage scores of A. Leverage scores are
defined as

p j :=
‖u j‖22∑n
i=1 ‖ui‖22

,

where u1,u2, ...,un are the rows of U ∈ Rn×d, which is the matrix of left singular vectors
of A. Leverage scores can be obtained using a singular value decomposition A =UΣVT.
Moreover, there also exist faster randomized algorithms to approximate the leverage
scores (e.g., see [12]). In our analysis of lower bounds to follow, we assume that the
weights are α-balanced, meaning that

max
j=1,...,n

p j ≤
α

n
(4.4)

for some constant α that is independent of n.
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4.2.5 Graph Sparsification via Sub-Sampling

Let G = (V,E) be a weighted, undirected graph with d nodes and n edges, where V and
E are the set of nodes and the set of edges, respectively. Let A ∈ Rn×d be the node–edge
incidence matrix of the graph G. Suppose we randomly sample the edges in the graph a
total of m times with replacement from a given probability distribution over the edges.
The obtained graph is a weighted subgraph of the original, whose incidence matrix is
SA. Similarly to the row sampling sketch, the sketch can be written as

sT =
eT

j
√

p j
with probability p j for j = 1, . . . ,n .

We note that row and graph sub-sampling sketches satisfy the condition (4.1). However,
they do not satisfy the condition (4.2). In many computational problems on graphs, spar-
sifying the graph has computational advantages. Notable examples of such problems
are solving Laplacian linear systems and graph partitioning, where sparsification can be
used. We refer the reader to Spielman and Srivastava [13] for details.

4.2.6 Sparse Sketches Based on Hashing

In many applications, the data matrices contain very few non-zero entries. For sparse
data matrices, special constructions of the sketching matrices yield greatly improved
performance. Here we describe the count-sketch construction from [14, 15]. Let
h : [n]→ [m] be a hash functions from a pair-wise independent family.1 The entry Si j of
the sketch matrix is given by σ j if i = h( j), and otherwise it is zero, where σ ∈ {−1,+1}n
is a random vector containing 4-wise independent variables. Therefore, the jth column
of S is non-zero only in the row indexed by h( j). We refer the reader to [14, 15] for
the details. An example realization of the sparse sketch is given below, where each col-
umn contains a single non-zero entry which is uniformly random sign ±1 at a uniformly
random index: ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 1 0 0 0
−1 0 0 0 0 1 0

0 0 0 0 −1 0 0
0 0 1 0 0 0 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Figure 4.2 shows examples of different randomized sketching matrices S ∈ Rm×n, where
m = 64,n = 1024, which are drawn randomly. We refer readers to Nelson and Nguyên
[16] for details on sparse sketches.

4.3 Background on Convex Analysis and Optimization

In this section, we first briefly review relevant concepts from convex analysis and
optimization. A set C ⊆ Rd is convex if, for any x,y ∈ C,

tx+ (1− t)y ∈ C for all t ∈ [0,1] .

1 A hash function is from a pair-wise independent family if P[h( j) = i,h(k) = l] = 1/m2 and P[h( j) = i]
= 1/m for all i, j,k, l.
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(a) Gaussian sketch (b) ±1 random sign sketch 

(d) sparse sketch(c) ROS sketch

Figure 4.2 Different types of sketching matrices: (a) Gaussian sketch, (b) ±1 random sign sketch,
(c) randomized orthogonal system sketch, and (d) sparse sketch.

Let X be a convex set. A function f : X→ R is convex if, for any x,y ∈ X,

f (tx+ (1− t)y) ≤ t f (x)+ (1− t) f (y) for all t ∈ [0,1] .

Given a matrix A ∈ Rn×d, we define the linear transform of the convex set C as AC =
{Ax |x ∈ C}. It can be shown that AC is convex if C is convex.

A convex optimization problem is a minimization problem of the form

min
x∈C

f (x), (4.5)

where f (x) is a convex function and C is a convex set. In order to characterize optimality
of solutions, we will define the tangent cone of C at a fixed vector x∗ as follows:

TC(x∗) =
{
t(x−x∗) | t ≥ 0 and x ∈ C} . (4.6)

Figures 4.3 and 4.4 illustrate2 examples of tangent cones of a polyhedral convex set in
R

2. A first-order characterization of optimality in the convex optimization problem (4.5)
is given by the tangent cone. If a vector x∗ is optimal in (4.5), it holds that

zT ∇ f (x∗) ≥ 0, ∀z ∈ TC(x∗) . (4.7)

We refer the reader to Hiriart-Urruty and Lemaréchal [17] for details on convex analysis,
and Boyd and Vandenberghe [18] for an in-depth discussion of convex optimization
problems and applications.

2 Note that the tangent cones extend toward infinity in certain directions, whereas the shaded regions in
Figs. 4.3 and 4.4 are compact for illustration.
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KC xLS

Figure 4.3 A narrow tangent cone where the Gaussian complexity is small.

KC

xLS

Figure 4.4 A wide tangent cone where the Gaussian complexity is large.

4.4 Sketching Upper Bounds for Regression Problems

Now we consider an instance of a convex optimization problem. Consider the least-
squares optimization

x∗ = argmin
x∈C
‖Ax−b‖2︸�����︷︷�����︸

f (x)

, (4.8)

where A ∈Rn×d and b ∈Rn are the input data andC⊆Rd is a closed and convex constraint
set. In statistical and signal-processing applications, it is typical to use the constraint
set to impose structure on the obtained solution x. Important examples of the convex
constraint C include the non-negative orthant, �1-ball for promoting sparsity, and the
�∞-ball as a relaxation to the combinatorial set {0,1}d.

In the unconstrained case when C = Rd, a closed-form solution exists for the solution
of (4.8), which is given by x∗ = (ATA)−1ATb. However, forming the Gram matrix ATA
and inverting using direct methods such as QR decomposition, or the singular value
decomposition, typically requires O(nd2) + O(nd min(n,d)) operations. Faster iterative
algorithms such as the conjugate gradient (CG) method can be used to obtain an approx-
imate solution in O(ndκ(A)) time, where κ(A) is the condition number of the data matrix
A. Using sketching methods, it is possible to obtain even faster approximate solutions,
as we will discuss in what follows.

In the constrained case, a variety of efficient iterative algorithms have been developed
in the last couple of decades to obtain the solution, such as proximal and projected
gradient methods, their accelerated variants, and barrier-based second-order methods.
Sketching can also be used to improve the run-time of these methods.
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4.4.1 Over-Determined Case (n > d )

In many applications, the number of observations, n, exceeds the number of unknowns,
d, which gives rise to the tall n× d matrix A. In machine learning, it is very common
to encounter datasets where n is very large and d is of moderate size. Suppose that we
first compute the sketched data matrices SA and Sb from the original data A and b, then
consider the following approximation to the above optimization problem:

x̂ = argmin
x∈C
‖SAx−Sb‖22 . (4.9)

After applying the sketch to the data matrices, the sketched problem has dimensions
m×d, which is lower than the original dimensions when m < n. Note that the objective
in the above problem (4.9) can be seen as an unbiased approximation of the original
objective function (4.8), since it holds that

E‖SAx−Sb‖22 = ‖Ax−b‖22

for any fixed choice of A, x, and b. This is a consequence of the condition (4.1), which
is satisfied by all of the sketching matrices considered in Section 4.2.

4.4.2 Gaussian Complexity

Gaussian complexity plays an important role in statistics, empirical process theory, com-
pressed sensing, and the theory of Banach spaces [19–21]. Here we consider a localized
version of the Gaussian complexity, which is defined as follows:

Wt(C) := Eg

[
sup
z∈C
‖z‖2≤t

|〈g, z〉|
]
, (4.10)

where g is a random vector with i.i.d. standard Gaussian entries, i.e., g ∼ N(0,In). The
parameter t > 0 controls the radius at which the random deviations are localized. For a
finite value of t, the supremum in (4.10) is always achieved since the constraint set is
compact.

Analyzing the sketched optimization problem requires us to control the random devi-
ations constrained to the set of possible descent directions {x−x∗ | x ∈ C}. We now define
a transformed tangent cone at x∗ as follows:

K = {tA(x−x∗) | t ≥ 0 and x ∈ C} ,

which can be alternatively defined as ATC(x∗) using the definition given in (4.6). The
next theorem provides an upper bound on the performance of the sketching method for
constrained optimization based on localized Gaussian complexity.

theorem 4.1 Let S be a Gaussian sketch, and let x̂ be the solution of (4.9). Suppose
that m ≥ c0W1(K)2/ε2, where c0 is a universal constant, then it holds that

‖A(̂x−x∗)‖2
f (x∗)

≤ ε ,
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and consequently we have

f (x∗) ≤ f (̂x) ≤ f (x∗)(1+ ε) . (4.11)

As predicted by the theorem, the approximation ratio improves as the sketch dimen-
sion m increases, and converges to one as m→∞. However, we are often interested in the
rate of convergence of the approximation ratio. Theorem 4.1 characterizes this rate by
relating the geometry of the constraint set to the accuracy of the sketching method (4.9).
As an illustration, Figs. 4.3 and 4.4 show narrow and wide tangent cones in R2, respec-
tively. The proof of Theorem 4.1 combines the convex optimality condition involving
the tangent cone in (4.7) with results on empirical processes, and can be found in Pilanci
and Wainwright [22]. An important feature of Theorem 4.1 is that the approximation
quality is relative to the optimal value f (x∗). This is advantageous when f (x∗) is small,
e.g., the optimal value can be zero in noiseless signal recovery problems. However, in
problems where the signal-to-noise ratio is low, f (x∗) can be large, and hence negatively
affects the approximation quality. We illustrate the implications of Theorem 4.1 on some
concrete examples in what follows.

Example 4.1 Unconstrained Least Squares For unconstrained problems, we have K =
range(A), i.e., the tangent cone is equal to the range space of the data matrix A. In order
to apply Theorem 4.1, we need the following lemma about the Gaussian complexity of
a subspace.

lemma 4.1 Let Q be a subspace of dimension q. The Gaussian complexity of Q satisfies

Wt(Q) ≤ t
√

q .

Proof Let U be an orthonormal basis for the subspace Q. We have the following rep-
resentation: L = {Ux |x ∈ Rq}. Consequently the Gaussian complexity W1(Q) can be
written as

Eg

[
sup

x
‖Ux‖2≤t

〈g, Ux〉
]
= Eg

[
sup

x
‖x‖2≤t

〈UTg, x〉
]
= tEg‖UTg‖2 ≤ t

√
E tr UUTggT

= t
√

tr UTU

= t
√

q.

Where the inequality follows from Jensen’s inequality and concavity of the square root,
and first and fifth equality follow since UTU = Iq. Therefore, the Gaussian complexity
of the range of A for t = 1 satisfies

W1(range(A)) ≤
√

rank(A) .

Setting the dimension of the sketch m ≥ c0 rank(A)/ε2 suffices to obtain an ε approxi-
mate solution in the sense of (4.11). We note that rank(A) might not be known a priori,
but the upper bound rank(A) ≤ d may be useful when n� d.
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Example 4.2 �1 Constrained Least Squares For �1-norm-constrained problems we have
C = {x | ‖x‖1 ≤ r} for some radius parameter r. The tangent cone K at the optimal point
x∗ depends on the support3 of x∗, and hence on its cardinality ‖x∗‖0. In [23], it is shown
that the localized Gaussian complexity satisfies

W1(K) ≤ c1
γk+(A)
βk−(A)

√
‖x∗‖0 logd ,

where c1 is a universal constant and γk are βk are �1-restricted maximum and minimum
eigenvalues defined as follows:

γk := max
‖z‖=1
‖z‖1≤

√
k

‖Az‖22 and βk := min
‖z‖=1
‖z‖1≤

√
k

‖Az‖22 .

As a result, we conclude that for �1-constrained problems, the sketch dimension can be
substantially smaller when �1-constrained eigenvalues are well behaved.

4.4.3 Under-Determined Case (n ≤ d )

In many applications the dimension of the data vectors may be larger than the sample
size. In these situations, it makes sense to reduce the dimensionality by applying the
sketch on the right, i.e., AST, and solve

arg min
z∈Rm

STz∈C

‖(ASTz−b)‖2 . (4.12)

Note that the vector z ∈ Rm is of smaller dimension than the original variable x ∈ Rd.
After solving the reduced-dimensional problem and obtaining its optimal solution z∗, the
final estimate for the original variable x can be taken as x̂= STz∗. We will investigate this
approach in Section 4.5 in non-parametric statistical estimation problems and present
concrete theoretical guarantees.

It is instructive to note that, in the special case where we have �2 regularization and
C = Rd, we can easily transform the under-determined least-squares problem into an
over-determined one using convex duality, or the matrix-inversion lemma. We first write
the sketched problem (4.12) as the constrained convex program

min
z∈Rm,y∈Rn

y=ASTz

1
2
‖y−b‖22+ρ‖z‖

2
2 ,

and form the convex dual. It can be shown that strong duality holds, and consequently
primal and dual programs can be stated as follows:

min
z∈Rm

1
2
‖ASTz−b‖22+ρ‖z‖

2
2 =max

x∈Rd
− 1

4ρ
‖SATx‖22−

1
2
‖x‖22+xTb ,

3 The term support refers to the set of indices where the solution has a non-zero value.
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where the primal and dual solutions satisfy z∗ = (1/2ρ)SATx∗ at the optimum [18].
Therefore the sketching matrix applied from the right, AST, corresponds to a sketch
applied on the left, SAT, in the dual problem which parallels (4.9). This observation can
be used to derive approximation results on the dual program. We refer the reader to [22]
for an application in support vector machine classification where b = 0n.

4.5 Information-Theoretic Lower Bounds

4.5.1 Statistical Upper and Lower Bounds

In order to develop information-theoretic lower bounds, we consider a statistical
observation model for the constrained regression problem. Consider the following
model:

b = Ax†+w, where w ∼ N(0,σ2In) and x† ∈ C0 , (4.13)

where x† is the unknown vector to be estimated and w is an i.i.d. noise vector whose
entries are distributed asN(0,σ2). In this section we will focus on the observation model
(4.13) and present a lower bound on all estimators which use the sketched data (SA,Sb)
to form an estimate x̂.

We assume that the unknown vector x† belongs to some set C0 ⊆ C that is star-shaped
around zero.4 In many cases of interest we have C = C0, i.e., when the set C is convex
and simple to describe. In this case, the constrained least-squares estimate x∗ from equa-
tion (4.8) corresponds to the constrained maximum-likelihood estimator for estimating
the unknown regression vector x† under the Gaussian observation model (4.13). How-
ever C0 may not be computationally tractable as an optimization constraint set, such as
a non-convex set, and we can consider a set C which is a convex relaxation5 of this set,
such that C ⊂ C0. An important example is the set of s sparse and bounded vectors given
by C0 = {x : ‖x‖0 ≤ s, ‖x‖∞ ≤ 1}, which has combinatorially many elements. The well-
known �1 relaxation given by C = {x : ‖x‖1 ≤

√
s, ‖x‖∞ ≤ 1} satisfies C ⊂ C0, which

follows from the Cauchy–Schwartz inequality, and is widely used [24, 25] to find sparse
solutions.

We now present a theoretical result on the statistical performance of the original
constrained least-squares estimator in (4.8)

theorem 4.2 Let C be any set that contains the true parameter x†. Then the constrained
estimator x∗ in (4.8) under the observation model (4.13) has mean-squared error upper-
bounded as

Ew

[
1
n
‖A(x∗ −x†)‖22

]
≤ c2

(
δ∗(n)2+

σ2

n

)
,

4 This assumption means that, for any x ∈ C0 and scalar t ∈ [0,1], the point tx also belongs to C0.
5 We may also consider an approximation of C0 which doesn’t necessarily satisfy C ⊂ C0, for example, the
�1 and �0 unit balls.
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where δ∗(n) is the critical radius, equal to the smallest positive solution δ > 0 to the
inequality

Wδ(C)

δ
√

n
≤ δ

σ
. (4.14)

We refer the reader to [20, 23] for a proof of this theorem. This result provides a
baseline against which to compare the statistical recovery performance of the random-
ized sketching method. In particular, an important goal is characterizing the minimal
projection dimension m that will enable us to find an estimate x̂ with the error guarantee

(1/n)‖A(̂x−x†)‖22 ≈ (1/n)‖A(x∗ −x†)‖22 ,

in a computationally simpler manner using the compressed data SA,Sb.
An application of Theorem 4.1 will yield that the sketched solution x̂ in (4.9), using

the choice of sketch dimension m = c0W1(K)2/ε2, satisfies the bound

‖A(̂x−x∗)‖ ≤ ε ‖Ax∗ −b‖2 ,

where ‖Ax∗ − b‖2 = f (x∗) is the optimal value of the optimization problem (4.8).
However, under the model (4.13) we have

‖Ax∗ −b‖2 = ‖A(x∗ −x†)−w‖2 ≤ ‖A(x∗ −x†)‖2+ ‖w‖2 ,

which is at least O(σ
√

n) because of the term ‖w‖2. This upper bound suggests that
(1/n)‖A(̂x − x†)‖22 is bounded by O(ε2σ2) = O

(
σ2W1(K)2/m

)
. This can be consid-

ered as a negative result for the sketching method, since the error scales as O(1/m)
instead of O(1/n). We will show that this upper bound is tight, and the O(1/m) scaling is
unavoidable for all methods that sketch the data once. In contrast, as we will discuss in
Section 4.5.7, an iterative sketching method can achieve optimal prediction error using
sketches of comparable dimension.

We will in fact show that, unless m ≥ n, any method based on observing only the pair
(SA,Sb) necessarily has a substantially larger error than the least-squares estimate. In
particular, our result applies to an arbitrary measurable function (SA,Sb) �→ x̂, which we
refer to as an estimator.

More precisely, our lower bound applies to any random matrix S ∈ Rm×n for which

|||E[ST(SST)−1S]|||op ≤ η
m
n
, (4.15)

where η is a constant that is independent of n and m, and |||A|||op denotes the �2-operator
norm, which reduces to the maximum eigenvalue for a symmetric matrix. These con-
ditions hold for various standard choices of the sketching matrix, including most of
those discussed in the Section 4.2: the Gaussian sketch, the ROS sketch,6 the sparse
sketch, and the α-balanced leverage sampling sketch. The following lemma shows that
the condition (4.15) is satisfied for Gaussian sketches with equality and η = 1.

6 See [23] for a proof of this fact for Gaussian and ROS sketches. To be more precise, for ROS sketches, the
condition (4.15) holds when rows are sampled without replacement.
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lemma 4.2 Let S ∈ Rm×n be a random matrix with i.i.d. Gaussian entries. We have

|||E
[
ST(SST)−1S

]
|||op =

m
n
.

Proof Let S = UΣVT denote the singular value decomposition of the random matrix
S. Note that we have ST(SST)−1S = VVT. By virtue of the rotation invariance of
the Gaussian distribution, columns of V denoted by {vi}mi=1 are uniformly distributed
over the n-dimensional unit sphere, and it holds that EvivT

i = (1/n)In for i = 1, ...,m.
Consequently, we obtain

E

[
ST(SST)−1S

]
= E

m∑

i=1

vivT
i = mEv1vT

1 =
m
n

In ,

and the bound on the operator norm follows.

4.5.2 Fano’s Inequality

Let X and Y represent two random variables with a joint probability distribution Px,y,
where X is discrete and takes values from a finite set X. Let X̂ = g(Y) be the predicted
value of X for some deterministic function g which also takes values in X. Then Fano’s
inequality states that

P
[
X � X̂

]
≥ H(X|Y)−1

log2(|X|−1)
.

Fano’s inequality follows as a simple consequence of the chain rule for entropy. How-
ever, it is very powerful for deriving lower bounds on the error probabilities in coding
theory, statistics, and machine learning [7, 26–30].

4.5.3 Metric Entropy

For a given positive tolerance value δ > 0, we define the δ-packing number Mδ,‖·‖ of a
set C ⊆ Rd with respect to a norm ‖ · ‖ as the largest number of vectors {x j}Mj=1 ⊆ C which
are elements of C and satisfy

‖xk −xl‖ > δ ∀k � l .

We define the metric entropy of the set C with respect to a norm ‖ · ‖ as the logarithm of
the corresponding packing number

Nδ,‖·‖(C) = log2 Mδ,‖·‖.

The concept of metric entropy provides a way to measure the complexity, or effec-
tive size, of a set with infinitely many elements and dates back to the seminal work
of Kolmogorov and Tikhomirov [31].
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4.5.4 Minimax Risk

In this chapter, we will take a frequentist approach in modeling the unknown vector
x† we are trying to estimate from the data. In order to assess the quality of estimation,
we will consider a risk function associated with our estimation method. Note that, for
a fixed value of the unknown vector x†, there exist estimators which make no error for
that particular vector x†, such as the estimator which always returns x† regardless of
the observation. We will take the worst-case risk approach considered in the statistical
estimation literature, which focuses on the minimax risk. More precisely, we define the
minimax risk as follows:

M(Q) = inf
x̂∈Q

sup
x†∈X
E

[
1
n
‖A(̂x−x†)‖22

]
, (4.16)

where the infimum ranges over all estimators that use the input data A and b to
estimate x†.

4.5.5 Reduction to Hypothesis Testing

In this section we present a reduction of the minimax estimation risk to hypothesis test-
ing. Suppose that we have a packing of the constraint set C given by the collection
z(1), ...,z(M) with radius 2δ. More precisely, we have

‖A(z(i)− z( j))‖2 ≥ 2δ ∀i � j,

where z(i) ∈C for all i= 1, ...,M. Next, consider a set of probability distributions {Pz( j) }Mj=1

corresponding to the distribution of the observation when the unknown vector is x† = z j.
Suppose that we have an M-ary hypothesis-testing problem constructed as follows. Let
Jδ denote a random variable with uniform distribution over the index set {1, . . . ,M} that
allows us to pick an element of the packing set at random. Note that M is a function of δ,
hence we keep the dependence of Jδ on δ explicit in our notation. Let us set the random
variable Z according to the probability distribution Pz( j) in the event that Jδ = j, i.e.,

Z ∼ Px( j) whenever Jδ = j .

Now we will consider the problem of detecting the index set given the value of Z.
The next lemma is a standard reduction in minimax theory, and relates the minimax
estimation risk to the M-ary hypothesis-testing error (see Birgé [30] and Yu [7]).

lemma 4.3 The minimax risk Q is lower-bounded by

M(Q) ≥ δ2 inf
ψ
P[ψ(Z) � Jδ] . (4.17)

A proof of this lemma can be found in Section A4.2. Lemma 4.3 allows us to apply
Fano’s method after transforming the estimation problem into a hypothesis-testing
problem based on sketched data. Let us recall the condition on sketching matrices stated
earlier,

|||E[ST(SST)−1S]|||op ≤ η
m
n
, (4.18)

where η is a constant that is independent of n and m. Now we are ready to present the
lower bound on the statistical performance of sketching.
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theorem 4.3 For any random sketching matrix S ∈ Rm×n satisfying condition (4.18),
any estimator (SA,Sb) �→ x† has MSE lower-bounded as

sup
x†∈C0

ES,w

[
1
n
‖A(x† −x∗)‖22

]
≥ σ2

128η

log2( 1
2 M1/2)

min{m,n} , (4.19)

where M1/2 is the 1/2-packing number of C0∩BA(1) in the semi-norm (1/
√

n)‖A( · )‖2.

We defer the proof to Section 4.8, and investigate the implications of the lower bound in
the next section. It can be shown that Theorem 4.3 is tight, since Theorem 4.1 provides
a matching upper bound.

4.5.6 Implications of the Information-Theoretic Lower Bound

We now investigate some consequences of the lower bound given in Theorem 4.3.
We will focus on concrete examples of popular statistical estimation and optimization
problems to illustrate its applicability.

Example 4.3 Unconstrained Least Squares We first consider the simple unconstrained
case, where the constraint is the entire d-dimensional space, i.e., C = Rd. With this
choice, it is well known that, under the observation model (4.13), the least-squares
solution x∗ has prediction mean-squared error upper-bounded as follows:7

E

[1
n
‖A(x∗ −x†)‖22

]
�
σ2rank(A)

n
(4.20a)

≤ σ2d
n
, (4.20b)

where the expectation is over the noise variable w in (4.13). On the other hand, with the
choice C0 = B2(1), it is well known that we can construct a 1/2-packing with M = 2d

elements, so that Theorem 4.3 implies that any estimator x† based on (SA,Sb) has
prediction MSE lower-bounded as

ES,w

[1
n
‖A(̂x−x†)‖22

]
�

σ2 d
min{m,n} . (4.20c)

Consequently, the sketch dimension m must grow proportionally to n in order for the
sketched solution to have a mean-squared error comparable to the original least-squares
estimate. This may not be desirable for least-squares problems in which n� d, since
it should be possible to sketch down to a dimension proportional to rank(A) which is
always upper-bounded by d. Thus, Theorem 4.3 reveals a surprising gap between the
classical least-squares sketch (4.9) and the accuracy of the original least-squares esti-
mate. In the regime n� m, the prediction MSE of the sketched solution is O(σ2(d/m))

7 In fact, a closed-form solution exists for the prediction error, which it is straightforward to obtain from
the closed-form solution of the least-squares estimator. However, this simple form is sufficient to illustrate
information-theoretic lower bounds.
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which is a factor of n/m larger than the optimal prediction MSE in (4.20b). In Section
4.5.7, we will see that this gap can be removed by iterative sketching algorithms which
don’t obey the information-theoretic lower bound (4.20c).

Example 4.4 �1 Constrained Least Squares We can consider other forms of con-
strained least-squares estimates as well, such as those involving an �1-norm constraint
to encourage sparsity in the solution. We now consider the sparse variant of the linear
regression problem, which involves the �0 “ball”

B0(s) :=
{
x ∈ Rd |

d∑

j=1

I[x j � 0] ≤ s
}
,

corresponding to the set of all vectors with at most s non-zero entries. Fixing some
radius R ≥

√
s, consider a vector x† ∈ C0 := B0(s)∩{‖x‖1 = R}, and suppose that we

have noisy observations of the form b = Ax†+w.
Given this setup, one way in which to estimate x† is by computing the least-squares

estimate x∗ constrained to the �1-ball C = {x ∈ Rn | ‖x‖1 ≤ R}.8 This estimator is a form
of the Lasso [2, 32] which has been studied extensively in the context of statistical
estimation and signal reconstruction.

On the other hand, the 1/2-packing number M of the set C0 can be lower-bounded
as log2 M � s log2

(
ed/s

)
. We refer the reader to [33] for a proof. Consequently, in

application to this particular problem, Theorem 4.3 implies that any estimator x̂ based
on the pair (SA,Sb) has mean-squared error lower-bounded as

Ew,S

[1
n
‖A(̂x−x†)‖22

]
�
σ2s log2

(
ed/s

)

min{m,n} . (4.21)

Again, we see that the projection dimension m must be of the order of n in order to
match the mean-squared error of the constrained least-squares estimate x∗ up to constant
factors.

Example 4.5 Low-Rank Matrix Estimation In the problem of multivariate regression,
the goal is to estimate a matrix X† ∈ Rd1×d2 model based on observations of the form

Y = AX†+W, (4.22)

where Y ∈ Rn×d2 is a matrix of observed responses, A ∈ Rn×d1 is a data matrix, and
W ∈ Rn×d2 is a matrix of noise variables. A typical interpretation of this model is
a collection of d2 regression problems, where each one involves a d1-dimensional
regression vector, namely a particular column of the matrix X†. In many applications,
including reduced-rank regression, multi-task learning, and recommender systems

8 This setup is slightly unrealistic, since the estimator is assumed to know the radius R = ‖x†‖1. In practice,
one solves the least-squares problem with a Lagrangian constraint, but the underlying arguments are
essentially the same.
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(e.g., [34–37]), it is reasonable to model the matrix X† as being a low-rank matrix. Note
that a rank constraint on the matrix X can be written as an �0-“norm” sparsity constraint
on its singular values. In particular, we have

rank(X) ≤ r if and only if
min{d1,d2}∑

j=1

I[γ j(X) > 0] ≤ r,

where γ j(X) denotes the jth singular value of X. This observation motivates a standard

relaxation of the rank constraint using the nuclear norm |||X|||nuc :=
∑min{d1,d2}

j=1 γ j(X).
Accordingly, let us consider the constrained least-squares problem

X∗ = arg min
X∈Rd1×d2

{
1
2
|||Y−AX|||2fro

}
such that |||X|||nuc ≤ R, (4.23)

where ||| · |||fro denotes the Frobenius norm on matrices, or equivalently the Euclidean norm
on its vectorized version. Let C0 denote the set of matrices with rank r < 1

2 min{d1,d2},
and Frobenius norm at most one. In this case the constrained least-squares solution X∗

satisfies the bound

E

[
1
n
‖A(X∗ −X†)‖22

]
�
σ2r (d1+d2)

n
. (4.24a)

On the other hand, the 1/2-packing number of the set C0 is lower-bounded as
log2 M � r

(
d1+d2

)
(see [36] for a proof), so that Theorem 4.3 implies that any

estimator X̂ based on the pair (SA,SY) has MSE lower-bounded as

Ew,S

[
1
n
‖A(X̂−X†)‖22

]
�
σ2r

(
d1+d2

)

min{m,n} . (4.24b)

As with the previous examples, we see the sub-optimality of the sketched approach
in the regime m < n.

4.5.7 Iterative Sketching

It is possible to improve the basic sketching estimator using adaptive measurements.
Consider the constrained least-squares problem in (4.8):

x∗ = argmin
x∈C

1
2
‖Ax−b‖22 (4.25)

= argmin
x∈C

1
2
‖Ax‖22−bTAx+

1
2
‖b‖22

︸��������������������������︷︷��������������������������︸
f (x)

. (4.26)

We may use an iterative method to obtain x∗ which uses the gradient ∇ f (x)=AT(Ax−b)
and Hessian ∇2 f (x) = ATA to minimize the second-order Taylor expansion of f (x) at a
current iterate xt using ∇ f (xt) and ∇2 f (xt) as follows:

xt+1 = xt + argmin
x∈C

∥∥∥
[
∇2 f (x)

]1/2
x
∥∥∥2

2+xT ∇ f (xt) (4.27)

= xt + argmin
x∈C
‖Ax‖22−xTAT(b−Axt) . (4.28)
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We apply a sketching matrix S to the data A on the formulation (4.28) and define this
procedure as an iterative sketch

xt+1 = xt + argmin
x∈C
‖SAx‖22−2xTAT(b−Axt) . (4.29)

Note that this procedure uses more information then the classical sketch (4.9), in
particular it calculates the left matrix–vector multiplications with the data A in the
following order:

sT
1 A

sT
2 A

...

sT
mA

...

(b−Ax1)TA

...

(b−Axt)
TA ,

where sT
1 , ...,s

T
m are the rows of the sketching matrix S. This can be considered as

an adaptive form of sketching where the residual directions (b −Axt) are used after
the random directions s1, ...,sm. As a consequence, the information-theoretic bounds
we considered in Section 4.4.6 do not apply to iterative sketching. In Pilanci and
Wainwright [23], it is shown that this algorithm achieves the minimax statistical risk
given in (4.16) using at most O(log2 n) iterations while obtaining equivalent speedups
from sketching. We also note that the iterative sketching method can also be applied
to more general convex optimization problems other than the least-squares objective.
We refer the reader to Pilanci and Wainwright [38] for the application of sketching in
solving general convex optimization problems.

4.6 Non-Parametric Problems

4.6.1 Non-Parametric Regression

In this section we discuss an extension of the sketching method to non-parametric regres-
sion problems over Hilbert spaces. The goal of non-parametric regression is making pre-
dictions of a continuous response after observing a covariate, where they are related via

yi = f ∗(xi)+ vi, (4.30)

where v ∼ N(0,σ2In), and the function f ∗(x) needs to be estimated from {xi,yi}ni=1. We
will consider the well-studied case where the function f ∗ is assumed to belong to a
reproducing kernel Hilbert space (RKHS) H , and has a bounded Hilbert norm ‖ f ‖H
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[39, 40]. For these regression problems it is customary to consider the kernel ridge
regression (KRR) problem based on convex optimization

f̂ = argmin
f∈H

⎧⎪⎪⎨⎪⎪⎩
1

2n

n∑

i=1

(yi− f (xi))
2+λ‖ f ‖2H

⎫⎪⎪⎬⎪⎪⎭. (4.31)

An RKHS is generated by a kernel function which is positive semidefinite (PSD). A
PSD kernel is a symmetric function K : X×X→ R that satisfies

r∑

i, j=1

yiy jK(xi, x j) ≥ 0

for all collections of points {x1, ..., xn}, {y1, ...,yn} and ∀r ∈ Z+. The vector space of all
functions of the form

f (·) =
r∑

i

yiK(·, xi)

generates an RKHS by taking closure of all such linear combinations. It can be shown
that this RKHS is uniquely associated with the kernel function K (see Aronszajn [41] for
details). Let us define a finite-dimensional kernel matrix K using n covariates as follows

Ki j =
1
n

K(xi, x j) ,

which is a positive semidefinite matrix. In the linear least-squares regression the
kernel matrix reduces to the Gram matrix given by K = ATA. It is also known that
the above infinite-dimensional program can be recast as a finite-dimensional quadratic
optimization problem involving the kernel matrix

ŵ = arg min
w∈Rn

1
2
‖Kw− (1/

√
n)y‖22+λwTKw (4.32)

= arg min
w∈Rn

1
2

wTK2w−wT Ky
√

n
+λwTKw , (4.33)

and we can find the optimal solution to the infinite-dimensional problem (4.31) via the
following relation:9

f̂ (·) = 1
n

n∑

i=1

ŵiK(·, xi) . (4.34)

We now define a kernel complexity measure that is based on the eigenvalues of the ker-
nel matrix K. Let λ1 ≥ λ2 ≥ · · · ≥ λn correspond to the real eigenvalues of the symmetric
positive-definite kernel matrix K. The kernel complexity is defined as follows.

9 Our definition of the kernel optimization problem slightly differs from the literature. The classical kernel
problem can be recovered by a variable change w ′ = K1/2w, where K1/2 is the matrix square root. We
refer the reader to [40] for more details on kernel-based methods.
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definition 4.1 (Kernel complexity)

R(δ) =

√√
n∑

i=1

min{δ2,λi} ,

which is the sum of eigenvalues truncated at level δ. As in (4.14), we define a critical
radius δ∗(n) as the smallest positive solution δ∗(n) > 0 to the following inequality:

R(δ)

δ
√

n
≤ δ

σ
, (4.35)

where σ is the noise standard deviation in the statistical model (4.30). The existence of a
unique solution is guaranteed for all kernel classes (see Bartlett et al. [20]). The critical
radius plays an important role in the minimax risk through an information-theoretic
argument. The next theorem provides a lower bound on the statistical risk of any
estimator applied to the observation model (4.30).

theorem 4.4 Given n i.i.d. samples from the model (4.30), any estimator f̂ has
prediction error lower-bounded as

sup
‖ f ∗‖H≤1

E
1
n

n∑

i=1

( f̂ (xi)− f ∗(xi))
2 ≥ c0δ

∗(n)2 , (4.36)

where c0 is a numerical constant and δ∗(n) is the critical radius defined in (4.35).

The lower bound given by Theorem 4.4 can be shown to be tight, and is achieved
by the kernel-based optimization procedure (4.33) and (4.34) (see Bartlett et al. [20]).
The proof of Theorem 4.4 can be found in Yang et al. [42]. We may define the effective
dimension d∗(n) of the kernel via the relation

d∗(n) := nδ∗(n)2 .

This definition allows us to interpret the convergence rate in (4.36) as d∗(n)/n, which
resembles the classical parametric convergence rate where the number of variables is
d∗(n).

4.6.2 Sketching Kernels

Solving the optimization problem (4.33) becomes a computational challenge when the
sample size n is large, since it involves linear algebraic operations on an n×n matrix K.
There is a large body of literature on approximating kernel matrices using randomized
methods [43–46]. Here we assume that the matrix K is available, and a sketching matrix
S ∈ Rm×n can be applied to form a randomized approximation of the kernel matrix.
We will present an extension of (4.9), which achieves optimal statistical accuracy.
Specifically, the sketching method we consider solves

v̂ = arg min
v∈Rm

1
2

vT(SK)(KST)v−vT SKy
√

n
+λvTSKSTv , (4.37)

which involves smaller-dimensional sketched kernel matrices SK, SKST and a lower-
dimensional decision variable v ∈ Rm. Then we can recover the original variable via
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w = STv. The next theorem shows that the sketched kernel-based optimization method
achieves the optimal prediction error.

theorem 4.5 Let S ∈ Rm×n be a Gaussian sketching matrix where m ≥ c3dn, and choose
λ = 3δ∗(n). Given n i.i.d. samples from the model (4.30), the sketching procedure (4.42)
produces a regression estimate f̂ which satisfies the bound

1
n

n∑

i=1

( f̂ (xi)− f ∗(xi))
2 ≤ c2δ

∗(n)2 ,

where δ∗(n) is the critical radius defined in (4.35).

A proof of this theorem can be found in Yang et al. [42]. We note that a similar result
holds for the ROS sketch matrices with extra logarithmic terms in the dimension of
the sketch, i.e., when m ≥ c4dn log4(n) holds. Notably, Theorem 4.5 guarantees that the
sketched estimator achieves the optimal error. This is in contrast to the lower-bound
case in Section 4.4.6, where the sketching method does not achieve a minimax optimal
error. This is due to the fact that the sketched problem in (4.37) is using the observation
SKy instead of Sy. Therefore, the lower bound in Section 4.4.6 does not apply for this
construction. It is worth noting that one can formulate the ordinary least-squares case as
a kernel regression problem with kernel K =AAT, and then apply the sketching method
(4.37), which is guaranteed to achieve the minimax optimal risk. However, computing
the kernel matrix AAT would cost O(nd2) operations, which is more than would be
required for solving the original least-squares problem.

We note that some kernel approximation methods avoid computing the kernel matrix
K and directly form low-rank approximations. We refer the reader to [43] for an
example, which also provides an error guarantee for the approximate kernel.

4.7 Extensions: Privacy and Communication Complexity

4.7.1 Privacy and Information-Theoretic Bounds

Another interesting property of randomized sketching is privacy preservation in the
context of optimization and learning. Privacy properties of random projections for
various statistical tasks have been studied in the recent literature [10, 11, 47]. It is
of great theoretical and practical interest to characterize fundamental privacy and
optimization trade-offs of randomized algorithms. We first show the relation between
sketching and a mutual information-based privacy measure.

4.7.2 Mutual Information Privacy

Suppose we model the data matrix A ∈ Rn×d as stochastic, where each entry is drawn
randomly. One way we can assess the information revealed to the server is considering
the mutual information per symbol, which is given by the formula
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I(SA;A)
nd

=
1

nd
{H(A)−H(A|SA)}

=
1

nd
D
(
PSA,A||PSAPA

)
,

where we normalize by nd since the data matrix A has nd entries in total. The following
corollary is a direct application of Theorem 4.1.

corollary 4.1 Let the entries of the matrix A be i.i.d from an arbitrary distribution
with finite variance σ2. Using sketched data, we can obtain an ε-approximate10 solution
to the optimization problem while ensuring that the revealed mutual information satisfies

I(SA;A)
nd

≤ c0

ε2

W2(AK)
n

log2(2πeσ2) .

Therefore, we can guarantee the mutual information privacy of the sketching-based
methods, whenever the termW(AK) is small.

An alternative and popular characterization of privacy is referred to as the differential
privacy (see Dwork et al. [9]), where other randomized methods, such as additive noise
for preserving privacy, were studied. It is also possible to directly analyze differential
privacy-preserving aspects of random projections as considered in Blocki et al. [10].

4.7.3 Optimization-Based Privacy Attacks

We briefly discuss a possible approach an adversary might take to circumvent the
privacy provided by sketching. If the data matrix is sparse, then one might consider
optimization-based recovery techniques borrowed from compressed sensing to recover
the data A given the sketched data Ã = SA,

min
A
‖A‖1

s.t. SA = Ã ,

where we have used the matrix �1 norm ‖A‖1 :=
∑n

i=1
∑d

j=1 |Ai j|. The success of the
above optimization method will critically depend on the sparsity level of the original
data A. Most of the randomized sketching constructions shown in Section 4.2 can be
shown to be susceptible to data recovery via optimization (see Candès and Tao [25]
and Candès et al. [48]). However, this method assumes that the sketching matrix S is
available to the attacker. If S is not available to the adversary, then the above method
cannot be used and the recovery is not straightforward.

4.7.4 Communication Complexity-Space Lower Bounds

In this section we consider a streaming model of computation, where the algorithm
is allowed to make only one pass over the data. In this model, an algorithm receives
updates to the entries of the data matrix A in the form “add a to Ai j.” An entry can

10 Here ε-approximate solution refers to the approximation defined in Theorem 4.1, relative to the optimal
value.
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be updated more than once, and the value a is any arbitrary real number. The sketches
introduced in this chapter provide a valuable data structure when the matrix is very
large in size, and storing and updating the matrix directly can be impractical. Owing
to the linearity of sketches, we can update the sketch SA by adding aSeieT

j to SA, and
maintain an approximation with limited memory.

The following theorem due to Clarkson and Woodruff [49] provides a lower bound
of the space used by any algorithm for least-squares regression which performs a single
pass over the data.

theorem 4.6 Any randomized 1-pass algorithm which returns an ε-approximate
solution to the unconstrained least-squares problem with probability at least 7/9 needs
Ω(d2(1/ε + log(nd))) bits of space.

This theorem confirms that the space complexity of sketching for unconstrained
least-squares regression is near optimal. Because of the choice of the sketching
dimension m = O(d), the space used by the sketch SA is O(d2), which is optimal up to
constants according to the theorem.

4.8 Numerical Experiments

In this section, we illustrate the sketching method numerically and confirm the theoreti-
cal predictions of Theorems 4.1 and 4.3. We consider both the classical low-dimensional
statistical regime where n > d, and the �1-constrained least-squares minimization known
as LASSO (see Tibshirani [51]):

x∗ = arg min
x s.t.‖x‖1≤λ

‖Ax−b‖2 .

We generate a random i.i.d. data matrix A ∈ Rn×d, where n = 10 000 and d = 1000, and
set the observation vector b = Ax† +σw, where x† ∈ {−1,0,1}d is a random s-sparse
vector and w has i.i.d. N(0,10−4) components. For the sketching matrix S ∈ Rm×n, we
consider the Gaussian and Rademacher (±1 i.i.d.-valued) random matrices, where m
ranges between 10 and 400. Consequently, we solve the sketched program

x̂ = arg min
x s.t.‖x‖1≤λ

‖SAx−Sb‖2 .

Figures 4.5 and 4.6 show the relative prediction mean-squared error given by the ratio

(1/n)‖A(̂x−x†)‖22
(1/n)‖A(x∗ −x†)‖22

,

where it is averaged over 20 realizations of the sketching matrix, and x̂ and x∗ are
the sketched and the original solutions, respectively. As predicted by the upper and
lower bounds given in Theorems 4.1 and 4.3, the prediction mean-squared error of
the sketched estimator scales as O((s log d)/m), since the corresponding Gaussian
complexity W1(K)2 is O(s logd). These plots reveal that the prediction mean-squared
error of the sketched estimators for both Gaussian and Rademacher sketches are in
agreement with the theory.
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Figure 4.5 Sketching LASSO using Gaussian random projections.

0 50 100 150 200 250 300 350 400

Sketch Dimension m

0

0.2

0.4

0.6

0.8

1

1.2

R
el

at
iv

e 
P

re
di

ct
io

n 
E

rr
or

Rademacher sketch for LASSO

s = 5
s = 10
s = 20

Figure 4.6 Sketching LASSO using Rademacher random projections.

4.9 Conclusion

This chapter presented an overview of random projection-based methods for solv-
ing large-scale statistical estimation and constrained optimization problems. We
investigated fundamental lower bounds on the performance of sketching using
information-theoretic tools. Randomized sketching has interesting theoretical proper-
ties, and also has numerous practical advantages in machine-learning and optimization
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problems. Sketching yields faster algorithms with lower space complexity while
maintaining strong approximation guarantees.

For the upper bound on the approximation accuracy in Theorem 4.2, Gaussian
complexity plays an important role, and also provides a geometric characterization of
the dimension of the sketch. The lower bounds given in Theorem 4.3 are statistical in
nature, and involve packing numbers, and consequently metric entropy, which measures
the complexity of the sets. The upper bounds on the Gaussian sketch can be extended
to Rademacher sketches, sub-Gaussian sketches, and randomized orthogonal system
sketches (see Pilanci and Wainwright [22] and also Yun et al. [42] for the proofs). How-
ever, the results for non-Gaussian sketches often involve superfluous logarithmic factors
and large constants as artifacts of the analysis. As can be observed in Figs. 4.5 and 4.6,
the mean-squared error curves for Gaussian and Rademacher sketches are in agreement
with each other. It can be conjectured that the approximation ratio of sketching is uni-
versal for random matrices with entries sampled from well-behaved distributions. This
is an important theoretical question for future research. We refer the reader to the work
of Donoho and Tanner [51] for observations of the universality in compressed sensing.

Finally, a number of important limitations of the analysis techniques need to be
considered. The minimax criterion (4.16) is a worst-case criterion in nature by virtue
of its definition, and may not correctly reflect the average error of sketching when the
unknown vector x† is randomly distributed. Furthermore, in some applications, it might
be suitable to consider prior information on the unknown vector. As an interesting
direction of future research, it would be interesting to study lower bounds for sketching
in a Bayesian setting.

A4.1 Proof of Theorem 4.3

Let us define the shorthand notation ‖ · ‖A := (1/
√

n)‖A(·)‖2. Let {z j}Mj=1 be a 1/2-packing
of C0 ∩BA(1) in the semi-norm defined by ‖ · ‖A, and, for a fixed δ ∈ (0,1/4), define
x j = 4δz j. Since 4δ ∈ (0,1), the star-shaped assumption guarantees that each x j belongs
to C0. We thus obtain a collection of M vectors in C0 such that

2δ ≤ ‖x j−xk‖A ≤ 8δ for all j � k.

Letting J be a random index uniformly distributed over {1, . . . ,M}, suppose that,
conditionally on J = j, we observe the sketched observation vector Sb = SAx j +Sw, as
well as the sketched matrix SA. Conditioned on J = j, the random vector Sb follows
an N(SAx j,σ2SST) distribution, denoted by Px j . We let Y denote the resulting mixture
variable, with distribution (1/M)

∑M
j=1Px j .

Consider the multi-way testing problem of determining the index J by observing Ȳ .
With this setup, we may apply Lemma 4.3 (see, e.g., [30, 46]), which implies that, for
any estimator x†, the worst-case mean-squared error is lower-bounded as

sup
x∗∈C
ES,w‖x† −x∗‖2A ≥ δ

2 inf
ψ
P[ψ(Ȳ) � J], (4.38)

where the infimum ranges over all testing functions ψ. Consequently, it suffices to show
that the testing error is lower-bounded by 1/2.
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In order to do so, we first apply Fano’s inequality [27] conditionally on the sketching
matrix S and get

P[ψ(Ȳ) � J] = ES

{
P[ψ(Ȳ) � J | S]

}
≥ 1−

ES
[
IS(Ȳ; J)

]
+1

log2M
, (4.39)

where IS(Ȳ; J) denotes the mutual information between Ȳ and J with S fixed. Our next
step is to upper-bound the expectation ES[I(Ȳ; J)].

Letting D
(
Px j ‖ Pxk

)
denote the Kullback–Leibler (KL) divergence between the

distributions Px j and Pxk , the convexity of KL divergence implies that

IS(Ȳ; J) =
1
M

M∑

j=1

D

⎛⎜⎜⎜⎜⎜⎜⎝Px j ‖
1
M

M∑

k=1

Pxk

⎞⎟⎟⎟⎟⎟⎟⎠

≤ 1

M2

M∑

j,k=1

D
(
Px j ‖ Pxk

)
.

Computing the KL divergence for Gaussian vectors yields

IS(Ȳ; J) ≤ 1

M2

M∑

j,k=1

1

2σ2
(x j−xk)TAT

[
ST(SST)−1S

]
A(x j−xk).

Thus, using condition (4.15), we have

ES[I(Ȳ; J)] ≤ 1

M2

M∑

j,k=1

m η

2nσ2
‖A(x j−xk)‖22 ≤

32mη

σ2
δ2,

where the final inequality uses the fact that ‖x j −xk‖A = 1/
√

n‖A(x j−xk)‖2 ≤ 8δ for all
pairs.

Combined with our previous bounds (4.38) and (4.39), we find that

sup
x∗∈C
E‖̂x−x∗‖22 ≥ δ

2
{

1− 32(mηδ2/σ2)+1
log2 M

}
.

Setting δ = σ2 log2(M/2)/64ηm yields the lower bound (4.19).

A4.2 Proof of Lemma 4.3

By Markov’s inequality applied on the random variable ‖̂x−x†‖2A we have

E ‖̂x−x†‖2A ≥ δ
2
P[‖̂x−x†‖2A ≥ δ

2]. (4.40)

Now note that

sup
x∗∈C
P[‖̂x−x†‖A ≥ δ] ≥ max

j∈{1,...,M}
P[ ‖̂x−x( j)‖A ≥ δ | Jδ = j]

≥ 1
M

M∑

j=1

P[‖̂x−x( j)‖A ≥ δ | Jδ = j] , (4.41)
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since every element of the packing set satisfies x( j) ∈ C and the discrete maximum
is upper-bounded by the average over {1, ...,M}. Since we have P[Jδ = j] = 1/M, we
equivalently have

1
M

M∑

j=1

P[‖̂x−x( j)‖A] ≥ δ | Jδ = j] =
M∑

j=1

P

[
‖̂x−x( j)‖A ≥ δ

∣∣∣ Jδ = j
]
P[Jδ = j]

= P
[
‖̂x−x(Jδ)‖A ≥ δ

]
. (4.42)

Now we will argue that, whenever the true index is Jδ = j and if ‖x̂− x( j)‖A < δ, then we
can form a hypothesis tester ψ(Z) identifying the true index j. Consider the test

ψ(Z) := arg min
j∈[M]
‖x( j)− x̂‖A.

Now note that ‖x j− x̂‖A < δ ensures that

‖x(i)− x̂‖A ≥ ‖x(i)−x( j)‖A−‖x( j)− x̂‖A ≥ 2δ−δ = δ ,

where the second inequality follows from the 2δ-packing construction of our collection
x(1), ...,x(M). Consequently ‖x(i) − x̂‖A > δ for all i ∈ {1, ...,N} − { j}, and the test ψ(Z)
identifies the true index J = j. Therefore we obtain

{
‖x( j)− x̂‖A < δ

}
⇒ {φ(Z) = j} ,

and conclude that the complements of these events obey

P

[
‖x( j)− x̂‖A ≥ δ | Jδ = j

]
≥ P[φ(Z) � j | Jδ = j

]
.

Taking averages over the indices 1, ...,M, we obtain

P

[
‖x(Jδ)− x̂‖A ≥ δ

]
=

1
M

M∑

j=1

P

[
‖x( j)− x̂‖A ≥ δ | Jδ = j

]
≥ P[φ(Z) � Jδ

]
.

Combining the above with the earlier lower bound (4.41) and the identity (4.42), we
obtain

sup
x∗∈C
P[‖̂x−x∗‖A ≥ δ] ≥ P

[
φ(Z) � Jδ

] ≥ inf
φ
P
[
φ(Z) � Jδ

]
,

where the second inequality follows by taking the infimum over all tests, which can only
make the probability smaller. Plugging in the above lower bound in (4.40) completes
the proof of the lemma.
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