
Adaptive Newton Sketch: Linear-time Optimization with Quadratic
Convergence and Effective Hessian Dimensionality

Jonathan Lacotte, Yifei Wang, Mert Pilanci
Stanford University, Electrical Engineering

Abstract

We propose a randomized algorithm with quadratic convergence rate for convex optimization problems
with a self-concordant, composite, strongly convex objective function. Our method is based on performing
an approximate Newton step using a random projection of the Hessian. Our first contribution is to show
that, at each iteration, the embedding dimension (or sketch size) can be as small as the effective dimension
of the Hessian matrix. Leveraging this novel fundamental result, we design an algorithm with a sketch size
proportional to the effective dimension and which exhibits a quadratic rate of convergence. This result
dramatically improves on the classical linear-quadratic convergence rates of state-of-the-art sub-sampled
Newton methods. However, in most practical cases, the effective dimension is not known beforehand, and
this raises the question of how to pick a sketch size as small as the effective dimension while preserving a
quadratic convergence rate. Our second and main contribution is thus to propose an adaptive sketch
size algorithm with quadratic convergence rate and which does not require prior knowledge or estimation
of the effective dimension: at each iteration, it starts with a small sketch size, and increases it until
quadratic progress is achieved. Importantly, we show that the embedding dimension remains proportional
to the effective dimension throughout the entire path and that our method achieves state-of-the-art
computational complexity for solving convex optimization programs with a strongly convex component.
We discuss and illustrate applications to linear and quadratic programming, as well as logistic regression
and other generalized linear models.

1 Introduction

We consider a composite optimization problem of the form

x∗ : = argmin
x∈Rd

{f(x) : = f0(x) + g(x)} , (1)

where f0, g : Rd → R are both closed, twice differentiable convex functions. Here, we denote R : = R ∪ {+∞}
and by dom f the domain of f . We are interested in the structured setting where forming the Hessian matrix
∇2f0(x) is prohibitively expensive, but we have available at small computational cost a Hessian matrix square-
root ∇2f0(x)1/2, that is, a matrix ∇2f0(x)1/2 of dimensions n × d such that (∇2f0(x)1/2)>∇2f0(x)1/2 =
∇2f0(x) for some integer n > d, and n eventually very large. Moreover, we assume the function g to be
µ-strongly convex, i.e., ∇2g(x) � µId.

Large-scale optimization problems of this form are becoming ever more common in applications, due to the
increasing dimensionality of data (e.g., genomics, medicine, high-dimensional models). Typically, the function
f0 may represent an objective value we aim to minimize over a convex set C ⊆ Rd, that is, we aim to solve
minx∈C f0(x). A common practice to turn this constrained optimization problem into an unconstrained one
is to add to the objective function a penalty or barrier function g(x) which encodes C (e.g., logarithmic
barrier functions for polyhedral constraints or `p-norm regularization for `p-ball constraints). In many cases
of practical interest, a matrix square-root ∇2f0(x)1/2 can be computed efficiently. For instance, in the broad
context of empirical risk minimization, the function f0 has the separable form f0(x) =

∑m
i=1 `i(a

>
i x) where

the functions `i are twice-differentiable and convex. In this case, a suitable Hessian matrix square root is

1

given by the n × d matrix ∇2f0(x)1/2 : = diag(`′′i (a>i x)1/2) · A. On the other hand, we assume that the
Hessian of the function g is well-structured, so that its computation is relatively cheap in comparison to that
of f0. For instance, if the constraint set is the unit simplex (i.e., x > 0 and 1>x 6 1), then the Hessian of the
associated logarithmic barrier function is a diagonal matrix plus a rank one matrix. Other examples include
problems for which g has a separable structure such as typical regularizers for ill-posed inverse problems (e.g.,
graph regularization g(x) = 1

2

∑
i,j∈E(xi − xj)2, `p-norms with p > 1 or approximations of `1-norm).

Second-order methods such as the Newton’s method enjoy superior convergence in both theory and practice
compared to first-order methods, that is, quadratic convergence rate versus 1/T 2 for accelerated gradient
descent. A common issue in first-order methods is the tuning of step size [3], whose optimal choice depends on
the strong convexity and smoothness of the underlying problem. In contrast, whenever the objective function
f is self-concordant, then Newton’s method has the appealing property of being invariant to rescaling and
coordinate transformations, is independent of problem-dependent parameters, and thus needs little or no
tuning of algorithmic hyperparameters. More precisely, we recall that, given a current iterate x, the standard
Newton’s method computes the Hessian matrix H(x) and the descent direction vne defined as

H(x) : = ∇2f0(x) +∇2g(x) , (2)

vne : = −H(x)−1∇f(x) . (3)

Given a step size s > 0, it then uses the update

xne : = x+ s · vne . (4)

Despite these advantages, Newton’s method requires, at each iteration, forming and solving the high-
dimensional linear system H(x)vne = −∇f(x), which has complexity scaling as O(nd2), and this becomes
prohibitive in large-scale settings. To address this numerical challenge, a multitude of different approximations
to Newton’s method have been proposed in the literature. Quasi-Newton methods (e.g, DFP, BFGS and
their limited memory versions [30]) are computationally cheaper, but their convergence guarantees require
stronger assumptions and are typically much weaker than those of Newtons’s method. On the other hand,
random projections are an effective way of performing dimensionality reduction [36, 23, 17], and many
random projection (or sketching) based algorithms were designed to reduce the cost of solving the linear
Newton system. For instance, the respective methods in [18] and [21] embed the optimization variable into a
lower dimensional subspace, so that solving the Newton system becomes cheaper; [32] propose to solve an
approximate Newton system based on random principal sub-matrices of a global upper bound on the Hessian;
[16] address a common setting, that of block-separable convex optimization problems, and propose a method
combining the ideas of randomized coordinate descent with cubic regularization [28, 29].

Our work builds specifically on a generic method, that is, the Newton sketch [31], which is based on a
structured random embedding of the Hessian matrix H(x). Formally, given a sketch size m such that m� n
and an embedding matrix S ∈ Rm×n to be precised, the Newton sketch computes the approximate Hessian
HS(x) and the approximate descent direction vnsk defined as

HS(x) : = (∇2f0(x)
1
2)>S>S∇2f0(x)

1
2 +∇2g(x) , (5)

vnsk : = −HS(x)−1∇f(x) . (6)

Given a step size s > 0, it then uses the update

xnsk : = x+ s · vnsk . (7)

For classical embeddings (e.g., sub-Gaussian, randomized orthogonal systems), it has been shown by [31] that,
in general, a sketch size m � d is sufficient for the Newton sketch to achieve a linear-quadratic convergence
rate with high probability (w.h.p.).

Contributions. Our first key contribution is to show that, under the assumption that g is µ-strongly convex,
the scaling m � dµ log(dµ)/δ is sufficient for the Newton sketch to achieve a δ-accurate solution at a quadratic

2

convergence rate with high probability. More generally, we show that convergence is geometric provided that
m scales appropriately in terms of dµ. Here, the critical quantity dµ is the effective (Hessian) dimension,
defined as

dµ : = sup
x∈S(x0)

dµ(x) , (8)

where x0 is the initial point of our algorithm, S(x0) is the sublevel set of f at x0, and

dµ(x) : = trace(∇2f0(x)(∇2f0(x) + µId)
−1) (9)

is the local effective dimension. Importantly, it always holds that dµ(x) 6 dµ 6 min{n, d} = d. In many
applications, the effective dimension is substantially smaller than the ambient dimension d [6, 2, 41]. However,
in order to pick m in terms of dµ which is usually unknown and then achieve computational and memory space
savings, it is necessary to estimate dµ. There exist randomized techniques for precise estimation of dµ(x),
but they provably work under stringent assumptions, e.g., dµ(x) very small (e.g., see Theorem 60 in [4]). In
the context of ridge regression, [20] proposed a sketching-based method with adaptive (time-varying) sketch
size scaling as the effective dimension, and without prior knowledge or estimation of it. Starting with a
small sketch size, it checks at each iteration whether enough progress is achieved by the update. If not, it
doubles the sketch size. The time and memory complexities of this method to return a certified δ-accurate
solution w.h.p. scale in terms of the effective dimension, i.e., it takes time O(nd log2(dµ) log(d/δ)) with a
sketch size m . dµ log(dµ) for large values of n. This significantly improves on usual standard randomized
pre-conditioning methods [33, 5, 24] which require m & d.

In a vein similar to this adaptive ridge regression solver, our second key contribution is to propose an adaptive
sketch size version of the effective dimension Newton sketch. Importantly, we prove that the adaptive sketch
size scales in terms of dµ. Furthermore, our adaptive method offers the possibility to the user to choose the
convergence rate, from linear to quadratic.

Other related works. Recent studies in the literature on randomized second-order and Sub-sampled
Newton methods [11, 9, 34, 8] show that picking an embedding dimension proportional to d and possibly
smaller than d under certain conditions do work empirically in many settings [40, 39, 37]. The recent
work by [22] provides a more precise understanding of these phenomena. In the context of empirical risk
minimization with `22-regularization, they show that the subsampled Newton method with m � dµ data points
is enough to guarantee convergence. However, differently from our work, their method needs to estimate
the effective dimension at each iteration. Furthermore, their convergence guarantees severely depend on the
condition number of the problem (e.g., see their Theorems 1 and 2), whereas our results are independent of
condition numbers and only involve the relevant dimensions of the problem (n, d, dµ) and the target accuracy.
Besides effective dimension based sampling, sketching-based methods are used in the context of distributed
optimization where due to stringent memory and/or communication constraints, reducing the number of
iterations and/or the size of second-order information is critical [35, 14, 7].

1.1 Notations and background

A closed convex function ϕ : Rd → R is self-concordant if |ϕ′′′(x)| 6 2 · (ϕ′′(x))3/2. This definition
extends to a closed convex function f : Rd → R by imposing this requirement on the univariate functions
ϕx,y(t) : = f(x+ ty) for all choices of x, y in the domain of f . Self-concordance is a typical assumption for the
analysis of the classical Newton’s method, in order to obtain convergence results which are independent of
unknown problem parameters (e.g., strong convexity, smoothness or Lipschitz constants; see the books by [27]
or [10] for further background), and this encompasses many widely used functions in practice, e.g., linear,
quadratic, negative logarithm. Hence, in this work, we assume that f0 and g are self-concordant functions.

The choice of the sketching matrix S ∈ Rm×n is critical for statistical and computational performances. The
well-structured subsampled randomized Hadamard transform (SRHT) [1] usually serves as a reference for

3

comparing sketching algorithms thanks to its strong subspace embedding properties [23, 17, 15, 19] and fast
sketching time O(nd logm) compared to the classical sketching cost O(ndm) of sub-Gaussian embeddings.
Another typical choice is the sparse Johnson-Lindenstrauss transform (SJLT) [25, 38] with, for instance, one
non-zero entry per column. With A ∈ Rn×d, a sketch SA is then much faster to compute (it takes time
O(nnz(A))) at the expense of weaker subspace embedding properties.

1.2 Organization of the paper

In Section 2, we introduce critical quantities and preliminary results for both the implementation of our
algorithms and their analysis. We show that the approximate Newton direction vnsk is close to the exact one
vne, provided that the sketch size scales in terms of dµ. In Section 3, we formally introduce our (non-adaptive)
effective dimension Newton sketch algorithm (see Algorithm 1), and we present several relevant applications.
Assuming knowledge of dµ, we prove that its convergence rate is geometric. In Section 4, we introduce an
adaptive version of Algorithm 1 (see Algorithm 2): importantly, it does not require knowledge of dµ, but
still guarantees geometric convergence as well as low memory complexity in terms of dµ. We summarize
our complexity guarantees in Table 1 and compare to standard first- and second-order methods and to the
original Newton sketch algorithm [31] whose implementation and guarantees are agnostic to the effective
dimension of the problem. Finally, we show in Section 5 the empirical benefits of our adaptive method,
compared to several standard optimization baselines.

2 Preliminaries

Critical to our algorithms and their analysis are the Newton and approximate Newton decrements, defined as

λf (x) : =
(
∇f(x)>H(x)−1∇f(x)

) 1
2 , (10)

λ̃f (x) : =
(
∇f(x)>HS(x)−1∇f(x)

) 1
2 . (11)

Importantly, for a self-concordant function f , the optimality gap at any point x ∈ dom f is bounded in terms
of the Newton decrement as

f(x)− f(x∗) 6 λf (x)2 . (12)

Due to the expensive cost of computing the Newton decrement λf (x) as opposed to λ̃f (x), we will aim to
characterize, w.h.p. over the randomness of the sketching matrix, similar optimality bounds and properties
with λ̃f (x).

Given x ∈ dom f , a sketch size m > 1, a random embedding S ∈ Rm×d and a sampling precision parameter
ε > 0, we consider the following probability event which is critical to our convergence guarantees,

Ex,m,ε : =
{

(1− ε

2
)Id � CS � (1 +

ε

2
)Id

}
, (13)

where CS : = H−
1
2HSH

− 1
2 , H ≡ H(x) and HS ≡ HS(x). In words, when Ex,m,ε holds true, the matrix

H−1/2HSH
−1/2 is a close approximation of the identity, i.e., H−1/2HSH

−1/2 ≈ H−1/2HH−1/2. The next
result bounds the probability for this event to hold for different choices of the sketching matrix.

Lemma 1. Let ε ∈ (0, 1/4) and p ∈ (0, 1/2). It holds that P(Ex,ε,m) > 1− p, provided that

m = Ω(dµ(x)2/(ε2p)) for the SJLT with single nonzero element in each column , (14)

m = Ω((dµ(x) + log(1/εp) log(dµ(x)/p))/ε2) for the SRHT . (15)

We show next that conditional on Ex,m,ε, the approximate Newton decrement λ̃f (x) is close to λf (x), as well
as the approximate Newton direction vnsk to the exact one vne.

4

Theorem 1 (Closeness of Newton decrements). Let ε ∈ (0, 1/4). Conditional on the event Ex,m,ε, it holds
that

‖vne − vnsk‖H(x) 6 ε · ‖vne‖H(x) , (16)
√

1− ε · λf (x) 6 λ̃f (x) 6
√

1 + ε · λf (x) . (17)

Given ε ∈ (0, 1/4), we introduce positive parameters a, b such that 1 − 1
2

(
1+ε
1−ε

)2
> a, which we use for

backtracking line-search (see Algorithm 1 for details). Furthermore, we define the parameters

η : =
1

8
·
(
1− 1

2

(1 + ε

1− ε
)2 − a)/(1 + ε

1− ε
)3
,

ν : = ab · η2

1 + 1+ε
1−ε · η

.

The next results aim to describe the empirical behavior of our methods. As for the classical Newton’s method,
we distinguish two phases. The algorithm follows a first phase with constant additive decrease in objective
value. In a second phase, it converges faster, i.e., the Newton decrement converges to zero at a geometric rate
up to quadratic for an appropriate choice of the hyperparameters.

Lemma 2 (First phase decrement). Let ε ∈ (0, 1/4). Suppose that Ex,m,ε holds true and that λ̃f (x) > η.
Then, we have that

f(xnsk)− f(x) 6 −ν . (18)

We introduce the following numerical function which will prove to be useful to characterize the rate of
convergence of our algorithms,

α(τ) : = 0.57 +
16τ

15
. (19)

It is easy to verify that α(τ)1/τ 6 2 for τ ∈ (0, 1] and α(0) 6 16
25 .

Lemma 3 (Second phase decrement). Let x ∈ dom f , τ ∈ [0, 1] and ε ∈ (0, 1/4). Set ε′ = ε ·min{1, λf (x)τ}.
We assume that the event Ex,m,ε′ holds and that λ̃f (x) 6 η. Then, we have

λf (xnsk) 6 α(τ) · λf (x)1+τ . (20)

Consequently, the progress is geometric for any τ ∈ (0, 1], i.e.,

α(τ)1/τ · λf (xnsk) 6
(
α(τ)1/τ · λf (x)

)1+τ
. (21)

On the other hand, the progress is linear for τ = 0, i.e.,

λf (xnsk) 6
16

25
· λf (x) . (22)

We conclude this section with a simple technical lemma which characterizes a sufficient number of iterations
before termination, under geometric convergence.

Lemma 4 (Geometric convergence and sufficient iteration number). Let δ ∈ (0, 1), α > 0, τ ∈ (0, 1],
and {βt}t>0 be a sequence of positive numbers such that β0 6 η, ηα1/τ < 1,

√
δα1/τ < 1 and α1/τβt+1 6

(α1/τβt)
1+τ for all t > 0. Then, it holds that βt 6

√
δ for any t > Tτ,α,δ where

Tτ,α,δ : = d 1

log(1 + τ)
· log

1 + τ log(1/δ)
2 log(1/α)

1 + τ log(1/η)
log(1/α)

e . (23)

5

Throughout this work, we will use the shorthand

Tτ,δ ≡ Tτ,α(τ),δ . (24)

Note in particular that Tτ,δ = O(log(τ log(1/δ))) for small δ. Further, it holds that limτ→0 Tτ,δ 6 d log(1/δ)
log(25/16)e,

which corresponds to the classical complexity of linear convergence with rate 16/25.

3 Effective dimension Newton sketch

We formally introduce our effective dimension Newton sketch method in Algorithm 1. Algorithm 1 takes as

Algorithm 1: Effective dimension Newton sketch

Require: Initial point x0 ∈ domf , threshold sketch sizes m1 and m2, initial sketch size m0 = m1,
line-search parameters (a, b), target accuracy δ > 0, convergence rate parameter τ ∈ [0, 1] and sampling
precision parameter ε = 1/8.

1: for t = 0, . . . do
2: Sample an mt × n embedding St independent of {Sj}t−1j=0. Compute vnsk and λ̃f (xt) based on St.

3: if λ̃f (xt)
2 6 3

4δ then return xt.
4: Starting at s = 1: while f(xt + svnsk) > f(xt) + as∇f(xt)

>vnsk, s← bs.
5: Update xt+1 ← xt + s · vnsk.

6: If λ̃f (xt) > η, set mt+1 = m1. Otherwise, set mt+1 = m2.
7: end for

inputs the phase 1 and phase 2 sketch sizes m1 and m2. As we will see in Theorem 2, sufficient values for m1

and m2 to guarantee convergence both depend on the effective dimension dµ. Here and only for Algorithm 1,
we make the idealized assumption that the quantity dµ is known. In contrast, we introduce in Section 4 an
adaptive method that does not require knowledge of dµ.

Theorem 2 (Geometric convergence guarantees of the Newton sketch). Let τ ∈ [0, 1], δ ∈ (0, 1/2) and
p0 ∈ (0, 1/2). Set ε = 1/8. Then, the total number of iterations Tf and the total time complexity C for
obtaining a δ-approximate solution x̃ in function value (i.e., f(x̃)− f(x∗) 6 δ) via Algorithm 1 satisfy

Tf 6 T : =
f(x0)− f(x∗)

ν
+ Tτ, 38 δ + 1 , (25)

C = O
(
m2

2d+ nd logm2

)
T , (26)

with probability at least 1− p0, provided that

m1 & dµ + log(
T

p0
) log(

dµT

p0
) , and m2 & δ−τ

(
dµ + log(

T

p0δτ/2
) log(

dµT

p0
)

)
. (27)

for the SRHT, whereas for the SJLT, it is sufficient to have

m1 &
d
2

µT

p0
, and m2 &

d
2

µT

δτp0
. (28)

We draw some immediate consequences of Theorem 2, which will be useful for further discussions and
comparisons of our complexity guarantees in Section 4.1. With the SRHT, consider the quadratic convergence

case, i.e., τ = 1. We pick a failure probability p0 � 1
dµ

, and sketch sizes m1 � dµ and m2 � dµ log(dµ/δ)
δ . We

observe quadratic convergence with Tf = O(log log(1δ
)
) iterations. Further, assuming that the sample size n

6

is large enough for the sketching cost O(nd logm) to dominate the cost O(m2d) of solving the randomized

Newton system, i.e., n &
d
2
µ log(dµ/δ)

δ2 , then the total complexity results in

C = O
(
nd log

(dµ
δ

)
log log(

1

δ
)
)
. (29)

Similarly, we consider the linear convergence case, i.e., τ = 0. For simplicity, suppose that dµ & log log(1/δ).
We pick p0 � 1

dµ
, and sketch sizes m1 � m2 � dµ. We observe linear convergence with Tf = O(log 1

δ)

iterations. Assuming again that the sample size n is large enough for the sketching cost to dominate the cost

of solving the randomized Newton system, i.e., n & d
2

µ/ log(dµ), we obtain the total time complexity

C = O
(
nd log(dµ) log(

1

δ
)

)
. (30)

We proceed with a similar discussion for the SJLT at the end of the proof of Theorem 2 deferred to the
Appendix.

3.1 Some applications of the effective dimension Newton sketch

We discuss various concrete instantiations of the optimization problem (1) where the function g satisfies µ-
strong convexity and for which forming the partially sketched Hessian HS(x) is amenable to fast computation.

Example 1 (Ridge regression). We consider the optimization problem

min
x∈Rd

{
f(x) : =

1

2
‖Ax− b‖22 +

µ

2
‖x‖22

}
(31)

where A ∈ Rn×d with n > d and whose solution is given in closed-form by x∗ = (A>A+ µId)
−1A>b. Direct

methods yield the exact solution in time O(nd2), whereas first-order methods (e.g., conjugate gradient method)
yield an δ-approximate solution in time O(

√
κnd log(1/δ)), where κ is the condition number of A. Randomized

pre-conditioning and sketching methods can improve on this complexity (see Section 4.1 for further details).
Here, our setting for the Newton sketch applies with f0(x) = 1

2‖Ax− b‖
2
2 (whose square-root Hessian is A)

and g(x) = µ
2 ‖x‖

2
2 which is µ-strongly convex.

Example 2 (Portfolio optimization). The optimization problem takes the form

min
x>0,

∑d
i=1 xj61

{
f0(x) : = −r>x+ α 〈x,Σx〉

}
, (32)

where Σ = A>A is an empirical covariance matrix based on the data A ∈ Rn×d, with n > d. Using the barrier
method, we need to solve its penalized version minx∈Rd{f0(x) + g(x)}, where g(x) : = −µ ·

∑d
i=1 log(xi)− µ ·

log(1− 〈1, x〉). We clearly have the Hessian square-root ∇2f0(x)1/2 =
√
αA. Further, g is µ-strongly convex

over its domain: indeed, note that for 0 < xi < 1, the Hessian of g is µdiag(x2i)
−1 +µ11> and the first term

satisfies µdiag(x2i)
−1 � µId.

Example 3 (Solving Lasso via its dual). Given A ∈ Rn×d with d� n, the dual Lasso problem takes the form

max
‖AT x‖∞6λ

{
−1

2
‖y − x‖22

}
. (33)

Applying the logarithmic barrier method, one needs to solve a sequence of problems of the form minx∈Rn{f0(x)+

g(x)} where g(x) : = µ
2 ‖y − x‖

2
2, f0(x) : = −

∑d
j=1 log(λ − 〈aj , x〉) −

∑d
j=1 log(λ + 〈aj , x〉) and aj is the

j-th column of A. This form is amenable to the Newton sketch: a square-root of ∇2f0(x) is given by
∇2f0(x)1/2 = diag(|λ− 〈aj , x〉 |−1 + |λ+ 〈aj , x〉 |−1) ·AT , and the function g(x) is µ-strongly convex.

7

Example 4 (Regularized logistic regression with n� d). We consider data points {(ai, yi)}ni=1 where each
ai is a d-dimensional feature vector with binary response yi ∈ {±1}. We aim to find a linear classifier through
regularized logistic regression, that is,

min
x∈Rd

{
n∑
i=1

log
(

1 + e−yia
>
i x
)

+
µ

2
‖x‖22

}
. (34)

Setting f0(x) =
∑n
i=1 log

(
1 + e−yia

>
i x
)

and g(x) = µ
2 ‖x‖

2
2, we have that ∇2f0(x)

1
2 = diag(h)A where the i-th

coefficient of h ∈ Rn is given by hi = eyia
>
i x/2

1+eyia
>
i
x

. More generally, empirical risk minimization with generalized

linear models yields a Hessian square-root of the form ’diagonal times data matrix A’.

Example 5 (Projection onto polyhedra). Given v ∈ Rd, A ∈ Rn×d with n� d and b ∈ Rn such that there
exists x0 ∈ Rd that satisfies Ax0 < b, we aim to solve the optimization problem

min
x∈Rd

1

2
‖x− v‖22 , (35)

s.t. Ax 6 b . (36)

Applying a barrier method, one needs to solve a sequence of optimization problems of the form minx f0(x)+g(x),
where f0(x) : = −

∑n
i=1 log(bi−a>i x) and g(x) = µ

2 ‖x−v‖
2
2. Clearly, g is µ-strongly convex, and a square-root

of ∇2f0(x) is given by diag(|bi − a>i x|−1)A.

4 Adaptive Newton Sketch with effective dimensionality

We turn to the adaptive version of Algorithm 1, which starts with small sketch size and does not require
knowledge or estimation of the effective dimension dµ. Importantly, our method is guaranteed to converge at
a tunable geometric rate, and with a sketch size scaling in terms of dµ.

For τ ∈ [0, 1] and ε ∈ (0, 1/4), we set

α(τ, ε) : =
(1 + ε)

1
2

(1− ε) 1+τ
2

· α(τ) , (37)

and we will consider in this section the sufficient number of iterations Tτ,α(τ,ε), δd
as defined in Lemma 4

for α = α(τ, ε). Our adaptive method is formally described in Algorithm 2. It starts each iteration by

checking whether λ̃f (xt) > η. If so, assuming the sketch size mt large enough, we have w.h.p. by Lemma 2

that f(xnsk)− f(x) 6 −ν and we set xt+1 = xnsk. Otherwise, if λ̃f (xt) 6 η, we have w.h.p. by Lemma 3 a

condition similar to λ̃f (xnsk) 6 α(τ, ε)(λ̃f (xt))
1+τ , in which case we set xt+1 = xnsk. If none of the above

events happen, we increase the sketch size by a factor 2. On the other hand, if the sketch size is not large
enough for the guarantees of Lemmas 2 and 3 to hold w.h.p., then either the algorithm terminates with a
potentially small sketch size, or, the sketch size must at some point become large enough due to the doubling
trick.

Note that if Algorithm 2 terminates, then it returns an iterate x such that λ̃f (x)2 6 δ
d . We prove next (see

Lemma 5) that this termination condition implies the δ-approximation guarantee, i.e., f(x) − f(x∗) 6 δ
w.h.p., provided that the initial sketch size is large enough, and regardless of the final sketch size.

Lemma 5 (Termination condition). Let δ ∈ (0, 1/2) and p ∈ (0, 1/2), and suppose that Algorithm 2 returns
x. Then, it holds that f(x)− f(x∗) 6 δ with probability at least 1− p provided that

m0 & log2(1/p) for the SRHT , and m0 & 1/p for the SJLT. (38)

8

Algorithm 2: Adaptive effective dimension Newton sketch

Require: Initial point x0 ∈ domf , initial sketch size m0 = m0, line-search parameters (a, b), target
accuracy δ ∈ (0, 1/2), convergence rate parameter τ ∈ [0, 1] and sampling precision parameter ε = 1/8.

1: for t = 0, . . . do
2: Sample St ∈ Rmt×n independent of St−1, . . . , S0.

3: Compute vnsk and λ̃f (xt) based on St.

4: if λ̃f (xt)
2 6 δ

d then return xt.
5: Find step size s with backtracking line search, and set xnsk = xt + svnsk.
6: if λ̃f (xt) > η then
7: if f(xnsk)− f(x) 6 −ν then
8: Set xt+1 = xnsk and mt+1 = mt.
9: else

10: Set xt+1 = xt and mt+1 = 2mt.
11: end if
12: else
13: Sample S+ ∈ Rmt×n independent of St, . . . , S0.
14: Compute v+ = −H−1S+∇f(xnsk) and λ̃f (xnsk) = (−〈∇f(xnsk), v+〉)1/2.

15: if λ̃f (xnsk) 6 α(τ, ε)(λ̃f (xt))
1+τ then

16: Set xt+1 = xnsk, mt+1 = mt, vnsk = v+ and go to step 4.
17: else
18: Set xt+1 = xt and mt+1 = 2mt.
19: end if
20: end if
21: end for

4.1 Time and memory space complexity guarantees

For conciseness, we present a succinct version of our complexity guarantees for the adaptive Newton sketch
(only for the linear rate τ = 0 and for the quadratic rate τ = 1). A more general statement for any τ ∈ [0, 1]
can be found in the proof of Theorem 3.

Theorem 3 (Geometric convergence guarantees of the adaptive Newton sketch). Let τ ∈ [0, 1], p0 ∈ (0, 1/2)
and δ ∈ (0, 1/2). Let m0 be an initial sketch size. Then, it holds with probability at least 1 − p0 that
Algorithm 2 returns a δ-approximate solution x̃ in function value (i.e., f(x̃) − f(x∗) 6 δ) in less than

T = O
(
Tτ,α(τ,ε), δd

log(dµ)
)

iterations, with final sketch size bounded by 2 ·m and with total time complexity

C. The values of m0, m and C depend on the choice S as follows.

(SRHT). For τ = 1 (quadratic rate), picking p0 � δ
d and assuming n large enough such that n &

d2d
2
µ

δ2 , we

have m0 � d
δ log(dδ), m � d

δ (dµ + log(dδ) log(dµ)), T = O(log(dµ) log log(d/δ)) and

C = O
(
nd log(dµ) log(d/δ) log log(d/δ)

)
. (39)

For τ = 0 (linear rate), picking p0 � 1/dµ and assuming n large enough such that n &
d
2
µ

log(dµ)
, we have

m0 � log2(d/δ), m � dµ, T = O(log(dµ) log(d/δ)) and

C = O
(
nd log2(dµ) log(d/δ)

)
. (40)

(SJLT). For τ = 1 (quadratic rate), assuming n large enough such that n &
d
4
µd

2 log(log(d/δ))2

δ2p20
, we have

9

m0 � d log(log(d/δ))
p0δ

, m � dd
2
µ log(log(d/δ))

p0δ
, T = O(log(dµ) log log(d/δ)) and

C = O
(
nd · log(dµ) · log(log(d/δ)))

)
. (41)

For τ = 0 (linear rate), assuming n large enough such that n &
d
4
µ log(d/δ)2

p20
, we have m0 � log(d/δ)

p0
,

m � d
2
µ log(d/δ)

p0
, T = O(log(dµ) log(d/δ)) and

C = O
(
nd · log(dµ) · log(d/δ))

)
. (42)

Note that adaptivity with convergence rate parameter τ comes at the cost of an additional dτ factor for the
final sketch size, compared to Algorithm 1. This is essentially due to our exit condition threshold δ/d that we

choose for the following reason. For small m & 1, the approximate Newton decrement λ̃2f (x) may fluctuate

around λ2f (x) by a factor up to dµ (see Theorem 1 in [13]). In this case, the exit condition λ̃f (xt)
2 ≈ δ would

result in f(xt) − f(x∗) ≈ δ · dµ. To guarantee δ-accuracy, it is sufficient to use the termination condition
δ/dµ to account for these fluctuations. As dµ is unknown, we choose to divide instead by d.

We summarize our complexity guarantees in Table 1. In contrast to gradient descent (GD), Nesterov’s
accelerated gradient descent (NAG) and Newton’s method (NE), our time complexity has no condition number
dependency and scales linearly in nd up to log-factors, and so does the original Newton sketch (NS). The NS
log-factor is at least log(d) log(1/δ) whereas our SRHT-quadratic mode adaptive method has a log-factor
log(dµ) log(d/δ) log(log(d/δ)). The latter is much smaller for effective dimension dµ small compared to d
and 1/δ. Furthermore, in terms of memory, our algorithm starts with small m whereas NS uses a constant
sketch size m & d. For τ = 0, our memory savings are drastic when dµ is small. There are downsides to our
method, in comparison to NS. For dµ close to d, our time complexity bounds become worse than NS, by an
adaptivity-cost factor log dµ for both τ = 0 and τ = 1. For τ = 1, our worst-case sketch size is always greater
than that of NS, by a factor dµ/δ, which comes from enforcing quadratic convergence.

When log dµ � log log(d/δ), then our SRHT/quadratic mode adaptive method yields a better time complexity
than its linear mode counterpart, but at the expense of worse memory complexity.

In the context of ridge regression, we note that the time complexity of our SRHT-linear mode adaptive
method scales similarly to the complexity of the adaptive method proposed by [20] for returning a certified
δ-accurate solution. Importantly, our method applies to a much broader range of optimization problems, and
can achieve better complexity by tuning the convergence rate parameter τ .

We emphasize again that our guarantees hold in a worst-case sense. In practice, the sketch size can start
from a small value and may remain significantly smaller than the bounds in Table 1, which we illustrate in
our numerical experiments.

5 Numerical experiments

In this section, we compare adaptive Newton Sketch (NS-ada) with other optimization methods in regularized
logistic regression problems as in Example 4. The compared methods include Newton Sketch (NS) with
fixed sketching dimension, Newton’s method (NE), gradient descent method (GD) and Nesterov’s accelerated
gradient descent method (NAG) [26]. For NS-ada and NS, we consider both SJLT sketching matrices and
random row sampling (RSS) sketching matrices. All numerical experiments are executed on a Dell PowerEdge
R840 workstation. Specifically, we use 4 cores with 192GB ram for all compared methods.

The datasets used in the numerical experiments are collected from LIBSVM1 [12]. The datasets for multi-class
classification are manually separated into two categories. For example, in MNIST dataset, we classify even

1https://www.csie.ntu.edu.tw/ cjlin/libsvm/

10

Table 1: We compare the time complexity of different optimization methods in order to achieve a δ-accurate
solution in function value, for a function with condition number κ. ’NS-effdim’ (resp. ’NS-ada’) refers to our
Algorithm 1 (resp. our Algorithm 2); ’linear’ (resp. ’quadratic’) signifies the choice τ = 0 (resp. τ = 1). We
refer to [27] for gradient descent (GD), Nesterov’s accelerated gradient method (NAG) and Newton’s method
(NE); we refer to [31] for the Newton sketch (NS), and we refer to Theorems 2 and 3 for our algorithms. For
each algorithm, we assume that the sample size n is large enough for the time complexity to scale at least
linearly in the term nd.

Algorithm Time complexity Sketch size Proba. Linear scaling regime

GD κ · nd · log(1/δ) - 1 -

NAG
√
κ · nd · log(1/δ) - 1 -

NE nd2 log(log(1/δ)) - 1 -

NS nd log(d) log(1/δ) d 1− 1
d n & d2

log d

NS-effdim nd log(dµ) log(1/δ) dµ 1− 1
dµ

n &
d2µ

log(dµ)

(SHRT, linear)

NS-effdim nd log(dµ/δ) log(log(1/δ))
dµ
δ log(dµ/δ) 1− 1

dµ
n &

d
2
µ log(

dµ
δ)

δ2

(SHRT, quadratic)

NS-ada nd log(dµ)2 log(d/δ) dµ 1− 1
dµ

n &
d
2
µ

log(dµ)

(SRHT, linear)

NS-ada nd log(dµ) log(dδ) log(log(dδ)) d
δ

(
dµ + log(dδ) log(dµ)

)
1− 1

dµ
n &

d2d
2
µ

δ2

(SRHT, quadratic)

and odd digits. For each dataset, we randomly split it into a training set and a test set with the ratio 1 : 1.
Several additional numerical results and experimental details are reported in Appendix A.

5.1 Regularized logistic regression

We demonstrate the performance of all compared methods on regularized logistic regression problems. The

relative error is calculated by f(x)−fref+ε
1+fref

. Here fref is the minimal training loss function value among all

compared methods and ε = 5× 10−7 is a small constant.

We report the relative error and the test error with respect to the iteration number and the cpu-time in
Figures 1 and 2. NS-ada-SJLT or NS-ada-RRS can achieve the best performance in the relative error with
respect to the cpu-time. We can also obverse the super-linear asymptotic convergence rate of NS-ada as it
gets closer to the optimum. Compared to NS, NS-ada requires less iterations and less time to converge to
a solution with small relative error. Compared to methods utilizing second-order information, first-order
methods like GD and NAG are not competitive to find a high-precision solution.

5.2 Regularized logistic regression with kernel matrix

We also test on regularized logistic regression with the kernel matrix. The relative error and the test error with
respect to the iteration number and the cpu-time are plotted in Figure 5 to 9. NS-ada-SJLT and NS-ada-RRS
demonstrate asymptotic super-linear convergence rate of the relative error as the Newton’s method in terms
of iteration numbers. They also achieve a rapid decrease in relative error in terms of cpu-time. First-order
methods do not perform well in terms of relative error. This may come from that the kernel matrices are

11

Figure 1: MNIST. n = 30000, d = 780, µ = 10−1.

Figure 2: realsim. n = 50000, d = 20958, µ = 10−3.

usually ill-conditioned, i.e., with large condition number.

Figure 3: a8a. kernel matrix. n = 10000, d = 10000, µ = 10.

Figure 4: w7a. kernel matrix. n = 12000, d = 12000, µ = 10.

12

References
[1] N. Ailon and B. Chazelle. Approximate nearest neighbors and the fast johnson-lindenstrauss transform.

In Proceedings of the thirty-eighth annual ACM symposium on Theory of computing, pages 557–563.
ACM, 2006.

[2] A. E. Alaoui and M. W. Mahoney. Fast randomized kernel ridge regression with statistical guarantees.
In Proceedings of the 28th International Conference on Neural Information Processing Systems-Volume
1, pages 775–783, 2015.

[3] H. Asi and J. C. Duchi. The importance of better models in stochastic optimization. Proceedings of the
National Academy of Sciences, 116(46):22924–22930, 2019.

[4] H. Avron, K. L. Clarkson, and D. P. Woodruff. Sharper bounds for regularized data fitting. Approximation,
Randomization, and Combinatorial Optimization. Algorithms and Techniques, 2017.

[5] H. Avron, P. Maymounkov, and S. Toledo. Blendenpik: Supercharging lapack’s least-squares solver.
SIAM Journal on Scientific Computing, 32(3):1217–1236, 2010.

[6] F. Bach. Sharp analysis of low-rank kernel matrix approximations. In Conference on Learning Theory,
pages 185–209. PMLR, 2013.

[7] B. Bartan and M. Pilanci. Distributed sketching methods for privacy preserving regression. arXiv
preprint arXiv:2002.06538, 2020.

[8] A. S. Berahas, R. Bollapragada, and J. Nocedal. An investigation of newton-sketch and subsampled
newton methods. Optimization Methods and Software, 35(4):661–680, 2020.

[9] R. Bollapragada, R. H. Byrd, and J. Nocedal. Exact and inexact subsampled newton methods for
optimization. IMA Journal of Numerical Analysis, 39(2):545–578, 2019.

[10] S. Boyd and L. Vandenberghe. Convex optimization. Cambridge university press, 2004.

[11] R. H. Byrd, G. M. Chin, W. Neveitt, and J. Nocedal. On the use of stochastic hessian information in
optimization methods for machine learning. SIAM Journal on Optimization, 21(3):977–995, 2011.

[12] C. Chih-Chung and L. Chih-Jen. LIBSVM: a library for support vector machines. ACM Transactions
on Intelligent Systems and Technology, 2011.

[13] M. B. Cohen, J. Nelson, and D. P. Woodruff. Optimal approximate matrix product in terms of stable
rank. arXiv preprint arXiv:1507.02268, 2015.

[14] M. Derezinski, B. Bartan, M. Pilanci, and M. W. Mahoney. Debiasing distributed second order
optimization with surrogate sketching and scaled regularization. In Conference on Neural Information
Processing Systems, 2020.

[15] E. Dobriban and S. Liu. Asymptotics for sketching in least squares regression. In Advances in Neural
Information Processing Systems, pages 3670–3680, 2019.

[16] N. Doikov and P. Richtárik. Randomized block cubic Newton method. International Conference on
Machine Learning, 2018.

[17] P. Drineas and M. W. Mahoney. RandNLA: randomized numerical linear algebra. Communications of
the ACM, 59(6):80–90, 2016.

[18] R. Gower, D. Koralev, F. Lieder, and P. Richtárik. RSN: Randomized subspace newton. In Advances in
Neural Information Processing Systems, pages 616–625, 2019.

13

[19] J. Lacotte, S. Liu, E. Dobriban, and M. Pilanci. Limiting spectrum of randomized hadamard transform
and optimal iterative sketching methods. In Conference on Neural Information Processing Systems,
2020.

[20] J. Lacotte and M. Pilanci. Effective dimension adaptive sketching methods for faster regularized
least-squares optimization. Advances in Neural Information Processing Systems, 33, 2020.

[21] J. Lacotte, M. Pilanci, and M. Pavone. High-dimensional optimization in adaptive random subspaces.
arXiv preprint arXiv:1906.11809, 2019.

[22] X. Li, S. Wang, and Z. Zhang. Do subsampled newton methods work for high-dimensional data? In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 34, pages 4723–4730, 2020.

[23] M. W. Mahoney. Randomized algorithms for matrices and data. Foundations and Trends® in Machine
Learning, 3(2):123–224, 2011.

[24] X. Meng, M. A. Saunders, and M. W. Mahoney. Lsrn: A parallel iterative solver for strongly over-or
underdetermined systems. SIAM Journal on Scientific Computing, 36(2):C95–C118, 2014.

[25] J. Nelson and H. L. Nguyên. Osnap: Faster numerical linear algebra algorithms via sparser subspace
embeddings. In 2013 ieee 54th annual symposium on foundations of computer science, pages 117–126.
IEEE, 2013.

[26] Y. Nesterov. A method of solving a convex programming problem with convergence rate O(1/k2). Soviet
Mathematics Doklady, 27(2):372–376, 1983.

[27] Y. Nesterov. Introductory lectures on convex optimization: A basic course, volume 87. Springer Science
& Business Media, 2003.

[28] Y. Nesterov. Efficiency of coordinate descent methods on huge-scale optimization problems. SIAM
Journal on Optimization, 22(2):341–362, 2012.

[29] Y. Nesterov and B. T. Polyak. Cubic regularization of Newton method and its global performance.
Mathematical Programming, 108(1):177–205, 2006.

[30] J. Nocedal and S. Wright. Numerical optimization. Springer Science & Business Media, 2006.

[31] M. Pilanci and M. J. Wainwright. Newton sketch: A near linear-time optimization algorithm with
linear-quadratic convergence. SIAM Journal on Optimization, 27(1):205–245, 2017.

[32] Z. Qu, P. Richtárik, M. Takác, and O. Fercoq. SDNA: Stochastic dual Newton ascent for empirical risk
minimization. In International Conference on Machine Learning, pages 1823–1832, 2016.

[33] V. Rokhlin and M. Tygert. A fast randomized algorithm for overdetermined linear least-squares regression.
Proceedings of the National Academy of Sciences, 105(36):13212–13217, 2008.

[34] F. Roosta-Khorasani and M. W. Mahoney. Sub-sampled newton methods. Mathematical Programming,
174(1):293–326, 2019.

[35] O. Shamir, N. Srebro, and T. Zhang. Communication-efficient distributed optimization using an
approximate newton-type method. In International conference on machine learning, pages 1000–1008.
PMLR, 2014.

[36] S. S. Vempala. The random projection method, volume 65. American Mathematical Society, 2005.

[37] S. Wang, F. Roosta, P. Xu, and M. W. Mahoney. Giant: Globally improved approximate newton method
for distributed optimization. Advances in Neural Information Processing Systems, 31:2332–2342, 2018.

14

[38] D. P. Woodruff et al. Sketching as a tool for numerical linear algebra. Foundations and Trends® in
Theoretical Computer Science, 10(1–2):1–157, 2014.

[39] P. Xu, F. Roosta, and M. W. Mahoney. Second-order optimization for non-convex machine learning:
An empirical study. In Proceedings of the 2020 SIAM International Conference on Data Mining, pages
199–207. SIAM, 2020.

[40] P. Xu, J. Yang, F. Roosta-Khorasani, C. Ré, and M. W. Mahoney. Sub-sampled newton methods with
non-uniform sampling. arXiv preprint arXiv:1607.00559, 2016.

[41] Y. Yang, M. Pilanci, M. J. Wainwright, et al. Randomized sketches for kernels: Fast and optimal
nonparametric regression. The Annals of Statistics, 45(3):991–1023, 2017.

15

A Additional experimental details

For NS-ada, we double the sketching dimension when λ̃f (xt+1) > c1λ̃f (xt) min(1, c2λ̃f (xt)τ). Here c1, c2 > 0
and τ ∈ [0, 1]. For all compared methods, we use the backtracking line search method to find a step size
satisfying the Armijo condition. For NS-ada, NS and NE, we stop the algorithm when λ̃f (x) < 10−6 or
λf (x) < 10−6. For GD and NAG, we first compute a referenced solution x̃∗ based on NS-ada. Then, we stop

the algorithm when f(x)−f(x̃∗)
1+f(x̃∗) < 10−6.

The parameters for NS-ada and NS for each dataset are summarized in Tables 2 to 4.

Dataset m0 c1 τ c2
RCV1 100 2 0 1

MNIST 100 0.5 1 6
gisette 100 2 0 1
realsim 100 2 0 1
epsilon 100 1 0 1

Table 2: Parameters for adaptive Newton sketch with SJLT sketching.

Dataset m0 c1 τ c2
RCV1 100 1 0 1

MNIST 100 0.5 1 6
gisette 100 2 0 1
realsim 100 2 0 1
epsilon 100 1 0 1

Table 3: Parameters for adaptive Newton sketch with RRS sketching.

Dataset m (SJLT) m (RRS)
RCV1 800 800

MNIST 800 1600
gisette 400 400
realsim 800 3200
epsilon 800 3200

Table 4: Sketching dimensions of Newton Sketch.

We present numerical performance of compared methods with additional details and additional numerical
experiments in Figures 5 to 9. Comparatively, NS-ada-RRS tends to have larger sketching dimension than
NS-ada-SJLT. This may come from that NS-RRS has stronger oscillations than NS-SJLT in the plot of λ̃f (xt).
Thus, NSN-ada-RRS can be slower than NS-ada-SJLT in some test cases where n is not significantly larger
than d.

For kernelized regularized logistic regression, the data matrices A and Ã are constructed as kernel matrices
based on the original data features. Namely, it follows

Ai,j = k(ãi, ãj), Atest
i,j = k(ãtesti , ãj),

where {ãi}ni=1 and {ãtestj }
ntext
i=1 are original data features from the training set and test set respectively. Here

k(x, x′) : Rd × Rd → R is a positive kernel function. We use the isotropic Gaussian kernel function:

k(x, x′) = (2πh)−d/2 exp

(
− 1

2h
‖x− x′‖22

)
,

16

Figure 5: RCV1. n = 10000, d = 47236, µ = 10−3.

Figure 6: MNIST. n = 30000, d = 780, µ = 10−1.

Figure 7: realsim. n = 50000, d = 20958, µ = 10−3.

17

Figure 8: gisette. n = 3000, d = 5000, µ = 10−3.

Figure 9: epsilon. n = 50000, d = 2000, µ = 10−1.

18

where h > 0 is the bandwidth. We set h = 10 for a8a dataset and h = 20 for w7a dataset. For NS-ada-SJLT
and NS-ada-RRS, we let c1 = 0.5, τ = 0 and c2 = 1. For NS, the sketching dimensions are summarized in
Table 5.

Dataset m (SJLT) m (RRS)
a8a-kernel 100 800
w7a-kernel 100 800

Table 5: Sketching dimensions of Newton Sketch. kernel matrix.

We present numerical results with additional details in Figures 10 and 11. We can also observe super linear
convergence rate of NS-ada in the plot of λ̃f (xt) when xt is close to the optimum of the optimization problem.
Similarly, NS-ada-RRS tends to have larger sketching dimension than NS-ada-SJLT.

Figure 10: a8a. kernel matrix. n = 10000, d = 10000, µ = 10.

Figure 11: w7a. kernel matrix. n = 12000, d = 12000, µ = 10.

19

B Proof of main results

B.1 Proof of Lemma 1

Let x ∈ dom f . We use the shorthand A : = ∇2f0(x)1/2, and we let A = UΣV > be a thin SVD of A. We
denote by H1/2 an invertible square-root matrix of the Hessian H ≡ H(x) = A>A +∇2g(x). Recall that
HS ≡ HS(x) = A>S>SA+∇2g(x). Then, we have

CS = H−
1
2HSH

− 1
2 = H−

1
2 (H + (HS −H))H−

1
2

= Id +H−1/2(HS −H)H−1/2

= Id +H−1/2V Σ(U>S>SU − Id)ΣV >H−1/2 .

We use the shorthand M : = ΣV >H−1/2. Using the fact that ∇2g(x) � µ · Id, it follows that

‖M‖2F = trace(ΣV >H−1V Σ) 6 trace(ΣV >(A>A+ µId)
−1V Σ) = dµ(x) . (43)

It remains to control the spectral norm of M>(U>S>SU − Id)M .

(SJLT). It was shown in [25] that for ε > 0 and p ∈ (0, 1/2), it holds with probability at least 1 − p that

‖M>(U>S>SU − Id)M‖2 6 ε provided that m > c0
‖M‖4F
ε2p , where c0 > 0 is a universal constant. Note that

this lower bound on the sketch size is increasing as a function of ‖M‖2F . From inequality (43), it is then

sufficient to have m > c0
dµ(x)

2

ε2p for the above inequality to hold with probability at least 1− p.

(SRHT). According to Theorems 1 and 9 in [13], it holds with probability at least 1−p that ‖M>(U>S>SU−
Id)M‖2 6 ε provided that m > c0 · ε−2

(
‖M‖2F + log(1

εp) log(‖M‖2F /p)
)

, where c0 is a universal constant.

Note that this lower bound on the sketch size is increasing as a function of ‖M‖2F . From inequality (43), it

is then sufficient to have m > c0 · ε−2
(
dµ(x) + log(1

εp) log(dµ(x)/p)
)

for the above inequality to hold with

probability at least 1− p.

B.2 Proof of Theorem 1

Let x ∈ dom f . Plugging-in the definitions of vne and vnsk, we have

‖vne − vnsk‖H(x) = ‖H1/2(vne − vnsk)‖2 = ‖H1/2(H−1S ∇f(x)−H−1∇f(x))‖2
= ‖(H1/2H−1S H1/2 − Id)H−1/2∇f(x)‖2
6 ‖C−1S − Id‖2 · ‖H

−1/2∇f(x)‖2 .

Using that ‖H−1/2∇f(x)‖2 = ‖vne‖H(x), we further obtain

‖vne − vnsk‖H(x) 6 ‖C−1S − Id‖2 · ‖vne‖H(x) .

Under the event Ex,m,ε, it holds for ε ∈ (0, 1/4) that (1 + ε/2)−1Id � C−1S � (1− ε/2)−1Id. Using the facts
that (1 + ε/2)−1 > 1− ε and (1− ε/2)−1 6 1 + ε, we obtain the inequality ‖C−1S − Id‖2 6 ε, whence

‖vne − vnsk‖H(x) 6 ε · ‖vne‖H(x) ,

which proves the first inequality of Theorem 1. On the other hand, we have

λ̃f (x)2 =
〈
∇f(x), H−1S ∇f(x)

〉
=
〈
H−

1
2∇f(x), H

1
2H−1S H

1
2H−

1
2∇f(x)

〉
= ‖C−

1
2

S H−
1
2∇f(x)‖2 .

20

It follows that

1

σmax(CS)
· λf (x)2 6 λ̃f (x)2 6

1

σmin(CS)
· λf (x)2 .

Conditional on the event Ex,m,ε and using that (1 + ε/2)−1 > 1− ε and (1− ε/2)−1 6 1 + ε, we obtain the
claimed result, i.e.,

(1− ε) · λf (x)2 6 λ̃f (x)2 6 (1 + ε) · λf (x)2 .

B.3 Proof of Lemma 2

Our proof of this result closely follows the steps of the proof of Lemma 3(a) in [31]: the core arguments are
the same, but we adapt the proof to our technical framework, that is, conditional on the event Ex,m,ε.

The strategy of the proof is to show that the backtracking line search leads to a step size s > 0 such that
f(xnsk)− f(x) 6 −ν. We define the univariate function g(u) : = f(x+ uvnsk) and we set ε′ = 2ε

1−ε . We first

show that û = 1

1+(1+ε′)λ̃f (x)
satisfies the bound

g(û) 6 g(0)− aûλ̃2f (x) , (44)

which implies that û satisfies the exit condition of backtracking line search. Therefore, the step size s must be
lower bounded as s > bû, which further implies that the new iterate xnsk = x+ svnsk satisfies the decrement
bound

f(xnsk)− f(x) 6 −ab · λ̃f (x)2

1 + (1 + 2ε
1−ε)λ̃f (x)

.

By assumption, λ̃f (x) > η. Using the fact that the function u 7→ u2

1+(1+ 2ε
1−εu)

is monotone increasing, we get

that

f(xnsk)− f(x) 6 −ab · η2

1 + (1 + 2ε
1−ε)η

= ν ,

which is exactly the claimed result. It remains to prove the claims (44).

According to Lemma 4 in [31], we have for any u > 0 and γ > 0 that

g(u) 6 g(0)− uλ̃f (x)2 − γ − log(1− γ) , (45)

provided that u‖vnsk‖H(x) 6 γ < 1. By assumption, the event Ex,m,ε holds true. As a consequence of
Theorem 1, we have that

‖vnsk‖H(x) 6 (1 + ε)λf (x) 6
1 + ε

1− ε
· λ̃f (x) = (1 + ε′)λ̃f (x) .

It follows that û‖vnsk‖H(x) 6 û(1 + ε′)λ̃f (x) < 1. Plugging-in u = û and γ = û(1 + ε′λ̃f (x)) into (45), we
obtain that

g(û) 6 g(0)− ûλ̃f (x)2 − û(1 + ε′)λ̃f (x)− log(1− û(1 + ε′)λ̃f (x))

= g(0)−
{
û(1 + ε′)2λ̃f (x)2 + û(1 + ε′)λ̃f (x) + log(1− û(1 + ε′)λ̃f (x))− û((1 + ε′)2 − 1)λ̃f (x)2

}
.

21

Using that û(1 + ε′)2λ̃f (x)2 + û(1 + ε′)λ̃f (x) = (1 + ε′)λ̃f (x) and û((1 + ε′)2 − 1)λ̃f (x)2 =
(ε′2+2ε′)λ̃f (x)

2

1+(1+ε′)λ̃f (x)
, we

find that

g(û) 6 g(0)− (1 + ε′)λ̃f (x) + log(1 + (1 + ε′)λ̃f (x)) +
(ε′

2
+ 2ε′)λ̃f (x)2

1 + (1 + ε′)λ̃f (x)
.

Applying the inequality −z + log(1 + z) 6 − 1
2

z2

(1+z) with z = (1 + ε′)λ̃f (x), we further obtain that

g(û) 6 g(0)−
1
2 (1 + ε′)2λ̃f (x)2

1 + (1 + ε′)λ̃f (x)
+

(ε′
2

+ 2ε′)λ̃f (x)2

1 + (1 + ε′)λ̃f (x)

= g(0)−

(
1

2
− ε′

2

2
− ε′

)
λ̃f (x)2û

6 g(0)− aλ̃f (x)2û ,

where the final inequality follows by the assumption that a 6 1− 1
2

(
1+ε
1−ε

)2
, that is, a 6 1

2 −
ε′2

2 − ε
′. This

concludes the proof.

B.4 Proof of Lemma 3

We recall Theorem 4.1.6 of [27] (see, also, Exercise 9.17 in [10]): it guarantees that for a step size s > 0 such
that |1− s‖vnsk‖H(x)| < 1, we have

(1− s‖vnsk‖H(x))
2 ·H(x) � H(x+ svnsk) � 1

(1− s‖vnsk‖H(x))2
·H(x) . (46)

By assumption, the event Ex,m,ε′ holds. As a consequence of Theorem 1, we have ‖vnsk‖H(x) 6 (1+ε′)‖vne‖H(x).
Plugging this bound into (46) and using that ‖vne‖H(x) = λf (x), we obtain

(1− s(1 + ε′)λf (x))2 ·H(x) � H(x+ svnsk) � 1

(1− s(1 + ε′)λf (x))2
·H(x) , (47)

for s > 0 such that s(1 + ε′)λf (x) < 1. Denote by snsk the step size obtained by backtracking line search. It
satisfies snsk 6 1. Then, it holds that

snsk(1 + ε′)λf (x) 6 (1 + ε′)λf (x) 6
(i)

1 + ε′√
1− ε′

· λ̃f (x)

6
(ii)

1 + ε′√
1− ε′

· η

<
(iii)

1 ,

where inequality (i) follows from the assumption that Ex,m,ε′ holds and from Theorem 1; inequality (ii) follows

from the assumption that λ̃f (x) 6 η. Furthermore, we have ε′ 6 ε < 1/4, as well as η < 1/16 (see Lemma 7)
and this yields inequality (iii).

22

Using (47), we then obtain that

λf (xnsk) = ‖H(xnsk)−1/2∇f(xnsk)‖2

6
1

(1− (1 + ε′)λf (x))
· ‖H(x)−1/2∇f(xnsk)‖2

=
1

(1− (1 + ε′)λf (x))
·
∥∥∥∥H(x)−1/2

(
∇f(x) +

∫ 1

0

H(x+ svnsk)vnskds

)∥∥∥∥
2

6
1

(1− (1 + ε′)λf (x))
· (M1 +M2) ,

where

M1 =

∥∥∥∥H(x)−1/2
(
∇f(x) +

∫ 1

0

H(x+ svnsk)vneds

)∥∥∥∥
2

,

M2 =

∥∥∥∥H(x)−1/2 ·
∫ 1

0

H(x+ svnsk)(vnsk − vne)ds
∥∥∥∥
2

.

It remains to bound the terms M1 and M2. Regarding M1, we have after re-arranging and using inequality (47)
that

M1 =

∥∥∥∥∫ 1

0

(
H(x)−1/2H(x+ svnsk)H(x)−1/2 − Id

)
ds ·H(x)1/2vne

∥∥∥∥
2

6

∣∣∣∣∫ 1

0

1

(1− s(1 + ε′)λf (x))2
ds− 1

∣∣∣∣ · ∥∥∥H(x)1/2vne

∥∥∥
2

=
(1 + ε′)λ2f (x)

1− (1 + ε′)λf (x)
.

Regarding M2, we have

M2 =

∥∥∥∥∫ 1

0

H(x)−1/2H(x+ svnsk)H(x)−1/2dsH(x)1/2(vnsk − vne)
∥∥∥∥
2

6

∥∥∥∥∫ 1

0

1

(1− s(1 + ε′)λf (x))2
ds ·H(x)1/2(vnsk − vne)

∥∥∥∥
2

=
1

1− (1 + ε′)λf (x)
·
∥∥∥H(x)1/2(vnsk − vne)

∥∥∥
2

6
ε′λf (x)

1− (1 + ε′)λf (x)
,

where the last inequality follows from the assumption that the event Ex,m,ε′ holds and as a consequence of
Theorem 1. Plugging these bounds on M1 and M2, we obtain that

λf (xnsk) 6
(1 + ε′)λf (x)2 + ε′λf (x)

(1− (1 + ε′)λf (x))2
. (48)

Recall that ε′ 6 ε · λf (x)τ . Combining this inequality with (48), we obtain

λf (xnsk) 6
(1 + ε λf (x)τ) · λf (x)2 + ε · λf (x)1+τ

(1− (1 + ε λf (x)τ)λf (x))2
=

λf (x)1−τ + ε λf (x) + ε

(1− (1 + ε λf (x)τ)λf (x))2︸ ︷︷ ︸
: =α(τ,x)

·λf (x)1+τ .

23

On the event Ex,m,ε′ , we have according to Theorem 1 that (1 + ε)λf (x) 6 (1+ε)λ̃f (x)√
1−ε 6 (1+ε)η√

1−ε 6 1
16 , where

the last inequality follows from Lemma 7. Hence, the denominator of α(τ, x) satisfies

1− (1 + ελf (x)τ)λf (x) > 1− (1 + ε)λf (x) >
15

16
,

while the numerator of α(τ, x) satisfies

λf (x)1−τ + ε λf (x) + ε 6
1

161−τ
+

1

32
+

1

2

Combining these bounds together, we obtain that

α(τ, x) 6
8 + 1/2 + 16τ

15
6 0.57 +

16τ

15
= α(τ) .

It is easy to verify that α(τ)1/τ 6 2 for any τ ∈ (0, 1]. Furthermore, for τ = 0, we obtain that α(0) ≈
0.63333 6 0.64 = 16

25 , and this concludes the proof. Note that a similar linear convergence rate was obtained
for the Newton sketch provided that m & d (see Lemma 3 in [31]).

B.5 Proof of Lemma 4

By induction, we obtain for any t > 0 that α
1
τ βt 6 (α

1
τ η)(1+τ)

t

. To have βt 6
√
δ, it suffices that

(α
1
τ η)(1+τ)

t

6 α
1
τ

√
δ. Taking the logarithm on both sides, this yields (1 + τ)t log(α

1
τ η) 6 log(α

1
τ

√
δ), i.e.,

(1 + τ)t log(1/α
1
τ η) > log(1/α

1
τ

√
δ). By assumption, log(1/α

1
τ η) > 0 and log(1/α

1
τ

√
δ) > 0. Therefore, after

dividing both sides by log(1/α
1
τ η) and taking again the logarithm, we find that it is sufficient to have

t > d 1

log(1 + τ)
· log

(
log(1/α

1
τ

√
δ)

log(1/α
1
τ η)

)
e

= d 1

log(1 + τ)
· log

1 + τ log(1/δ)
2 log(1/α)

1 + τ log(1/η)
log(1/α)

e
= Tτ,α,δ .

B.6 Proof of Theorem 2

We denote N1 : = f(x0)−f(x∗)
ν and p̃ : = p0

T+2
, where T : = N1 + 1 + Tτ, 38 δ. Recall that we pick ε = 1/8.

Our proof strategy proceeds as follows. In a first phase, we show that f(xnsk) − f(x) 6 −ν until such a
decrement cannot occur anymore, i.e., until f(xt)− f(x∗) < ν. Technical arguments for Phase 1 essentially
follow from Lemma 2. Then, we enter a second phase where we observe a geometric decrease of the Newton
decrement as described in Lemma 3.

We define

t : = inf
{
k > 0 | λ̃f (xk) 6 η

}
,

According to Lemma 8, we have t 6 N1 with probability at least 1−N1p̃.

We turn to the analysis of Phase 2. We suppose that Tf > t (i.e., the algorithm has not terminated during
Phase 1), we define the additional number of iterations J : = min{Tτ, 38 δ, Tf − t− 1}, and we introduce the
event

E(2) : =
{
Ext,mt,ε ∩

J⋂
j=0

E
xt+1+j ,mt+1+j ,εδ

τ
2

}
.

24

Let us assume that E(2) holds true, which happens with probability at least 1− (2 + Tτ, 38 δ)p̃ according to
Corollary 1. According to Lemma 9, we have for any j = 0, . . . , J that mt+1+j = m2 and,

α(τ)
1
τ λf (xt+1+j) 6 (α(τ)

1
τ λf (xt+1))(1+τ)

j

.

Further, we have from Lemma 3 and Theorem 1 that λf (xt+1) 6 16
25 · λf (xt) 6

λ̃f (xt)√
1−ε 6 η√

1−ε 6 1
16 . Hence,

α(τ)
1
τ λf (xt+1) < 1/8. As a consequence of Lemma 4, we must have that λf (xt+1+j)

2 6 3
8δ for some j 6 Tτ, 38 δ,

which further implies that

λ̃f (xt+1+j)
2 6 (1 + ε)λf (xt+1+j)

2 6
3(1 + ε)

8
δ 6

3

4
δ .

The above inequality implies termination of the algorithm before the time t + 1 + Tτ, 38 δ. Using a union

bound over {t 6 N1} and E(2), we find that the algorithm terminates within N1 + 1 + Tδ, 38 δ iterations with

probability at least 1− (N1 + 2 + Tτ, 38 δ)p̃.

It remains to guarantee that the algorithm returns a point x̃ such that f(x̃)− f(x∗) 6 δ. Note that the exit

criterion guarantees that λ̃f (x̃)2 6 3
4δ. Furthermore, the final sketch size m̃ necessarily satisfies m̃ > m1,

so that, according to Theorem 1, we have with probability at least 1 − p̃ that λf (x̃)2 6 1
1−ε λ̃f (x̃)2 6 δ.

Self-concordance of f further implies that f(x̃)− f(x∗) 6 λf (x̃)2 6 δ.

In conclusion, we have shown that the algorithm returns a δ-accurate solution within N1 + 1 +Tτ, 38 δ iterations

with probability at least 1− (N1 + 3 + Tτ, 38 δ)p̃ = 1− p0. This concludes the proof.

B.6.1 Complexity guarantees for the SJLT

With the SJLT, consider the quadratic convergence case, i.e., τ = 1. Let p0 > 0 be a failure probability, and
consider the sketch sizes

m1 �
d
2

µ log log 1/δ

p0
, m2 �

1

δ
·
d
2

µ log log 1/δ

p0
.

We observe quadratic convergence with Tf = O(log log(1
δ

)
) iterations. Further, assuming that the sketching

cost O(nd) dominates the cost O(m2d) of solving the randomized Newton system, i.e., n &
d
4
µ log(log(1/δ))2

δ2p20
,

then the total complexity results in

C = O
(
nd log log 1/δ

)
.

Similarly, we consider the linear convergence case, i.e., τ = 0, and pick a failure probability p0 > 0. Consider
the sketch sizes

m1 � m2 �
d
2

µ log 1/δ

p0
.

We observe linear convergence with Tf = O(log 1
δ) iterations. Assuming again that the sketching cost

dominates the cost of solving the randomized Newton system, i.e., n &
d
4
µ log2(1/δ)

p20
, we obtain the total time

complexity

C = O(nd log(1/δ)) .

25

B.7 Proof of Lemma 5

Let S ∈ Rm×n be an embedding, and CS : = H−1/2HSH
−1/2. We use the notations A : = ∇2f0(x)1/2, and

we let A = UΣV > be a thin SVD of A. Then, we have

CS = H−
1
2HSH

− 1
2 = H−

1
2 (H + (HS −H))H−

1
2

= Id +H−1/2(HS −H)H−1/2

= Id +M>(U>S>SU − Id)M ,

where M : = ΣV >H−1/2. According to [13], it holds that ‖M>(U>S>SU−Id)M‖2 6 dµ
2 (i.e., ‖CS‖2 6 1+

dµ
2)

with probability at least 1− p, provided that m > Ω(log2(1/p)) for a SRHT S, and, m > Ω(1/p) for a SJLT
S.

Then, we use the fact that

λ̃f (x)2 = 〈H−1/2∇f(x), H1/2H−1S H1/2H−1/2∇f(x)〉 > 1

‖CS‖2
· λf (x)2 .

Conditional on ‖CS‖2 6 1 +
dµ
2 , it follows that

λf (x)2 6 ‖CS‖2 · λ̃f (x)2 6 (1 +
dµ
2

)
δ

d
6 δ .

Using the self-concordance of f , we obtain that f(x)− f(x∗) 6 δ. This concludes the proof.

B.8 Proof of Theorem 3

We introduce the notations

T = Tτ,α(τ,ε), δd
+N1 , p̃ =

p0

T
and ε′ = ε ·

(
δ

(1 + ε)d

)τ/2
.

We consider m a sketch size such that Ex,m,ε′ holds with probability at least 1− p̃, that is,

m = Ω
(dτd2µT
p0δτ

)
for the SJLT ,

m = Ω

(
dτ

δτ

(
dµ + log

(Tdτ/2
p0δτ/2

)
log
(dµT
p0

)))
for the SRHT .

Phase 2. Let t > 0 be the first iteration such that mt > m, if any. Let x ≡ xt+j be an iterate after time t,
for some j > 0. The sketch size is non-decreasing, whence m ≡ mt+j > m. We assume that Ex,m,ε′ holds,

and that the algorithm has not yet terminated, i.e., λ̃f (x)2 > δ/d. Note that ε > ε′, whence Ex,m,ε also

holds. By Theorem 1, this implies in particular that λ̃f (x)2 6 (1 + ε)λf (x)2, and we further obtain that
λf (x)2 > δ

(1+ε)d , i.e.,

ε′ < ε · λf (x)τ .

There are two possible events.

• E1: Either λ̃f (x) > η. Using the fact that Ex,m,ε holds, it follows from Lemma 2 that f(xnsk)− f(x) 6
−ν.

26

• E2: Or λ̃f (x) 6 η. Using the facts that Ex,m,ε′ holds and that ε′ < ελf (x)τ , it follows from Lemma 3
that λf (xnsk) 6 α(τ) · (λf (x))1+τ . Assuming further that the event Exnsk,m,ε′ holds, we have according

to Lemma 6 that λ̃f (xnsk) 6 λ̃f (x) 6 η and then

λ̃f (xnsk) 6
(i)

√
1 + ε · λf (xnsk) 6

√
1 + ε · α(τ) · (λf (x))1+τ

6
(ii)

√
1 + ε · α(τ) · (λ̃f (x)/

√
1− ε)1+τ

= α(τ, ε) · (λ̃f (x))1+τ ,

where inequalities (i) and (ii) are immediate consequences of Theorem 1.

Hence, conditional on E2 occurs once, then the event E2 occurs K additional times in a row with probability
at least 1−Kp̃. According to Lemma 4, if K > Tτ,α(τ,ε), δd

then the algorithm terminates. On the other hand,

the event E1 can occur at most N1 times.

In summary, conditional on mt > m, the algorithm must terminate within T additional iterations with
probability at least 1− T p̃ = 1− p0, and with final sketch size m 6 2m.

Phase 1. At each iteration, one of the following events must occur:

e1 : = {λ̃f (x) > η, f(xnsk)− f(x) 6 −ν}

e2 : = {λ̃f (x) 6 η, λ̃f (xnsk) 6 α(τ, ε)(λ̃f (x))1+τ}
e3 : = {m← 2m} .

Fix any iteration t > 0, and suppose that the algorithm has not yet terminated. Consider the sequence
of events c0, . . . , ct ∈ {e1, e2, e3} up to time t. According to Lemma 4, any subsequence of {cj}tj=0 which
contains only the event e2 would result in termination of Algorithm 2 if its length is greater or equal to
Tτ,α(τ,ε),δ/d + 1. Consequently, any such subsequence must have length smaller or equal to Tτ,α(τ,ε),δ/d.
Between two consecutive longest subsequences containing only e2, either e1 or e3 occur. The event e1 occurs
at most N1 times. By assumption on the choice of m0, once e3 has occurred at least O

(
log(dµ)

)
times then

the sketch size is greater than m. Consequently, there are at most T1 : = O
((
N1 + log(dµ)

)
Tτ,α(τ,ε),δ/d

)
iterations before reaching a sketch size m such that m > m without termination. In the latter case, we enter
Phase 2.

Combining Phase 1 and Phase 2. Combining the two above results, we obtain with probability at least
1 − p0 that Algorithm 2 terminates with a final sketch size m smaller than 2m and within a number of
iterations T scaling as

T = T1 + T2 = O
((
N1 + log(dµ)

)
Tτ,α(τ,ε),δ/d

)
= O

(
log(dµ) · Tτ,α(τ,ε),δ/d

)
,

where the last equality holds by treating N1 as O(1).

Total complexity. The worst-case complexity per iteration is given as follows.

(1) For a SJLT S, the sketching cost is at most O(nd) at each iteration, and forming and solving the
linear system HSvnsk = −∇f(x) with a direct method using the Woodbury identity takes time O(m2d).
Multiplying by the number of iterations, we obtain the total time complexity

C = O

(nd+
d
4

µd
2τ+1T 2

τ,α(τ,ε),δ/d

δ2τp20

)
· log(dµ) · Tτ,α(τ,ε),δ/d

 .

27

For τ ≈ 1, we have that Tτ,α(τ,ε),δ/d = O(log(log(d/δ))). For n &
d
4
µd

2 log(log(d/δ))2

δ2p20
, the memory and

time complexities simplify to

m = Ω

(
dd

2

µ log(log(d/δ))

p0δ

)
, C = O

(
nd · log(dµ) · log(log(d/δ)))

)
.

For τ = 0, we have Tτ,α(τ,ε),δ/d = O(log(d/δ)). For n &
d
4
µ log(d/δ)2

p20
, the memory and time complexities

simplify to

m = Ω

(
d
2

µ log(d/δ)

p0

)
, C = O

(
nd · log(dµ) · log(d/δ))

)
.

(2) We assume for simplicity that dµ & log2(log(d/δ)). For the SRHT, the sketching cost is O(nd · logm),
whereas forming and solving the Newton linear system takes time O(m2d). Thus, the total complexity
is given by

C = O
((
nd logm+ d ·m2

)
log(dµ) · Tτ,α(τ,ε),δ/d

)
.

For τ ≈ 1, we have Tτ,α(τ,ε),δ/d = O(log(log(d/δ))). Picking p0 � 1/dµ, we obtain the memory
complexity

m � d

δ

(
dµ + log(d/δ) log(dµ)

)
.

Consequently, logm . log(d/δ) and m2 . d2

δ2 (d
2

µ + log2(d/δ) log2(dµ)). Hence, provided that n &
d2d

2
µ

δ2 ,
we obtain

C = O
(
nd log(d/δ) log(dµ) log(log(d/δ))

)
.

For τ = 0, we have Tτ,α(τ,ε),δ/d = O(log(d/δ)). Picking p0 � 1/dµ, we obtain the memory complexity

m � dµ .

Consequently, logm . log(dµ) and m2 . d
2

µ. Assuming that n & d
2

µ/ log(dµ), the total time complexity
is

C = O
(
nd · log(dµ)2 · log(d/δ)

)
.

This concludes the proof.

C Auxiliary results

Lemma 6. Let x ∈ dom f and ε ∈ (0, 1/4). Suppose that the event Ex,m,ε ∩ Exnsk,mnsk,ε holds, and that

λ̃f (x) 6 η. Then, we have that

λ̃f (xnsk) 6 λ̃f (x) 6 η . (49)

Proof. By assumption, the event Exnsk,mnsk,ε holds. It follows from Theorem 1 that λ̃f (xnsk) 6
√

1 + ε·λf (xnsk).

We have by assumption that Ex,m,ε holds and that λ̃f (x) 6 η. As a consequence of Lemma 3, we have

28

λ̃f (x) 6 16
25 · λf (x). As a consequence of Theorem 1, we have λf (x) 6 1√

1−ε · λ̃f (x). Combining these bounds

together, we obtain that

λ̃f (xnsk) 6

√
1 + ε

1− ε
· 16

25
· λ̃f (x) .

Finally, using that ε ∈ (0, 1/4), we get that
√

1+ε
1−ε ·

16
25 6 1, whence,

λ̃f (xnsk) 6 λ̃f (x) 6 η .

Lemma 7. For ε ∈ (0, 1), it holds that

η 6
1− ε
1 + ε

· 1

16
6

1

16
. (50)

Proof. Set γ =
(

1+ε
1−ε

)2
. We aim to show that η · √γ 6 1/16. Plugging-in the definition of η and using that

a > 0, we have η · √γ = 1
8 ·

1− γ2−a
γ 6 1

8 ·
1− γ2
γ . Since ϕ(γ) : = 1

8 ·
1− γ2
γ is monotone decreasing and since γ > 1,

we obtain that η · √γ 6 ϕ(1), i.e., η · √γ 6 1
16 .

C.1 Technical lemmas for the proof of Theorem 2

Lemma 8 (Phase 1). It holds that

t 6 N1 , with probability at least 1−N1p̃ .

Proof. Let j < t be any iteration before t1. Note by construction of Algorithm 1 that mj = m1. Assuming that
the event Exj ,mj ,ε holds true, it follows from Lemma 2 that we observe the decrement f(xnsk)− f(xj) 6 −ν.

Consequently, under the event E(1) : =
⋂t−1
j=0 Exj ,mj ,ε, we obtain that

f(x∗)− f(x0) 6 f(xt)− f(x0) =

t−1∑
j=0

f(xj+1)− f(xj) 6 −t · ν .

Hence, under E(1), we must have t 6 f(x0)−f(x∗)
ν , i.e., t 6 N1. According to Lemma 1 and the choice of m1,

each event Exj ,mj ,ε holds with probability at least 1 − p̃. Using a union bound, the event E(1) holds with
probability at least 1−N1p̃.

Lemma 9 (Phase 2). Under the assumption that E(2) holds, we have for any j = 0, . . . , J that
mt+1+j = m2 ,

λ̃f (xt+1+j) 6 η ,

α(τ)
1
τ λf (xt+1+j+1) 6 (α(τ)

1
τ λf (xt+1+j))

1+τ .

Proof. We prove this claim by induction. We start with j = 0. By definition of the time t, we have λ̃f (xt) 6 η.
Therefore, by construction of Algorithm 1, we have mt+1 = m2. From Lemma 6 and under E(2), we get

that λ̃f (xt+1) 6 λ̃f (xt) 6 η. Furthermore, before termination, we have that λ̃f (xt+1)2 > 3
4δ. It follows from

Theorem 1 that

λf (xt+1)2 >
1

1 + ε
λ̃f (xt+1)2 >

3

4(1 + ε)
δ =

2

3
δ ,

29

and this implies in particular that εδτ/2 6 ε(32)τ/2λf (xt+1)τ 6 2ελf (xt+1)τ . Consequently, the hypotheses of

Lemma 3 are verified and we have α(τ)
1
τ λf (xt+2) 6 (α(τ)

1
τ λf (xt+1))1+τ .

Now, we prove the induction hypothesis for any j = 1, . . . , J , assuming that it holds for j − 1. Since
λ̃f (xt+1+j−1) 6 η, it follows by construction of Algorithm 1 that mt+1+j = m2. From Lemma 6 and

under E(2), we get that λ̃f (xt+1+j) 6 λ̃f (xt+1+j−1) 6 η. Furthermore, before termination, we have

λ̃f (xt+1+j)
2 > 3

4δ. It follows from Theorem 1 that

λf (xt+1+j)
2 >

1

1 + ε
λ̃f (xt+1+j)

2 >
3

4(1 + ε)
δ =

2

3
δ ,

and this implies in particular that εδτ/2 6 ε(32)τ/2λf (xt+1+j)
τ 6 2ελf (xt+1+j)

τ . Consequently, the hypothe-

ses of Lemma 3 are verified and we have α(τ)
1
τ λf (xt+1+j+1) 6 (α(τ)

1
τ λf (xt+1+j))

1+τ .

Corollary 1. The event E(2) holds true with probability at least 1− (2 + Tτ, 38 δ)p̃.

Proof. Recall that mt = m1 by definition of the time t. According to Lemma 9, if E(2) holds true, then
mt+1+j = m2 for j = 0, . . . , J . From Lemma 1, we have that P(Ext,m1,ε) > 1−p̃ and P(Ext+1+j ,m2,εδτ/2) > 1−p̃.

We obtain by a union bound that P(E(2)) > 1− (2 + Tτ, 38 δ)p̃.

30

	Introduction
	Notations and background
	Organization of the paper

	Preliminaries
	Effective dimension Newton sketch
	Some applications of the effective dimension Newton sketch

	Adaptive Newton Sketch with effective dimensionality
	Time and memory space complexity guarantees

	Numerical experiments
	Regularized logistic regression
	Regularized logistic regression with kernel matrix

	Additional experimental details
	Proof of main results
	Proof of Lemma 1
	Proof of Theorem 1
	Proof of Lemma 2
	Proof of Lemma 3
	Proof of Lemma 4
	Proof of Theorem 2
	Complexity guarantees for the SJLT

	Proof of Lemma 5
	Proof of Theorem 3

	Auxiliary results
	Technical lemmas for the proof of Theorem 2

