
Fixing the NTK: From Neural Network Linearizations
to Exact Convex Programs

Rajat Dwaraknath, Tolga Ergen, Mert Pilanci
Department of Electrical Engineering

Stanford University
Stanford, CA 94305, USA

{rajatvd,ergen,pilanci}@stanford.edu

Abstract

Recently, theoretical analyses of deep neural networks have broadly focused on two
directions: 1) Providing insight into neural network training by SGD in the limit of
infinite hidden-layer width and infinitesimally small learning rate (also known as
gradient flow) via the Neural Tangent Kernel (NTK), and 2) Globally optimizing the
regularized training objective via cone-constrained convex reformulations of ReLU
networks. The latter research direction also yielded an alternative formulation of
the ReLU network, called a gated ReLU network, that is globally optimizable via
efficient unconstrained convex programs. In this work, we interpret the convex
program for this gated ReLU network as a Multiple Kernel Learning (MKL) model
with a weighted data masking feature map and establish a connection to the NTK.
Specifically, we show that for a particular choice of mask weights that do not
depend on the learning targets, this kernel is equivalent to the NTK of the gated
ReLU network on the training data. A consequence of this lack of dependence on
the targets is that the NTK cannot perform better than the optimal MKL kernel on
the training set. By using iterative reweighting, we improve the weights induced
by the NTK to obtain the optimal MKL kernel which is equivalent to the solution
of the exact convex reformulation of the gated ReLU network. We also provide
several numerical simulations corroborating our theory. Additionally, we provide
an analysis of the prediction error of the resulting optimal kernel via consistency
results for the group lasso.

1 Introduction
Neural Networks (NNs) have become popular in various machine learning applications due to their
remarkable modeling capabilities and generalization performance. However, their highly nonlinear
and non-convex structure precludes an effective theoretical analysis. Therefore, developing theoretical
tools to understand the fundamental mechanisms behind neural networks is still an active research
topic. To tackle this problem, [1] studied the training dynamics of neural networks trained with
Stochastic Gradient Descent (SGD) in a regime where each layer has infinitely many neurons and
SGD uses an infinitesimally small learning rate, i.e., gradient flow. Thus, they related the training
dynamics of neural networks to the training dynamics of a fixed kernel called the Neural Tangent
Kernel (NTK). However, [2] showed that neurons barely move from their initial values in this regime
so that neural networks fail to learn useful features from the training data. This is in contrast to their
finite width counterparts, which are able to learn predictive features in practice [3]. Moreover, [4, 5]
provided further theoretical and empirical evidence to show that existing kernel approaches are not
able to explain the remarkable performance of finite width networks. Therefore, although NTK and
similar kernel based approaches enable theoretical analysis unlike standard finite width networks,
they fail to explain the effectiveness of finite width neural networks that are employed in practice.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

Recently a series of papers [6–11] introduced an analytic framework to analyze finite width neural
networks by leveraging certain convex duality arguments. Particularly, they showed that the standard
regularized non-convex training problem can be equivalently cast as a finite dimensional convex
program. This convex approach has two major advantages over standard non-convex training: (1)
Since the training objective is convex, one can find globally optimal parameters of the network
efficiently and reliably unlike standard nonconvex training which can get stuck at a local minimum,
and (2) As we show in this work, a class of convex reformulations can be interpreted as an instance of
Multiple Kernel Learning (MKL) [12] which allows us to characterize the corresponding finite width
networks by a learned data-dependent kernel that can be iteratively computed. This is in contrast to
the infinite-width kernel characterization in which NTK stays constant throughout training.

Notation and Preliminaries. Throughout the paper, we use lowercase and uppercase bold letters
to denote vectors and matrices respectively. We also use subscripts to denote a certain column or
element. We denote the identity matrix of size k × k as Ik. To denote the set {1, 2, . . . , n}, we use
[n]. We also use ∥·∥p and ∥·∥F to represent the standard ℓp and Frobenius norms. Additionally, we
denote 0-1 valued indicator function and ReLU activation as 1 {x ≥ 0} and (x)+ := max{x, 0},
respectively.

In this paper, we focus on analyzing the regularized training problem of ReLU networks. Particularly,
we consider a two-layer ReLU network with m neurons whose output function is defined as follows

f(x,θ) :=

m∑
j=1

(
xTw

(1)
j

)
+
w

(2)
j =

m∑
j=1

(
1

{
xTw

(1)
j ≥ 0

}
xTw

(1)
j

)
w

(2)
j . (1)

where w
(1)
j ∈ Rd and w

(2)
j are the jth hidden and output layer weights, respectively and θ :=

{(w(1)
j , w

(2)
j)}mj=1 represents all trainable parameters. Given a training data matrix X ∈ Rn×d and a

target vector y ∈ Rn, we minimize the following weight decay regularized training objective

min
W(1),w(2)

∥∥∥∥∥∥
m∑
j=1

(
Xw

(1)
j

)
+
w

(2)
j − y

∥∥∥∥∥∥
2

2

+ λ

m∑
j=1

(∥∥∥w(1)
j

∥∥∥2
2
+ |w(2)

j |
2

)
, (2)

where λ > 0 is the regularization coefficient. We also use f(X,θ) =
∑m

j=1

(
Xw

(1)
j

)
+
w

(2)
j

for convenience. We discuss extensions to generic loss functions and deeper architectures in the
supplementary material.

Our Contributions.

• In section 4, we show that the convex formulation of the Gated ReLU network is equivalent to
Multiple Kernel Learning with a specific set of Masking Kernels. (Theorem 4.3).

• In section 5, we connect this formulation to the Neural Tangent Kernel by showing that the NTK is
a specific weighted combination of masking kernels (Theorem 5.1).

• In Corollary 5.2, we show that the NTK is suboptimal when compared to the optimal kernel
learned by MKL, which is equivalent to the model learnt by our convex Gated ReLU program.

• In section 6, we also derive bounds on the prediction error of this optimal kernel and specify how
to choose the regularization parameter λ (Theorem 6.1).

2 Convex Optimization and the NTK
Here, we briefly review the literature on convex training and the NTK theory of neural networks.

2.1 Convex Programs for ReLU Networks
Even though the network in (1) has only two layers, previous studies show that (2) is a challenging
optimization problem due to the non-convexity of the objective function. Thus, local search heuristics
such as SGD might fail to globally optimize the training objective [13–16]. To eliminate the issues
associated with the inherent non-convexity, [7] introduced an exact convex reformulation of (2) as
the following constrained optimization problem

min
wi,w′

i

∥∥∥∥∥
p∑

i=1

DiX(wi −w′
i)− y

∥∥∥∥∥
2

2

+ λ

p∑
i=1

(∥wi∥2 + ∥w
′
i∥2) s.t.

(2Di − I)Xwi ≥ 0

(2Di − I)Xw′
i ≥ 0

,∀i, (3)

2

where Di ∈ DX are n× n binary masking diagonal matrices given by p := |DX| and

DX :=
{
diag (1 {Xu ≥ 0}) : u ∈ Rd

}
. (4)

The mask set DX can be interpreted as the set of all possible ways to separate the training data X
by a hyperplane passing through the origin. With these masks, we can characterize a single ReLU
activated neuron on the training data as follows: (Xwi)+ = diag (1 {Xwi ≥ 0})Xwi = DiXwi

provided that (2Di − In)Xwi ≥ 0. Therefore, by enforcing these cone constraints in problem (3),
we maintain the masking property of the ReLU activation and parameterize the neural network as a
linear function of the weights, which consequently makes the learning problem convex. We refer the
reader to [6] for a rigorous treatment of this equivalence.

Although (3) is convex and therefore eliminates the drawbacks associated with the non-convexity of
(2), it might still be computationally complex to solve. Precisely a worst-case upper-bound on the
number of variables is O(nr), where r = rank(X) ≤ min{n, d}. Although this is still significantly
better than brute-force search over 2mn ReLU patterns, it could still be exponential in the dimension
d. To mitigate this issue, [8] proposed a relaxation of (1) called the gated ReLU network

fG (x,θ) :=

m∑
j=1

(
1
{
xTgj ≥ 0

}
xTw

(1)
j

)
w

(2)
j , (5)

where G := {gj}mj=1 is a set of gate vectors that are also optimized throughout training. Then, the
corresponding non-convex learning problem is as follows

min
W(1),w(2),G

∥∥∥∥∥∥
m∑
j=1

diag (1 {Xgj ≥ 0})Xw
(1)
j w

(2)
j − y

∥∥∥∥∥∥
2

2

+ λ

m∑
j=1

(∥∥∥w(1)
j

∥∥∥2
2
+ |w(2)

j |
2

)
. (6)

By performing this relaxation, we decouple the dependence between the indicator function and the
linear term in the exact ReLU network (1). To express the equivalent convex optimization problem
corresponding to the gated ReLU network, we introduce the notion of complete gate sets.
Definition 2.1. A gate set G is complete with respect to a dataset X if the corresponding set of
hyperplane arrangements covers all possible arrangement patterns for X defined in (4), i.e.,

{diag (1 {Xgj ≥ 0}) : gj ∈ G} = DX.

Additionally, G is minimally complete if |G| = |DX| = p.

Now, with this relaxation, [8] showed that the optimal value for (6) can always be achieved by
choosing G to be a complete gate set. Therefore, by working only with complete gate sets, we can
modify (6) to only optimize over the network parameters W(1) and w(2)

min
W(1),w(2)

∥∥∥∥∥∥
m∑
j=1

diag (1 {Xgj ≥ 0})Xw
(1)
j w

(2)
j − y

∥∥∥∥∥∥
2

2

+ λ

m∑
j=1

(∥∥∥w(1)
j

∥∥∥2
2
+ |w(2)

j |
2

)
. (7)

Additionally, [17] also showed that we can set m = p without loss of generality. Then, [8] showed
that the equivalent convex optimization problem for (6) and also (7) in the complete gate set setting is

min
wi

∥∥∥∥∥
p∑

i=1

DiXwi − y

∥∥∥∥∥
2

2

+ λ

p∑
i=1

∥wi∥2 . (8)

Notice that (8) is a least squares problem with group lasso regularization [18]. Therefore, this
relaxation for (3) can be efficiently optimized via convex optimization solvers. Furthermore, [8]
proved that after the solving relaxed problem (8), one can construct an equivalent ReLU network
from a gated ReLU network via a convex optimization based procedure called cone decomposition.
We discuss the computational complexity in this approach in Section E of the supplementary material.

2.2 The Neural Tangent Kernel
Previous works [1, 2, 5, 19, 20] characterized the training dynamics of SGD with infinitesimally
small learning rates on neural networks in the infinite-width limit, i.e., as m → ∞, via the NTK.

3

[21, 22] also present analyses in this regime via a mean-field approach. In this section, we provide
a brief overview of this theory and refer the reader to [1, 23, 24] for more details. The main idea
behind the NTK theory is to approximate the neural network model function f (x,θ) by linearizing
it with respect to the parameters θ around its initialization θ0:

f̂ (x,θ) ≈ f (x,θ0) +∇θf (x,θ0)
T
(θ − θ0) .

The authors of [1] show that if f is a neural network (with appropriately scaled output), and pa-
rameters θ initialized as i.i.d standard Gaussians, the linearization f̂ better approximates f in the
infinite-width limit. We can interpret the linearized model f̂ as a kernel method with a feature map
given by ϕ (x) = ∇θf (x,θ0). The corresponding kernel induced by this feature map is termed
as the NTK. Note that this is a random kernel since it depends on the random initialization of
the parameters denoted as θ0. The main result of [1] in the simplified case of two-layer neural
networks is that, in the infinite-width limit this kernel approaches a fixed deterministic limit given
by H

(
x,x′) := E

[
∇θ̂f

(
x, θ̂0

)T∇θ̂f
(
x′, θ̂0

)]
, where θ̂ corresponds to the parameters of a single

neuron. Furthermore, [1] show that in this infinite limit, SGD with an infinitesimally small learning
rate is equivalent to performing kernel regression with the fixed NTK.

To link the convex formulation (8) with NTK theory, we first present a scaled version of the gated
ReLU network in (5) as follows

f̃G (x,θ) :=
1√
2m

m∑
j=1

(
1

{
xTgj ≥ 0

}
xTw

(1)
j

)
w

(2)
j . (9)

In the next lemma, we provide the infinite width NTK of the scaled gated ReLU network in (9).

Lemma 2.2. 1 The infinite width NTK of the gated ReLU network (9) with i.i.d gates sampled as
gj ∼ N (0, Id) and randomly initialized parameters as w(1)

j ∼ N (0, Id) and w
(2)
j ∼ N (0, 1) is

H
(
x,x′) := 1

2π

(
π − arccos

(
xTx′

∥x∥2 ∥x′∥2

))
xTx′. (10)

Additionally, we introduce a reparameterization of the standard ReLU network with θ :={(
w

(+)
j ,w

(−)
j

)}m
j=1

, with w
(+)
j , w(−)

j ∈ Rd which has the same representation power as (1)

fr(x,θ) :=
1√
2m

m∑
j=1

(
xTw

(+)
j

)
+
−

(
xTw

(−)
j

)
+
. (11)

Lemma 2.3. The gated ReLU network (9) and the reparameterized ReLU network (11) have the
same infinite width NTK given by Lemma 2.2.

Next, we present an equivalence between the gated ReLU network and the MKL model [12, 25].

3 Multiple Kernel Learning and Group Lasso
The Multiple Kernel Learning (MKL) model [12, 25] is an extension of the standard kernel method
that learns an optimal data-dependent kernel as a convex combination of a set of fixed kernels and
then performs regression with this learned kernel. We provide a brief overview of the MKL setting
based on the exposition in [26]. Consider a set of p kernels given by corresponding feature maps
ϕi : Rd → Rdi . Given n training samples X ∈ Rn×d with targets y ∈ Rn, we define the feature
matrices on this data by stacking the feature vectors as Φi := [ϕi(x1)

T ; . . . ;ϕi(xn)
T] ∈ Rn×di .

Then, the corresponding n× n kernel matrices are given by Ki := ΦiΦ
T
i . A convex combination

of these kernels can be written as K (η) :=
∑p

i=1 ηiKi where η ∈ ∆p := {η : 1Tη = 1, η ≥ 0}
is a set of weights in the unit simplex. By noticing that the feature map corresponding to K (η)
is obtained by taking a weighted concatenation of ϕi with weights

√
ηi, we can write the MKL

optimization problem in terms of the feature matrices as

min
η∈∆p,vi∈Rdi

∥∥∥∥∥
p∑

i=1

√
ηiΦivi − y

∥∥∥∥∥
2

2

+ λ̂

p∑
i=1

∥vi∥22 , (12)

1All the proofs and derivations are presented in the supplementary material.

4

where λ̂ > 0 is a regularization coefficient. For a set of fixed weights η, the optimal objective value
of the kernel regression problem over v is proportional to yT (

∑p
i=1 ηiKi + λ̂In)

−1y up to constant
factors [12]. Thus, the MKL problem can be equivalently written as the following problem

min
η∈∆p

yT
(
K (η) + λ̂In

)−1

y. (13)

In this formulation, we can interpret MKL as finding the optimal data-dependent kernel that can be
expressed as a convex combination of the fixed kernels given by Ki. In the next section, we link this
kernel learning formulation with the convex group lasso problem in (8).

3.1 Equivalence to Group Lasso
We first show that the MKL problem in (12) can be equivalently stated as a group lasso problem.
Lemma 3.1 ([12, 25]). The MKL problem (12) is equivalent to the following kernel regression
problem using a uniform combination of the fixed kernels with squared group lasso regularization
where the groups are given by parameters corresponding to each feature map

min
wi∈Rdi

∥∥∥∥∥
p∑

i=1

Φiwi − y

∥∥∥∥∥
2

2

+ λ̂

(
p∑

i=1

∥wi∥2

)2

. (14)

We now present a short derivation of this equivalence. Using the variational formulation of the
squared group ℓ1-norm [27] (

p∑
i=1

∥wi∥2

)2

= min
η∈∆p

p∑
i=1

∥wi∥22
ηi

,

we can rewrite the group lasso problem (14) as a joint minimization problem over both the parameters
w and regularization weights η as follows

min
η∈∆p

min
wi∈Rdi

∥∥∥∥∥
p∑

i=1

Φiwi − y

∥∥∥∥∥
2

2

+ λ̂

p∑
i=1

∥wi∥22
ηi

.

Finally, with a change of variables given by vi = wi/
√
ηi, we recover the MKL problem (12). We

note that the MKL problem (12) is also equivalent to the following standard group lasso problem

min
wi∈Rdi

∥∥∥∥∥
p∑

i=1

Φiwi − y

∥∥∥∥∥
2

2

+ λ

p∑
i=1

∥wi∥2 . (15)

This is due to the fact that squared and standard group lasso problems have the same regularization
paths [27], so (14) and (15) are equivalent when λ̂ = λ∑p

i=1∥w∗
i ∥2

, where w∗ is the solution to (14).

3.2 Solving Group Lasso by Iterative Reweighting
Previously, we used a variational formulation of the squared group ℓ1-norm to show equivalences to
MKL. Now, we present the Iteratively Reweighted Least Squares (IRLS) algorithm [28–31] to solve
the group lasso problem (15) using the following variational formulation of the group ℓ1-norm [30]

p∑
i=1

∥wi∥2 = min
η∈Rp

+

1

2

p∑
i=1

(
∥wi∥22
ηi

+ ηi

)
.

Based on this, we rewrite the group lasso problem (15) as the following minimization problem

min
η∈Rp

+

min
wi∈Rdi

∥∥∥∥∥
p∑

i=1

Φiwi − y

∥∥∥∥∥
2

2

+
λ

2

p∑
i=1

(
∥wi∥22
ηi

+ ηi

)
.

Since the objective is jointly convex in (η,w), it can be solved using alternating minimization [29].
Particularly, note that the inner minimization problem in wi’s is simply a ℓ2 regularized least squares
problem with different regularization strengths for each group and this can be solved in closed form

min
wi∈Rdi

∥∥∥∥∥
p∑

i=1

Φiwi − y

∥∥∥∥∥
2

2

+ λ

p∑
i=1

∥wi∥22
ηi

. (16)

5

The outer problem in η is also directly solved by setting ηi = ∥wi∥2 [30]. To avoid convergence
issues and instability around ηi = 0, we approximate the reweighting by adding a small positive
constant ϵ. We use this procedure to solve the group lasso formulation of the gated ReLU network (8)
by setting Φi = DiX. A detailed description is provided Algorithm 1. For further details regarding
convergence, we refer the reader to [28–30].

Algorithm 1 Iteratively Reweighted Least Squares (IRLS) for gated ReLU and ReLU networks
1: Set iteration count k ← 0
2: Initialize weights η(0)i
3: Set Φi := DiX, ∀Di ∈ DX

4: while not converged and k ≤ max iteration count do
5: Solve the weighted ℓ2 regularized least squares problem:{

w
(k)
i

}
i
= argmin

{wi}i

∥∥∥∥∥
p∑

i=1

Φiwi − y

∥∥∥∥∥
2

2

+ λ

p∑
i=1

∥wi∥22
η
(k)
i

6: Update the weights: η(k+1)
i =

√∥∥∥w(k)
i

∥∥∥
2
+ ϵ

7: Increment iteration count: k ← k + 1
8: end while
9: Optional: Convert the gated ReLU network to a ReLU network using cone decomposition (see

Section E for details)

4 Gated ReLU as MKL with Masking Kernels
Motivated by the MKL interpretation of group lasso, we return to the convex reformulation (8) of the
gated ReLU network. Notice that this problem has the same structure as the MKL equivalent group
lasso problem (15) with a specific set of feature maps that we define below.

Definition 4.1. The masking feature maps ϕj : Rd → Rd generated by a fixed set of gates G are
defined as ϕj(x) = 1

{
xTgj ≥ 0

}
x.

These feature maps can be interpreted as simply passing the input unchanged if it lies in the positive
halfspace of the corresponding gate vector gj , i.e., xTgj ≥ 0, and returning zero if the input does
not lie in this halfspace. Since diag (1 {Xgj ≥ 0}) ∈ DX, ∀ gj ∈ G holds for an arbitrary gate set
G, we can conveniently express the corresponding feature matrices of these masking feature maps on
the data X in terms of fixed diagonal data masks as Φj = DjX, where Dj = diag (1 {Xgj ≥ 0}).
Similarly, the corresponding masking kernel matrices take the form Kj = DjXXTDj . Note
that for an arbitrary set of gates, the generated masking feature matrices on X may not cover the
entire set of possible masks DX. Additionally, multiple gate vectors can result in identical masks
if diag (1 {Xgi ≥ 0}) = diag (1 {Xgj ≥ 0}) for i ̸= j leading to degenerate feature matrices.
However, if we work with minimally complete gate sets as defined in Definition 2.1, we can rectify
these issues.

Lemma 4.2. For a minimally complete gate set G defined in Definition 2.1, we can uniquely associate
a gate vector gi to each data mask Di ∈ DX such that Di = diag (1 {Xgi ≥ 0}) ,∀i ∈ [p].

Consequently, for minimally complete gate sets G, the generated masking feature matrices ∀i ∈ [p]
can be expressed as Φi = DiX and the masking kernel matrices take the form Ki = DiXXTDi. In
the context of the gated ReLU problem (7), since G is complete, we can replace it with a minimally
complete subset of G without loss of generality since [17] showed that increasing m beyond p can not
reduce the objective value of the regularized training objective in (7). We are now ready to combine
the MKL-group lasso equivalence with the convex reformulation of the gated ReLU network to
present the following characterization of the nonconvex gated ReLU learning problem.

Theorem 4.3. The non-convex gated ReLU problem (7) with a minimally complete gate set G is
equivalent to performing multiple kernel learning (12) with the masking feature maps generated by G

min
η∈∆p,vi∈Rd

∥∥∥∥∥
p∑

i=1

√
ηiDiXvi − y

∥∥∥∥∥
2

2

+ λ̂

p∑
i=1

∥vi∥22 .

6

This theorem implies that the gated ReLU network finds the optimal combination of linear models
restricted to the different masked datasets DiX generated by the gates. By optimizing with all possible
data maskings, we obtain the best possible gated ReLU network. From the kernel perspective, we
have characterized the problem of finding an optimal finite width gated ReLU network as learning a
data-dependent kernel and then performing kernel regression. This is in contrast to the NTK theory
where the training of an infinite width network by gradient flow is characterized by regression with a
constant kernel that is not learned from data. We further explore this connection below.

5 NTK as a Weighted Masking Kernel
We now connect the NTK of a gated ReLU network with the masking kernels generated by its gates.
Theorem 5.1. Let KG (η̃) ∈ Rn×n be the weighted masking kernel obtained by taking a convex
combination of the masking feature maps generated by a minimally complete gate set G with weights
given by η̃i = P[diag (1 {Xh ≥ 0}) = Di] where h ∼ N (0, Id) and let H ∈ Rn×n be the infinite
width NTK of the gated ReLU network (10) evaluated on the training data, i.e., the ijth entry of H is
defined as Hij := H(xi,xj). Then, KG (η̃) = H.

A rough sketch of the proof of this theorem is to express the matrix H as an expectation of indicator
random variables using the definition of the NTK [1]. Then, by conditioning on the event that these
indicators equal the masks Di, we can express the NTK as a convex combination of the masking
kernels Ki. The weights end up being precisely the probabilities that are described in Theorem 5.1.
A detailed proof is provided in the supplementary material.

Figure 1: Plot of objective value of problem (8) which is solved using IRLS (algorithm 1) for a
toy 1D dataset with n = 5. The iterates are compared to the optimal value obtained by solving (8)
using CVXPY (blue). Notice that the solution to (16) with regularization weights given by the NTK
weights η̃ from Theorem 5.1 (green) is sub-optimal for problem (8), and running IRLS by initializing
with these weights (red) converges to the optimal objective value. We also include plots of IRLS
initialized with random weights (black). The right plot shows the corresponding learned functions.
The blue curve shows the output of the solution to the group lasso problem (8) after performing
a cone decomposition to obtain a ReLU network. The dashed curve shows the output of running
gradient descent (GD) on a ReLU network with 100 neurons. The green curve is the result of kernel
ridge regression (KRR) with the NTK. We observe that our reweighted kernel method (Group
Lasso) produces an output that matches the output of the NN trained via GD. In contrast, NTK
produces an erroneous smooth function due to the infinite width approximation.

This theorem implies that the outputs of the gated ReLU network obtained via (16) with regularization
weights η̃ on the training data is identical to that of kernel ridge regression with the NTK.
Corollary 5.2. Let w̃ be the solution to (16) with feature matrices Φi = DiX and regularization
weights η̃i = P[diag (1 {Xh ≥ 0}) = Di] where h ∼ N (0, Id) and let ỹ = H(H+ λIn)

−1y be
the outputs of kernel ridge regression with the NTK on the training data. Then,

∑p
i=1 DiXw̃i = ỹ.

Since G is minimally complete, the weights in Theorem 5.1 satisfy
∑p

i=1 η̃i = 1. In other words,
η̃ ∈ ∆p. Therefore, we can interpret Theorem 5.1 as follows – the NTK evaluated on the training data
lies in the convex hull of all possible masking kernels of the training data. So H lies in the feasible
set of kernels for MKL using these masking kernels. By Theorem 4.3, we can find the optimal kernel
in this set by solving the group lasso problem (8) of the gated ReLU network. Therefore, we can
interpret solving (8) as fixing the NTK by learning an improved data-dependent kernel.

7

Remark 5.3 (Suboptimality of NTK). Note that the weights η̃ do depend on the training data X,
but do not depend on the target labels y. Since MKL learns the optimal kernel using both {X,y},
the NTK still cannot perform better than the optimal kernel on the training set. Thus, we fix the NTK.

6 Analysis of Prediction Error
In this section, we present an analysis of the in-sample prediction error for the gated ReLU network
given in (5) along the lines of existing consistency results [32, 33] for the group lasso problem (8).
We assume that the data is generated by a noisy ReLU neural network model y = f(X,θ∗) + ϵ
where f is the ReLU network defined in (1) with true parameters θ∗ and the noise is distributed as
ϵ ∼ N

(
0, σ2In

)
. By the seminal universal approximation theorem of [34], this model is able to

capture a broad class of ground-truth functions by using a ReLU network with enough neurons. We
can transform θ∗ to the weights w∗ in the convex ReLU model and write f(X,θ∗) =

∑p
i=1 DiXw∗

i .
We denote by ŵ the solution of the group lasso problem (8) for the gated ReLU network with an
additional 1

n factor on the loss to simplify derivations,

ŵ = argmin
wi∈Rd

1

n

∥∥∥∥∥
p∑

i=1

DiXwi − y

∥∥∥∥∥
2

2

+ λ

p∑
i=1

∥wi∥2 . (17)

We now present our main theorem which bounds the prediction error of the gated ReLU network
obtained from the solution ŵ below.
Theorem 6.1 (Prediction Error of Gated ReLU). For some t > 0, let the regularization parameter in
(17) be λ = tσ∥X∥F /n. Then, with probability at least 1− 2e−t2/8, we have

1

n

∥∥∥fG(X, θ̂
)
− f (X,θ∗)

∥∥∥2
2
≤ 2λ

p∑
i=1

∥w∗
i ∥2

where fG
(
X, θ̂

)
=
∑p

i=1 DiXŵi are the predictions of the gated ReLU network obtained from ŵ.

The proof closely follows the analysis of the regular lasso problem presented in [33], but we extend it
to the specific case of the group lasso problem corresponding to the gated ReLU network and leverage
the masking structure of the lifted data matrix to obtain simplified bounds.

Figure 2: Plot of the group lasso objective in the student-teacher setting with d = 5. Training data
is generated using a teacher network with width m = 10. The NTK weights η̃ are estimated using
Monte Carlo sampling, and are again sub-optimal. IRLS initialized with these weights successfully
fixes the NTK and converges to the optimal weights.

7 Experiments
Here, we empirically corroborate our theoretical results via experiments on several datasets.2

1D datasets. For the 1D experiments in Figure 1, we add a second data dimension with value equal
to 1 for all data points to simulate a bias term in the first layer of the gated ReLU network. Also, in
this case we can enumerate all 2n data masks Di directly. We use the cone decomposition procedure
described in [8] to obtain a ReLU network from the gated ReLU network obtained by solving (8). We
also train a 100 neuron ReLU network using gradient descent (GD) and compare the learned output
functions in the right plot in Figure 1. Exact details can be found in the supplementary material.

2We provide additional details in Section B.

8

Table 1: Test accuracies for UCI ex-
periments with 75% − 25% training-
test split. Our approach achieves either
higher or the same accuracy for 26 out
of 33 datasets.

Dataset n d NTK Ours (Alg 1)
acute-inflammation 120 6 1.000 1.000
acute-nephritis 120 6 1.000 1.000
balloons 16 4 0.75 0.75
blood 748 4 0.524 0.583
breast-cancer 286 9 0.417 0.625
breast-cancer-wisc-prog 699 9 0.96 0.966
breast-cancer-wisc-diag 569 30 0.965 0.915
breast-cancer-wisc-prog 198 33 0.7 0.66
congressional-voting 435 16 0.266 0.266
conn-bench-sonar-mines-rocks 208 60 0.635 0.712
credit-approval 690 15 0.838 0.844
cylinder-bands 512 35 0.773 0.82
echocardiogram 131 10 0.758 0.788
fertility 100 9 0.76 0.76
haberman-survival 306 3 0.481 0.532
heart-hungarian 294 12 0.743 0.878
hepatitis 155 19 0.923 0.897
ilpd-indian-liver 583 9 0.432 0.555
ionosphere 351 33 0.955 0.966
mammographic 961 5 0.783 0.792
molec-biol-promoter 106 57 0.63 0.815
musk-1 476 166 0.782 0.866
oocytes_trisopterus_nucleus_2f 912 25 0.781 0.759
parkinsons 195 22 0.939 0.959
pima 768 8 0.552 0.599
pittsburg-bridges-T-OR-D 102 7 0.731 0.846
planning 182 12 0.435 0.543
statlog-australian-credit 690 14 1.0 0.74
statlog-german-credit 1000 24 0.512 0.576
statlog-heart 270 13 0.779 0.765
tic-tac-toe 958 9 1.0 1.0
trains 10 29 0.667 0.667
vertebral-column-2clases 310 6 0.821 0.731

Higher (or same) accuracy 14/33 26/33

Student-teacher setting. We generate the training data by
sampling X ∼ N (0, In) and computing the targets y using
a fixed, randomly initialized gated ReLU teacher network.
In Figure 2, n = 10, d = 5, and we use a teacher network
with width m = 10, with gates and parameters randomly
drawn from independent standard multivariate Gaussians.
To solve the convex formulation (8), we estimate DX by
randomly sampling unique hyperplane arrangements.

Computing the NTK weights η̃. The weights in-
duced by the NTK are given as in Theorem 5.1 by
η̃i = P[diag (1 {Xh ≥ 0}) = Di] where h ∼
N (0, Id) is a standard multivariate Gaussian vector.
These probabilities can be interpreted either as the or-
thant probabilities of the multivariate Gaussians given by
(2Di − In)Xh or as the solid angle of the cones given
by
{
u ∈ Rd : (2Di − In)Xu ≥ 0

}
. Closed form expres-

sions exist for d = 2, 3, and [35, 36] present approximat-
ing schemes for higher dimensions. We calculate these
weights exactly for the 1D example presented in Figure
1, and estimate them using Monte Carlo sampling for the
student-teacher example in Figure 2.

Fixing the NTK weights by IRLS. We solve (16) with
Φi = DiX and regularization weights given by the NTK
weights η̃ to obtain the solution w̃. We use efficient least squares solvers from [37, 38]. By Theorem
5.1, this corresponds to choosing the weights η in the MKL problem (13) such that the resulting
kernel matrix is equal to the NTK matrix H. We find the exact solution of the group lasso problem
(8) using CVXPY. Comparing the optimal value of the group lasso problem (8) with the objective
value of w̃ (given by the green line) in Figures 1 and 2, we observe that the NTK weighted solution
is sub-optimal. This means that H is not the optimal kernel that would be learnt by MKL (which is
expected since H has no dependence on the targets y). By applying IRLS initialized with the NTK
weights, we fix the NTK and find the weights corresponding to the optimal MKL kernel. In Figures 1
and 2, we observe that IRLS converges to the solution of the group lasso problem (8) and successfully
fixes the NTK.

UCI datasets. We compare the regularied NTK with our IRLS algorithm (Algorithm 1) on the UCI
ML Repository datasets. We follow the procedure described in [39] for n ≤ 1000 to extract and
standardize the datasets. We observe that our method achieves higher (or the same) test accuracy
for 26 out of 33 datasets (see Table 1 for details) while the NTK achieves higher (or the same) test
accuracy for 14 datasets which empirically supports our main claim that the IRLS procedure fixes the
NTK. Details of the experiments can be found in Section B of the supplementary material.

8 Discussion and Limitations
In this work, we explored the connection between finite-width theories of neural networks given by
convex reformulations and infinite-width theories of neural networks given by the NTK. To bridge
these theories, we first interpreted the group lasso convex formulation of the gated ReLU network as a
multiple kernel learning model using the masking kernels generated by its gates. Then, we linked this
MKL model with the NTK of the gated ReLU network evaluated on the training data. Specifically,
we showed that the NTK is equivalent to the weighted masking kernel with weights that depend
only on the input data X and not on the targets y. We contrast this with the MKL interpretation
of the gated ReLU network which learns the optimal data-dependent kernel using both X and y.
Therefore, the NTK cannot perform better than the optimal MKL kernel. To fix the NTK, we improve
the weights induced by it using the iteratively reweighted least squares (IRLS) scheme to obtain the
optimal solution of the group lasso formulation of the gated ReLU network. We corroborated our
theoretical results by empirically running IRLS on toy datasets.

While our theory is able to link the optimization properties of the NTK with those of finite width
networks via the MKL characterization of group lasso, we do not derive explicit generalization results
on the test set. Applying existing generalization theory for kernel methods [40, 41] to the MKL
interpretation of the convex reformulation could be a promising direction for future work.

9

Acknowledgments and Disclosure of Funding

This work was supported in part by the National Science Foundation (NSF) CAREER Award under
Grant CCF-2236829, Grant DMS-2134248 and Grant ECCS-2037304; in part by the U.S. Army
Research Office Early Career Award under Grant W911NF-21-1-0242; in part by the Stanford
Precourt Institute; and in part by the ACCESS—AI Chip Center for Emerging Smart Systems through
InnoHK, Hong Kong, SAR.

10

References
[1] Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and

generalization in neural networks. Advances in neural information processing systems, 31,
2018.

[2] Lenaic Chizat and Francis Bach. A note on lazy training in supervised differentiable program-
ming. arXiv preprint arXiv:1812.07956, 2018.

[3] Stanislav Fort, Gintare Karolina Dziugaite, Mansheej Paul, Sepideh Kharaghani, Daniel M Roy,
and Surya Ganguli. Deep learning versus kernel learning: an empirical study of loss landscape
geometry and the time evolution of the neural tangent kernel. Advances in Neural Information
Processing Systems, 33:5850–5861, 2020.

[4] Boris Hanin and Mihai Nica. Finite depth and width corrections to the neural tangent kernel. In
International Conference on Learning Representations, 2020.

[5] Sanjeev Arora, Simon S Du, Wei Hu, Zhiyuan Li, Russ R Salakhutdinov, and Ruosong Wang.
On exact computation with an infinitely wide neural net. In Advances in Neural Information
Processing Systems, pages 8139–8148, 2019.

[6] Tolga Ergen and Mert Pilanci. Convex geometry and duality of over-parameterized neural
networks. CoRR, abs/2002.11219, 2020.

[7] Mert Pilanci and Tolga Ergen. Neural networks are convex regularizers: Exact polynomial-time
convex optimization formulations for two-layer networks. In International Conference on
Machine Learning, pages 7695–7705. PMLR, 2020.

[8] Aaron Mishkin, Arda Sahiner, and Mert Pilanci. Fast convex optimization for two-layer relu
networks: Equivalent model classes and cone decompositions. arXiv preprint arXiv:2202.01331,
2022.

[9] Arda Sahiner, Tolga Ergen, John M. Pauly, and Mert Pilanci. Vector-output relu neural network
problems are copositive programs: Convex analysis of two layer networks and polynomial-time
algorithms. In International Conference on Learning Representations, 2021.

[10] Tolga Ergen and Mert Pilanci. Convex geometry of two-layer relu networks: Implicit autoen-
coding and interpretable models. In Silvia Chiappa and Roberto Calandra, editors, Proceedings
of the Twenty Third International Conference on Artificial Intelligence and Statistics, volume
108 of Proceedings of Machine Learning Research, pages 4024–4033, Online, 26–28 Aug 2020.
PMLR.

[11] Tolga Ergen and Mert Pilanci. Implicit convex regularizers of cnn architectures: Convex
optimization of two- and three-layer networks in polynomial time. In International Conference
on Learning Representations, 2021.

[12] Alain Rakotomamonjy, Francis Bach, Stéphane Canu, and Yves Grandvalet. Simplemkl.
Journal of Machine Learning Research, 9:2491–2521, 2008.

[13] Shai Shalev-Shwartz, Ohad Shamir, and Shaked Shammah. Failures of gradient-based deep
learning. arXiv preprint arXiv:1703.07950, 2017.

[14] Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. Deep learning, volume 1.
MIT press Cambridge, 2016.

[15] Itay Safran and Ohad Shamir. Spurious local minima are common in two-layer relu neural
networks. In International Conference on Machine Learning, pages 4433–4441. PMLR, 2018.

[16] Rong Ge, Jason D. Lee, and Tengyu Ma. Learning one-hidden-layer neural networks with
landscape design, 2017.

[17] Yifei Wang, Jonathan Lacotte, and Mert Pilanci. The hidden convex optimization landscape
of regularized two-layer reLU networks: an exact characterization of optimal solutions. In
International Conference on Learning Representations, 2022.

[18] Ming Yuan and Yi Lin. Model selection and estimation in regression with grouped variables.
Journal of the Royal Statistical Society: Series B (Statistical Methodology), 68(1):49–67, 2006.

[19] Lei Tan, Shutong Wu, and Xiaolin Huang. Weighted neural tangent kernel: A generalized and
improved network-induced kernel. arXiv preprint arXiv:2103.11558, 2021.

11

[20] Ziwei Ji and Matus Telgarsky. Polylogarithmic width suffices for gradient descent to achieve
arbitrarily small test error with shallow relu networks. arXiv preprint arXiv:1909.12292, 2019.

[21] Lenaic Chizat. Sparse optimization on measures with over-parameterized gradient descent.
Mathematical Programming, 194(1-2):487–532, 2022.

[22] Song Mei, Andrea Montanari, and Phan-Minh Nguyen. A mean field view of the landscape of
two-layer neural networks. Proceedings of the National Academy of Sciences, 115(33):E7665–
E7671, 2018.

[23] Rajat Vadiraj Dwaraknath. Understanding the neural tangent kernel. https://
rajatvd.github.io/NTK/, 2019. Accessed: 2022-05-17.

[24] Simon Du and Wei Hu. Ultra-wide deep nets and the neural tangent ker-
nel (ntk). https://blog.ml.cmu.edu/2019/10/03/ultra-wide-deep-nets-and-the-
neural-tangent-kernel-ntk/, 2019. Accessed: 2022-05-17.

[25] Francis R Bach, Gert RG Lanckriet, and Michael I Jordan. Multiple kernel learning, conic
duality, and the smo algorithm. In Proceedings of the twenty-first international conference on
Machine learning, page 6, 2004.

[26] Francis R Bach. The “eta-trick” reloaded: multiple kernel learning, 2019. Accessed: 2022-05-
17.

[27] Francis R Bach. Consistency of the group lasso and multiple kernel learning. Journal of
Machine Learning Research, 9(6), 2008.

[28] Ingrid Daubechies, Ronald DeVore, Massimo Fornasier, and C Sinan G üntürk. Iteratively
reweighted least squares minimization for sparse recovery. Communications on Pure and
Applied Mathematics: A Journal Issued by the Courant Institute of Mathematical Sciences,
63(1):1–38, 2010.

[29] Francis Bach, Rodolphe Jenatton, Julien Mairal, Guillaume Obozinski, et al. Optimization with
sparsity-inducing penalties. Foundations and Trends® in Machine Learning, 4(1):1–106, 2012.

[30] Julien Mairal, Francis Bach, and Jean Ponce. Sparse modeling for image and vision processing.
arXiv preprint arXiv:1411.3230, 2014.

[31] Francis R Bach. The “eta-trick” or the effectiveness of reweighted least-squares.
https://francisbach.com/the-%CE%B7-trick-or-the-effectiveness-of-
reweighted-least-squares/, 2019. Accessed: 2022-05-17.

[32] Han Liu and Jian Zhang. Estimation consistency of the group lasso and its applications. In
Artificial Intelligence and Statistics, pages 376–383. PMLR, 2009.

[33] Peter Bühlmann, Sara van de Geer, Peter Bühlmann, and Sara van de Geer. Theory for the lasso.
Statistics for High-Dimensional Data: Methods, Theory and Applications, pages 99–182, 2011.

[34] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward networks are
universal approximators. Neural networks, 2(5):359–366, 1989.

[35] Dario Azzimonti and David Ginsbourger. Estimating orthant probabilities of high-dimensional
gaussian vectors with an application to set estimation. Journal of Computational and Graphical
Statistics, 27(2):255–267, 2018.

[36] Peter Craig. A new reconstruction of multivariate normal orthant probabilities. Journal of the
Royal Statistical Society: Series B (Statistical Methodology), 70(1):227–243, 2008.

[37] Christopher C Paige and Michael A Saunders. Lsqr: An algorithm for sparse linear equations
and sparse least squares. ACM Transactions on Mathematical Software (TOMS), 8(1):43–71,
1982.

[38] David Chin-Lung Fong and Michael Saunders. Lsmr: An iterative algorithm for sparse least-
squares problems. SIAM Journal on Scientific Computing, 33(5):2950–2971, 2011.

[39] Manuel Fernández-Delgado, Eva Cernadas, Senén Barro, and Dinani Amorim. Do we need
hundreds of classifiers to solve real world classification problems? Journal of Machine Learning
Research, 15(90):3133–3181, 2014.

[40] Song Mei, Theodor Misiakiewicz, and Andrea Montanari. Generalization error of random
feature and kernel methods: Hypercontractivity and kernel matrix concentration. Applied and
Computational Harmonic Analysis, 59:3–84, 2022.

12

https://rajatvd.github.io/NTK/
https://rajatvd.github.io/NTK/
 https://blog.ml.cmu.edu/2019/10/03/ultra-wide-deep-nets-and-the-neural-tangent-kernel-ntk/
 https://blog.ml.cmu.edu/2019/10/03/ultra-wide-deep-nets-and-the-neural-tangent-kernel-ntk/
https://francisbach.com/the-%CE% B7-trick-or-the-effectiveness-of-reweighted-least-squares/
https://francisbach.com/the-%CE% B7-trick-or-the-effectiveness-of-reweighted-least-squares/

[41] Corinna Cortes, Mehryar Mohri, and Afshin Rostamizadeh. Generalization bounds for learning
kernels. International Conference on Machine Learning, 2010.

[42] Kaare Brandt Petersen, Michael Syskind Pedersen, et al. The matrix cookbook. Technical
University of Denmark, 7(15):510, 2008.

[43] Erling D Andersen and Knud D Andersen. The mosek interior point optimizer for linear
programming: an implementation of the homogeneous algorithm. In High performance opti-
mization, pages 197–232. Springer, 2000.

[44] Dheeru Dua and Casey Graff. UCI machine learning repository, 2017.
[45] Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge university press,

2004.
[46] Tolga Ergen and Mert Pilanci. Global optimality beyond two layers: Training deep relu

networks via convex programs. In Marina Meila and Tong Zhang, editors, Proceedings of the
38th International Conference on Machine Learning, volume 139 of Proceedings of Machine
Learning Research, pages 2993–3003. PMLR, 18–24 Jul 2021.

[47] Tolga Ergen and Mert Pilanci. Path regularization: A convexity and sparsity inducing regular-
ization for parallel relu networks. arXiv preprint arXiv:2110.09548, 2021.

[48] Tolga Ergen and Mert Pilanci. Revealing the structure of deep neural networks via convex
duality. In Marina Meila and Tong Zhang, editors, Proceedings of the 38th International
Conference on Machine Learning, volume 139 of Proceedings of Machine Learning Research,
pages 3004–3014. PMLR, 18–24 Jul 2021.

13

Supplementary Material

Table of Contents
A Proofs and Theoretical Results 14

A.1 Proof of Lemma 2.2 . 14
A.2 Proof of Lemma 2.3 . 15
A.3 Proof of Lemma 4.2 . 15
A.4 Proof of Theorem 4.3 . 16
A.5 Proof of Theorem 5.1 . 16
A.6 Proof of Corollary 5.2 . 16
A.7 Proof of Theorem 6.1 . 17

B Experimental Details 18

C Generic Loss Functions 19

D Extensions to Deeper Networks 20

E Cone Decomposition 20
E.1 Computational Complexity . 21

A Proofs and Theoretical Results

A.1 Proof of Lemma 2.2

The gradient feature map of (9) is

∇θ f̃G (x,θ) =
1√
2m

1
{
xTg1 ≥ 0

}
xTw

(1)
1

...
1
{
xTgm ≥ 0

}
xTw

(1)
m

1
{
xTg1 ≥ 0

}
w

(2)
1 x

...
1
{
xTgm ≥ 0

}
w

(2)
m x

.

The finite width random NTK given by Hm,θ,G (x,x′) := ∇θ f̃G (x,θ)
T ∇θ f̃G (x′,θ) is

Hm,θ,G (x,x′) =
1

2m

m∑
j=1

(
1
{
xTgj ≥ 0

}
1
{
x′Tgj ≥ 0

}(
xTw

(1)
j x′Tw

(1)
j +

(
w

(2)
j

)2
xTx′

))
.

By the Law of Large numbers since gj ,w
(1)
j , w

(2)
j are iid, Hm,θ,G (x,x′) converges in probability

to the expectation of the quantity in the sum as m→∞. We denote this infinite limit by H (x,x′).
Therefore,

H (x,x′) =
1

2
E
[
1
{
xTg ≥ 0

}
1
{
x′Tg ≥ 0

}(
xTw(1)x′Tw(1) +

(
w(2)

)2
xTx′

)]
,

where g ∼ N (0, Id), w(1) ∼ N (0, Id), w(2) ∼ N (0, 1). Using E
[(
w(2)

)2]
= 1,

E
[
xTw(1)x′Tw(1)

]
= xTx′ and the linearity of expectation, we get

H (x,x′) = xTx′ · E
[
1
{
xTg ≥ 0

}
1
{
x′Tg ≥ 0

}]
. (18)

14

To evaluate the expectation of the product of the indicator random variables, we condition on one of
the indicators being equal to 1.

E
[
1
{
xTg ≥ 0

}
1
{
x′Tg ≥ 0

}]
= E

[
1
{
xTg ≥ 0

}
| 1
{
x′Tg ≥ 0

}
= 1
]
· P
[
1
{
x′Tg ≥ 0

}
= 1
]

=
1

2
· E
[
1
{
xTg ≥ 0

}
| 1
{
x′Tg ≥ 0

}
= 1
]
.

The conditional expectation is the probability of the event that xTg ≥ 0 given that x′Tg ≥ 0. This
can be geometrically seen as the ratio of π minus the angle between x and x′ to π. So, we get

E
[
1
{
xTg ≥ 0

}
1
{
x′Tg ≥ 0

}]
=

1

2
· 1
π

(
π − arccos

(
xTx′

∥x∥2 ∥x′∥2

))
.

Combining this with (18) yields the desired result.

A.2 Proof of Lemma 2.3

The gradient feature map of (11) is

∇θfr (x,θ) =
1√
2m

1

{
xTw

(+)
1 ≥ 0

}
x

...
1

{
xTw

(+)
m ≥ 0

}
x

−1
{
xTw

(−)
1 ≥ 0

}
x

...
−1
{
xTw

(−)
m ≥ 0

}
x

.

The finite width random NTK given by Hr
m,θ (x,x

′) := ∇θfr (x,θ)
T ∇θfr (x

′,θ) is

Hr
m,θ (x,x

′) =
1

2m

m∑
j=1

(
1

{
xTw

(+)
j ≥ 0

}
1

{
x′Tw

(+)
j ≥ 0

}
xTx′+

1

{
xTw

(−)
j ≥ 0

}
1

{
x′Tw

(−)
j ≥ 0

}
xTx′

)
.

By the Law of Large numbers since w
(+)
j ,w

(−)
j are iid, Hr

m,θ (x,x
′) converges in probability to

the expectation of the quantity in the sum as m → ∞. We denote this infinite limit by Hr (x,x′).
Therefore,

Hr (x,x′) =
1

2
E
[
1

{
xTw(+) ≥ 0

}
1

{
x′Tw(+) ≥ 0

}
+

1

{
xTw(−) ≥ 0

}
1

{
x′Tw(−) ≥ 0

}]
xTx′,

where w(+) ∼ N (0, Id) and w(−) ∼ N (0, Id). Since w(+) and w(−) are i.i.d., we can combine
the expectations to get

Hr (x,x′) = E
[
1

{
xTw(+) ≥ 0

}
1

{
x′Tw(+) ≥ 0

}]
xTx′.

Comparing to (18), we get the desired result.

A.3 Proof of Lemma 4.2

Since G is complete, ∀ i ∈ [p] ,∃ gi ∈ G such that diag (1 {Xgi ≥ 0}) = Di. Additionally, these
gates gi are unique since diag (1 {Xgi ≥ 0}) ̸= diag (1 {Xgj ≥ 0}) =⇒ gi ̸= gj . Therefore,
there is a subset of gates G of size p that are uniquely associated to each mask Di. Since G is also
minimally complete, this subset must be G and this proves the lemma.

15

A.4 Proof of Theorem 4.3

By Lemma 3.1, the MKL problem given by

min
η∈∆p,vi∈Rd

∥∥∥∥∥
p∑

i=1

√
ηiDiXvi − y

∥∥∥∥∥
2

2

+ λ̂

p∑
i=1

∥vi∥22 .

is equivalent to the group lasso problem (14). Additionally, (14) is also equivalent to the standard
group lasso (15) since they have the same regularization paths. Since G is minimally complete, (7)
(which is equivalent to (6) in the minimally complete gate set setting) is equivalent to the group lasso
problem (15) and this proves the theorem.

A.5 Proof of Theorem 5.1

The weighted masking kernel is given by

KG (η̃) =

p∑
i=1

η̃iDiXXTDi. (19)

Now, the NTK matrix H can be written as (using (18)),

H = Eg∼N (0,Id)

[
diag (1 {Xg ≥ 0})XXTdiag (1 {Xg ≥ 0})

]
.

We can condition on the events that diag (1 {Xg ≥ 0}) = Di ∀ i ∈ [p]. SinceDX covers all possible
data maskings Di, we know that

∑p
i=1 P [diag (1 {Xg ≥ 0}) = Di] = 1. Therefore,

H =

p∑
i=1

Eg∼N (0,Id)

[
DiXXTDi | diag (1 {Xg ≥ 0}) = Di

]
P [diag (1 {Xg ≥ 0}) = Di]

=

p∑
i=1

DiXXTDiP [diag (1 {Xg ≥ 0}) = Di] .

Plugging in η̃i = P [diag (1 {Xg ≥ 0}) = Di] and comparing to (19), we get that KG (η̃) = H and
this proves Theorem 5.1.

A.6 Proof of Corollary 5.2

First, we define a single combined masked data matrix X̃ ∈ Rn×pd as follows

X̃ := [D1X D2X· · ·DpX] .

We also define a diagonal regularization weighting matrix R ∈ Rpd×pd as follows

R := diag ([η̃11d η̃21d · · · η̃p1d]) ,

where 1d is a d-dimensional all-1s row vector. Now, we can rewrite (16) with Φi = DiX and
regularization weights η̃ as

min
w∈Rpd

∥∥∥X̃w − y
∥∥∥2
2
+ λ

∥∥∥R− 1
2w
∥∥∥2
2
. (20)

Setting the gradient of the convex objective in (20) to 0, we get the following equation for the solution
w̃,

2X̃T
(
X̃w̃ − y

)
+ 2λR−1w̃ = 0.

16

Solving for w̃, we get

w̃ =
(
X̃T X̃+ λR−1

)−1

X̃Ty.

By applying the matrix inversion lemma [42], we can rewrite this as

w̃ = RX̃T
(
X̃RX̃T + λIn

)−1

y.

Now, we notice that
p∑

i=1

DiXw̃i = X̃w̃ = X̃RX̃T
(
X̃RX̃T + λIn

)−1

y. (21)

Additionally, observe that X̃RX̃T =
∑p

i=1 η̃iDiXXDi = H where the last equality is by Theorem
5.1. Plugging this into (21), we get

p∑
i=1

DiXw̃i = H (H+ λIn)
−1

y

and this proves Corollory 5.2.

A.7 Proof of Theorem 6.1

We begin with the optimality of ŵ,

1

n

∥∥∥∥∥
p∑

i=1

DiXŵi − y

∥∥∥∥∥
2

2

+ λ

p∑
i=1

∥ŵi∥2 ≤
1

n

∥∥∥∥∥
p∑

i=1

DiXw∗
i − y

∥∥∥∥∥
2

2

+ λ

p∑
i=1

∥w∗
i ∥2 .

By plugging in the model y =
∑p

i=1 DiXw∗
i + ϵ, we simplify this to

1

n

∥∥∥∥∥
p∑

i=1

DiX (ŵi −w∗
i)− ϵ

∥∥∥∥∥
2

2

+ λ

p∑
i=1

∥ŵi∥2 ≤
1

n
∥ϵ∥22 + λ

p∑
i=1

∥w∗
i ∥2 .

We expand the square on the LHS and obtain the following bound on the prediction error

1

n

∥∥∥∥∥
p∑

i=1

DiX (ŵi −w∗
i)

∥∥∥∥∥
2

2

≤ 2

n

p∑
i=1

ϵTDiX (ŵi −w∗
i) + λ

p∑
i=1

(∥w∗
i ∥2 − ∥ŵi∥2)

≤ 2

n

p∑
i=1

∥∥ϵTDiX
∥∥
2
∥ŵi −w∗

i ∥2 + λ

p∑
i=1

(∥w∗
i ∥2 − ∥ŵi∥2) ,

where we used Cauchy-Schwarz inequality in the second step. Now, since Di are diagonal matrices
with either 0 or 1 on the diagonals, we can immediately say that

∥∥ϵTDiX
∥∥
2
≤
∥∥ϵTX∥∥

2
for all

i = 1, . . . , p. As a consequence, we get

1

n

∥∥∥∥∥
p∑

i=1

DiX (ŵi −w∗
i)

∥∥∥∥∥
2

2

≤ 2

n

∥∥ϵTX∥∥
2

p∑
i=1

∥ŵi −w∗
i ∥2 + λ

p∑
i=1

(∥w∗
i ∥2 − ∥ŵi∥2)

≤
(
2

n

∥∥ϵTX∥∥
2
+ λ

) p∑
i=1

∥w∗
i ∥2 +

(
2

n

∥∥ϵTX∥∥
2
− λ

) p∑
i=1

∥ŵi∥2 ,

where we used the triangle inequality in the second step. Now, if λ ≥ 2
n

∥∥ϵTX∥∥
2
, we can get rid of

the second term, namely
(
2
n

∥∥ϵTX∥∥
2
− λ

)∑p
i=1 ∥ŵi∥2 and obtain a bound on the prediction error

that does not depend on ŵ. To this end, notice that ϵTX is a multivariate Gaussian with mean 0 and
covariance σ2XTX. We now present a standard concentration result for the norms of Gaussians in
the lemma below,

17

Lemma A.1. Let z be a d-dimensional multivariate Gaussian with mean 0 and covariance matrix Σ.
We have

P [∥z∥2 ≤ z] ≥ 1− 2 exp

(
−z2

2tr (Σ)

)
.

Applying Lemma A.1 to ϵTX, we get

P
[∥∥ϵTX∥∥

2
≤ z
]
≥ 1− 2e

−z2

2σ2tr(XT X) .

Plugging in z = n
2λ where λ =

tσ
√

tr(XTX)

n as in the statement of theorem, we get

P
[
2

n

∥∥ϵTX∥∥
2
≤ λ

]
≥ 1− 2e

−t2

8 .

Therefore, by choosing λ =
tσ
√

tr(XTX)

n , we have that 2
n

∥∥ϵTX∥∥
2
≤ λ with probability at least

1− 2e−t2/8. Consequently, we have

1

n

∥∥∥∥∥
p∑

i=1

DiX (ŵi −w∗
i)

∥∥∥∥∥
2

2

≤ 2λ

p∑
i=1

∥w∗
i ∥2

with probability at least 1− 2e−t2/8, which completes the proof.

A.7.1 Proof of Lemma A.1

Since the norm of Gaussian vector does not change by applying a rotation, we know that
∥∥Λ1/2u

∥∥
2

and ∥z∥2 have the same distribution where Λ is the matrix of eigenvalues from the spectral decom-
position Σ = QΛQT and u ∼ N (0, Id). Now we apply a standard Chernoff bound argument. We
have for some s > 0,

P
[∥∥∥Λ1/2u

∥∥∥
2
> z
]
≤ P

[∥∥∥Λ1/2u
∥∥∥
1
> z
]

≤ P
[
es∥Λ

1/2u∥
1 > esz

]
≤ e−szΠd

i=1E
[
es

√
λi|ui|

]
≤ e−szΠd

i=12e
s2λi/2.

By optimizing the bound over s, we get

P
[∥∥∥Λ1/2u

∥∥∥
2
> z
]
≤ 2 exp

(
−z2

2
∑d

i=1 λi

)
≤ 2 exp

(
−z2

2tr (Σ)

)
.

Finally, using P [∥z∥2 ≤ z] = 1− P [∥z∥2 > z] gives the result.

B Experimental Details

Hyperplane Arrangements for 1D example. In the 1D example in Figure 1, the data matrix X is in
Rn×2, i.e. the dimension d = 2. This is because we set the second component of each input to be
exactly equal to 1 to simulate a bias in the neural network. Though the datapoints lie in R2, they have
some structure which allows us to enumerate all hyperplane arrangements DX easily. Specifically,
the datapoints all lie on the line y = 1 in the xy plane, so the hyperplanes that separate them always
separate them into two contiguous segments. Therefore, by sorting the datapoints according to their
first component, we can directly enumerate all 2n hyperplane arrangements.

Nonconvex ReLU network. For the black dashed line in Figure 1, we trained a two layer ReLU
network with 100 hidden neurons using the standard weight decay regularized objective with gradient
descent using a learning rate of 0.01 for 200000 epochs.

18

Convex program solver specifications. For directly solving the group lasso problem (8), we used
CVXPY with the MOSEK solver [43]. For the ℓ2 regularized least squares problems (16), we
used iterative methods with an efficient matrix-vector product implementation to avoid explicitly
constructing the large combined masked data matrix X̃. Specifically, we used the LSQR and LSMR
methods as described in [37, 38]. The experiments were run locally on a MacBook Air 2020 version
with the Apple M1 chip.

UCI Machine Learning Repository. Here we present details for the experiments on several real
datasets from the UCI Machine Learning Repository [44]. We follow the procedure described
in [39] for n ≤ 1000 to extract and standardize the datasets. For these experiments, we use
the 75% − 25% ratio for the training and test set splits. We use the squared loss and tune the
regularization parameter λ for both NTK and our approach by performing a grid search over the set
{10−5, 10−4, 10−3, 10−2, 10−1, 100, 101}. As shown in Table 1, our method achieves higher (or the
same) test accuracy for 26 datasets out 33 datasets while standard NTK achieves higher (or the same)
test accuracy for 14.

C Generic Loss Functions

Here, we prove that the analysis with squared loss presented in the main paper can be extended to
arbitrary convex loss function. Let us consider the following regularized two-layer ReLU network
training problem with an arbitrary convex loss function L (·, ·)

min
W(1),w(2)

L

 m∑
j=1

(
Xw

(1)
j

)
+
w

(2)
j ,y

+ λ

m∑
j=1

(∥∥∥w(1)
j

∥∥∥2
2
+ |w(2)|2

)
. (22)

Then, as shown in [7], the corresponding gated convex reformulation of (22) is

P ∗ := min
wi

L

(
p∑

i=1

DiXwi − y

)
+ λ

p∑
i=1

∥wi∥2 . (23)

In order to realize the emergence of kernel characterization in the case of arbitrary loss function, we
use Lagrange duality. Particularly, since (23) is a convex optimization problem and Slater’s conditions
holds as proven in [7, 8], we equivalently represent (22) as the following dual problem

P ∗ = max
z
−L∗ (z,y) s.t.

∥∥zTDiX
∥∥
2
≤ λ,∀i ∈ [p] (24)

where L (z,y) is the Fenchel conjugate of L (·,y) defined as [45]

L∗ (z,y) := max
v

vT z− L (v,y) .

We then form the Lagrangian for (24) as follows

L(z, αi) = −L∗ (z,y) +

p∑
i=1

αi

(
λ−

∥∥zTDiX
∥∥
2

)
= −L∗ (z,y) +

p∑
i=1

αi

(
λ− zTDiXXTDiz

)
= −L∗ (z,y) +

p∑
i=1

αi

(
λ− zTKiz

)
,

where αi ≥ 0 is the Lagrange multiplier for the inequality constraint. Based on the representation
above, the dual problem in (24) can be written as

P ∗ = max
z

min
αi≥0

−L∗ (v,y) +

p∑
i=1

αi

(
λ− zTKiz

)
. (25)

Thus, similar to (12), the problem in (25) can be globally optimized with alternating minimization
[29, 31].

19

D Extensions to Deeper Networks

In this section, we generalize the kernel characterization of two-layer ReLU networks presented in the
main paper to deeper architectures. We first note that most prior works on convex reformulation of
ReLU networks studied only two-layer ReLU networks, e.g., [6–10], since the non-convex interaction
of multiple nonlinear layers hinders the convex analysis of deeper networks. However, recent follow-
up studies [46–48] showed that the analysis can be extended to arbitrarily deep networks. Based
on this recent results, below we briefly explain how one can extend our kernel characterization to
three-layer networks. By following the convex reformulations in [46, 47], we have the following
gated ReLU training problem for three-layer network

min
wij

∥∥∥∥∥∥
p1∑
i=1

p2∑
j=1

D
(1)
i D

(2)
j Xwij − y

∥∥∥∥∥∥
2

2

+ λ

p1∑
i=1

p2∑
j=1

∥wij∥2 , (26)

where the hyperplane arrangements for the first and second ReLU layers, i.e., denoted as D(1)
i ∈ D(1)

X

and D
(2)
j ∈ D(2)

X , are defined as follows

D(1)
X :=

{
diag (1 {Xu ≥ 0}) : u ∈ Rd

}
and p1 :=

∣∣∣D(1)
X

∣∣∣ (27)

D(2)
X :=

{
diag

(
1

{(
XU(1)

)
+
u(2) ≥ 0

})
: U(1) ∈ Rd×m1 , u(2) ∈ Rm1

}
and p2 :=

∣∣∣D(2)
X

∣∣∣ .
Then, following the derivations in Section 4, we can conveniently express the corresponding feature
matrices of these masking feature maps on the data X in terms of fixed diagonal data masks as
Φij = D

(1)
i D

(2)
j X. Similarly, the corresponding masking kernel matrices take the form Kij =

D
(1)
i D

(2)
j XXTD

(1)
i D

(2)
j . The same interpretation also extends to arbitrarily deep networks and

yields a more complicated feature map due to the interaction of multiple hyperplane arrangement
matrices, e.g., D(1)

i D
(2)
j D

(3)
k . . .

E Cone Decomposition

Here, we briefly review the cone decomposition concept introduced by [8]. We first note that (3) is the
exact convex reformulation of the standard non-convex regularized training problem in (2). However,
as mentioned in the main paper, the number of constraints in (3) can be prohibitively large, precisely
can be O(nd), and consequently prevents solving the exact convex optimization problem especially
for large scale datasets. To remedy this issue, [8] proposed the unconstrained formulation in (8), but,
this relaxation corresponds to another neural network architecture called gated ReLU network in (5).
Although this relaxation breaks dependence between the arrangements and preactivations of a ReLU
activation, [8] proved that once the gated ReLU network training problem in (8) training problem is
solved, one can construct a solution for the ReLU network model in (1). This procedure is named as
cone decomposition and we provide details regarding the implementation steps below.

Let us assume that we solve the gated ReLU network training problem in (8) and denote the optimal
solution as {w∗

i }
p
i=1. Then, since each DiXw∗

i can have both negative and positive entries (due to
the absence of nonnegativity constraint), we need to decompose DiXw∗

i into two separate cones to
maintain nonnegativity property of a ReLU activation. We formulate this decomposition step as the
following convex optimization problem

min
vi,ui

∥vi∥2 + ∥ui∥2 s.t. DiXw∗
i = DiX(vi − ui),

(2Di − In)Xvi ≥ 0

(2Di − In)Xui ≥ 0
. (28)

After solving the convex optimization problem in (28) for all i ∈ [p]. We declare the optimal solutions,
{v∗

i ,u
∗
i }

p
i=1 as a solution to the exact ReLU model in (1). Thus, instead of directly solving the convex

reformulation with extremely large number of constraint in (3), we first solve the relaxed gated ReLU
problem in (8) and then map the solutions to the proper cones to enforce the nonnegativity property
of the ReLU activation.

20

E.1 Computational Complexity

Although [8] reduce the computational complexity by eliminating the constraints in the convex
optimization problem in (3), the number of variables, denotes as p, can still be exponentially large in
feature dimension d. However, there are multiple ways to remedy this issue.

• We can change the architecture. Particularly, we can replace fully connected networks with
convolutional networks. Then, since CNNs operate on the patch matrices {Xb}Bb=1 instead of the
full data matrix X, where Xb ∈ Rn×h and h denotes the filter size, even when the data matrix
is full rank, i.e., r = min(n, d), the number of hyperplane arrangements p is upperbounded as
p ≤ O(nrc), where rc := maxb rank(Xb) ≤ h≪ min(n, d). For instance, let us consider a CNN
with 3× 3 filters, then rc ≤ 9 independent of n, d. As a consequence, weight sharing structure in
CNNs dramatically limits the number of possible hyperplane arrangements and avoids exponential
complexity. This also explains efficiency and remarkable generalization performance of CNNs in
practice.

• We can also use a sampling based approach where one can randomly sample a tiny subset of
all possible hyperplane arrangements and then solve the convex program with this subset. Thus,
although the resulting approach is not exact, the training complexity will not be exponential in
d anymore. The experimental results in Appendix C show that this approximation in fact works
extremely well, specifically resulting in models that outperform the NTK in 26/33 UCI datasets as
detailed in Table 1.

21

	Introduction
	Convex Optimization and the NTK
	Convex Programs for ReLU Networks
	The Neural Tangent Kernel

	Multiple Kernel Learning and Group Lasso
	Equivalence to Group Lasso
	Solving Group Lasso by Iterative Reweighting

	Gated ReLU as MKL with Masking Kernels
	NTK as a Weighted Masking Kernel
	Analysis of Prediction Error
	Experiments
	Discussion and Limitations
	Supplementary Material
	 Supplementary Material
	Proofs and Theoretical Results
	Proof of Lemma 2.2
	Proof of Lemma 2.3
	Proof of Lemma 4.2
	Proof of Theorem 4.3
	Proof of Theorem 5.1
	Proof of Corollary 5.2
	Proof of Theorem 6.1
	Proof of Lemma A.1

	Experimental Details
	Generic Loss Functions
	Extensions to Deeper Networks
	Cone Decomposition
	Computational Complexity

