Randomized Sketching for Convex and Non-Convex Optimization

Mert Pilanci Department of Electrical Engineering Stanford University

December 6, 2018

• Every day, we create 2.5 billion gigabytes of data

- Every day, we create 2.5 billion gigabytes of data
- $\circ~$ Data stored grows 4x faster than world economy $_{\mbox{(Mayer-Schonberger)}}$

- Every day, we create 2.5 billion gigabytes of data
- $\circ~$ Data stored grows 4x faster than world economy $_{\mbox{(Mayer-Schonberger)}}$

Deep learning revolution

- Machine learning
- Statistical estimation and data analysis
- Signal processing and control theory
- Computational imaging
- Design and manufacturing
- Decision making

minimize g(x) subject to constraints

- More data points reduce sampling error, higher significance
 - \rightarrow Large scale optimization problems

• More data points reduce sampling error, higher significance

 \rightarrow Large scale optimization problems

• Complex models can improve accuracy

 \rightarrow Non-convex optimization problems harder to solve as dimensions grow

• More data points reduce sampling error, higher significance

 \rightarrow Large scale optimization problems

• Complex models can improve accuracy

 \rightarrow Non-convex optimization problems harder to solve as dimensions grow

What if we could reduce the data volume without losing any significant information ?

• More data points reduce sampling error, higher significance

 \rightarrow Large scale optimization problems

• Complex models can improve accuracy

 \rightarrow Non-convex optimization problems harder to solve as dimensions grow

Goals: 1. Find optimal trade-offs between computation and accuracy

- 2. Leverage distributed computation
- 3. Tackle non-convexity

Optimization and Big Data

Sketching

Distributed Sketching

Non-convex Problems

Ongoing work

Convex optimization and big data

minimize f(Ax) subject to $x \in \mathcal{C}$

 $\circ~$ Data matrix $A \in \mathbb{R}^{n \times d}$ is extremely large

Convex optimization and big data

```
minimize f(Ax) subject to x \in \mathcal{C}
```

 $\circ~$ Data matrix $A \in \mathbb{R}^{n \times d}$ is extremely large

Examples:

• Airline dataset (120GB) $n = 120 \times 10^6$, d = 28Flight arrival and departure details from 1987 to 2008

Convex optimization and big data

```
minimize f(Ax) subject to x \in \mathcal{C}
```

 $\circ~$ Data matrix $A \in \mathbb{R}^{n \times d}$ is extremely large

Examples:

- Airline dataset (120GB) $n = 120 \times 10^6$, d = 28Flight arrival and departure details from 1987 to 2008
- Imagenet dataset (1.31TB) $n = 14 \times 10^6$, $d = 2 \times 10^5$ 14 Million images for visual recognition

[US Department of Transportation] [Deng et al. 2009]

OPTIMIZER

OPTIMIZER

OPTIMIZER

OPTIMIZER

- $\circ~A:~n\times d$ feature matrix, and $y:~n\times 1$ response vector
- Original $\mathbf{OPT} = \min_{x \in \mathcal{C}} \underbrace{\|Ax y\|^2}_{f(Ax)}$

• $A : n \times d$ feature matrix, and $y : n \times 1$ response vector • Original $\mathbf{OPT} = \min_{x \in \mathcal{C}} \underbrace{\|Ax - y\|^2}_{f(Ax)}$

• $A : n \times d$ feature matrix, and $y : n \times 1$ response vector • Original $\mathbf{OPT} = \min_{x \in \mathcal{C}} \underbrace{\|Ax - y\|^2}_{f(Ax)}$

- $A : n \times d$ feature matrix, and $y : n \times 1$ response vector • Original $\mathbf{OPT} = \min_{x \in \mathcal{C}} \underbrace{\|Ax - y\|^2}_{f(Ax)}$
- Approximate $\widehat{x} = \arg\min_{x \in \mathcal{C}} \|S(Ax y)\|^2$
- $S: m \times n$ sketching matrix (e.g., i.i.d. ± 1 random matrix)

- $A : n \times d$ feature matrix, and $y : n \times 1$ response vector • Original $\mathbf{OPT} = \min_{x \in \mathcal{C}} \underbrace{\|Ax - y\|^2}_{f(Ax)}$
- Approximate $\widehat{x} = \arg\min_{x \in \mathcal{C}} \|S(Ax y)\|^2$
- \circ *S* : *m* × *n sketching* matrix (e.g., i.i.d. ± 1 random matrix)

- $A : n \times d$ feature matrix, and $y : n \times 1$ response vector • Original $\mathbf{OPT} = \min_{x \in \mathcal{C}} \underbrace{\|Ax - y\|^2}_{f(Ax)}$
- Approximate $\widehat{x} = \arg\min_{x \in \mathcal{C}} \|S(Ax y)\|^2$
- $S: m \times n$ sketching matrix (e.g., i.i.d. ± 1 random matrix)

Theorem : Cost approximation

If $m \ge 2 \operatorname{rank}^*(A)/\epsilon$, then $\mathbf{OPT} \le f(A\widehat{x}) \le (1+\epsilon)\mathbf{OPT}$ with high probability

- $A : n \times d$ feature matrix, and $y : n \times 1$ response vector • Original $\mathbf{OPT} = \min_{x \in \mathcal{C}} \underbrace{\|Ax - y\|^2}_{f(Ax)}$
- Approximate $\widehat{x} = \arg\min_{x \in \mathcal{C}} \|S(Ax y)\|^2$
- $S: m \times n$ sketching matrix (e.g., i.i.d. ± 1 random matrix)

Theorem : Converse

If $m \le c_0 \operatorname{rank}^*(A)/\epsilon$, then $f(A\hat{x}) \ge (1+\epsilon)\mathbf{OPT}$ with probability $> \frac{1}{2}$

Practical use

Airline dataset n = 120,000,000, d = 28

m = 500 gives 1.1-approximation

m = 5000 gives 1.01-approximation

[P and Wainwright, IEEE Trans. Info. Theory 2015]

[Gauss, 1795]

Least squares $\min_{x} \|Ax - y\|^2$

• Consider the noisy observation model

$$y = Ax^* + w$$
, where $w_1, w_2 ... \sim N(0, \sigma^2)$

• Consider the noisy observation model

$$y = Ax^* + w$$
, where $w_1, w_2 ... \sim N(0, \sigma^2)$

• estimation error:

$$\mathbb{E} \|x_{LS} - x^*\|_2^2 = O\left(\frac{d}{n}\sigma^2\right)$$

Statistical error

- $\circ~$ Observation model $y = Ax^* + w$, where $w \sim N(0, \sigma^2 I_n)$
- $\circ~$ Is the sketched solution \hat{x} statistically optimal?

$$\hat{x} = \arg\min_{x} \|SAx - Sy\|^2$$
 where $S \in \mathbb{R}^{m \times n}$
Statistical error

- $\circ~$ Observation model $y = Ax^* + w$, where $w \sim N(0, \sigma^2 I_n)$
- $\circ~$ Is the sketched solution \hat{x} statistically optimal?

$$\hat{x} = \arg \min_{x} ||SAx - Sy||^2$$
 where $S \in \mathbb{R}^{m \times n}$
Mean-squared error vs. number of samples
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1
 0.1

 $\circ~$ Is the sketched solution \hat{x} statistically optimal?

- $\circ~$ Is the sketched solution \hat{x} statistically optimal?
- No, information-theoretically impossible!

- $\circ~$ Is the sketched solution \hat{x} statistically optimal?
- No, information-theoretically impossible!
- $\circ\,$ For Gaussian, i.i.d. ± 1 or DFT/Hadamard based S and

 $m = \text{constant} \times \text{rank}(A)$

Theorem

Any estimator that is a function of (SA, Sy) obeys

$$\mathbb{E}_{S,w}\left[\|\hat{x} - x^*\|^2\right] \gtrsim \sigma^2$$

- $\circ~$ Is the sketched solution \hat{x} statistically optimal?
- No, information-theoretically impossible!
- $\circ\,$ For Gaussian, i.i.d. ± 1 or DFT/Hadamard based S and

 $m = \text{constant} \times \text{rank}(A)$

Theorem

Any estimator that is a function of (SA, Sy) obeys

$$\mathbb{E}_{S,w}\left[\|\hat{x} - x^*\|^2\right] \gtrsim \sigma^2$$

	statistical error	computation
sketch	suboptimal	$\mathbf{O}(\mathbf{nd})$
original	optimal	$O(nd^2)$

Is there an **optimal** algorithm with complexity O(nd) ?

Is there an **optimal** algorithm with complexity O(nd) ?

YES!

Is there an **optimal** algorithm with complexity O(nd) ?

YES!

Numerical Simulation: Estimation Error

Iterative Sketch

 $\frac{SA}{r_1^TA}$ \vdots $r_t^T A$

$$SA \\ r_1^T A \\ \vdots \\ r_t^T A$$

 $\circ~$ Statistical model : $y=Ax^*+w$ where $x^*\in \mathcal{C}$

Theorem (Optimality)

Iterative Sketch achieves optimal prediction error with $\log(n/d)$ iterations for any convex set C

	statistical error	computation
sketch	suboptimal	O(nd)
original	optimal	$O(nd^2)$
iterative sketch	optimal	$\mathbf{O}(\mathbf{nd})$

[P. and Wainwright, Journal of Machine Learning Research 2016]

- 500000×17000 matrix A of ratings (users \times movies)
- Predict the ratings of a particular movie
- Least-squares regression with ℓ_2 regularization

$$\min_{x} \|Ax - y\|^2 + \lambda \|x\|_2^2$$

• Partition into test and training sets, solve for all values of $\lambda \in \{1, 2, ..., 100\}.$

Convex objective, where $A \in \mathbb{R}^{n \times d}$ is a large data matrix

$$x^* = \arg\min_{x \in \mathcal{C}} f(Ax)$$

Introducing Newton Sketch

• Newton's Method

$$x^{t+1} = \arg\min_{x \in \mathcal{C}} \ \langle \nabla g(x^t), \, x - x^t \rangle + \frac{1}{2} \| \nabla^2 g(x^t)^{1/2} (x - x^t) \|^2$$

Introducing Newton Sketch

Newton's Method

$$x^{t+1} = \arg\min_{x \in \mathcal{C}} \ \langle \nabla g(x^t), \, x - x^t \rangle + \frac{1}{2} \| \nabla^2 g(x^t)^{1/2} (x - x^t) \|^2$$

Definition (Newton Sketch)

$$x^{t+1} = \arg\min_{x \in \mathcal{C}} \langle \nabla g(x^t), \, x - x^t \rangle + \frac{1}{2} \| S^t \nabla^2 g(x^t)^{1/2} (x - x^t) \|^2$$

Introducing Newton Sketch

Newton's Method

$$x^{t+1} = \arg\min_{x \in \mathcal{C}} \ \langle \nabla g(x^t), \, x - x^t \rangle + \frac{1}{2} \| \nabla^2 g(x^t)^{1/2} (x - x^t) \|^2$$

Definition (Newton Sketch)

$$x^{t+1} = \arg\min_{x \in \mathcal{C}} \langle \nabla g(x^t), \, x - x^t \rangle + \frac{1}{2} \| S^t \nabla^2 g(x^t)^{1/2} (x - x^t) \|^2$$

 $\circ~$ Iterative Sketch is a special case $g(x) = \|Ax - y\|^2$

Convergence of Newton Sketch

Theorem

Newton Sketch is affine invariant in distribution and the number of iterations for ϵ accuracy is less than

 $C\log(1/\epsilon)$

C is a constant independent of f & data (same assumptions).

[P. and Wainwright. SIAM Journal on Optimization, 2017]

Convergence of Newton Sketch

Theorem

Newton Sketch is affine invariant in distribution and the number of iterations for ϵ accuracy is less than

 $C\log(1/\epsilon)$

C is a constant independent of f & data (same assumptions).

 $\left[\ \textbf{P}. \ \text{and Wainwright. SIAM Journal on Optimization, 2017} \right]$

	computation
Gradient Descent	$O(\kappa nd \log(1/\epsilon))$
Newton's Method	$O(nd^2 \log \log(1/\epsilon))$
Newton Sketch	$O(nd\log(1/\epsilon))$

Dependence on curvature κ is unavoidable among first order methods $_{\rm [Nesterov, \ 04]}$

Logistic Regression (n = 500,000, d = 5,000 uncorrelated)

Logistic Regression (n = 500,000, d = 5,000 correlation 0.1)

Distributed Optimization

Distributed Optimization

Distributed Optimization

Distributed optimization

• $A : n \times d$ feature matrix, and $y : n \times 1$ response vector • Partition data $A = \begin{bmatrix} A_1 \\ A_2 \end{bmatrix}$, $y = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}$ • Least squares cost $\min_x ||Ax - y||^2 = \min_x ||A_1x - y_1||^2 + ||A_2x - y_2||^2$

Distributed optimization

• $A: n \times d$ feature matrix, and $y: n \times 1$ response vector • Partition data $A = \begin{bmatrix} A_1 \\ A_2 \end{bmatrix}$, $y = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}$ • Least squares cost $\min ||Ax - y||^2 = \min ||A_1x - y_1||^2 + ||A_2x - y_2||^2$

Alternating Directions Method of Multipliers (ADMM) (Hestenes, Powell 1969, Gabay et al. 1976, Boyd et al. 2011)

$$\min_{x} \|Ax - y\|^{2} = \min_{x_{1} = x_{2}} \|A_{1}x_{1} - y_{1}\|^{2} + \|A_{2}x_{2} - y_{2}\|^{2}$$

Distributed optimization

• $A : n \times d$ feature matrix, and $y : n \times 1$ response vector • Partition data $A = \begin{bmatrix} A_1 \\ A_2 \end{bmatrix}$, $y = \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}$ • Least squares cost $\min_x ||Ax - y||^2 = \min_x ||A_1x - y_1||^2 + ||A_2x - y_2||^2$

Alternating Directions Method of Multipliers (ADMM) (Hestenes, Powell 1969, Gabay et al. 1976, Boyd et al. 2011)

$$\min_{x} \|Ax - y\|^{2} = \min_{x_{1} = x_{2}} \|A_{1}x_{1} - y_{1}\|^{2} + \|A_{2}x_{2} - y_{2}\|^{2}$$

$$= \min_{x_1, x_2} \|A_1 x_1 - y_1\|^2 + \|A_2 x_2 - y_2\|^2 + \lambda^T (x_1 - x_2)$$

 $\rightarrow x_1$ update on machine 1

$$\min_{x_1} \|A_1 x_1 - y_1\|^2 + \underbrace{\|A_2 x_2 - y_2\|^2}_{constant} + \lambda^T (x_1 - x_2) + \rho \|x_1 - x_2\|^2$$

involves only A_1, y_1, x_2

 $\rightarrow x_1$ update on machine 1

$$\min_{x_1} \|A_1 x_1 - y_1\|^2 + \underbrace{\|A_2 x_2 - y_2\|^2}_{constant} + \lambda^T (x_1 - x_2) + \rho \|x_1 - x_2\|^2$$

involves only A_1, y_1, x_2

 $\rightarrow x_2$ update on machine 2

$$\min_{x_2} \underbrace{\|A_1x_1 - y_1\|^2}_{constant} + \|A_2x_2 - y_2\|^2 + \lambda^T (x_1 - x_2) + \rho \|x_1 - x_2\|^2$$

involves only A_2, y_2, x_1

 $\rightarrow x_1$ update on machine 1

$$\min_{x_1} \|A_1 x_1 - y_1\|^2 + \underbrace{\|A_2 x_2 - y_2\|^2}_{constant} + \lambda^T (x_1 - x_2) + \rho \|x_1 - x_2\|^2$$

involves only A_1, y_1, x_2

 $\rightarrow x_2$ update on machine 2

$$\min_{x_2} \underbrace{\|A_1x_1 - y_1\|^2}_{constant} + \|A_2x_2 - y_2\|^2 + \lambda^T (x_1 - x_2) + \rho \|x_1 - x_2\|^2$$

involves only A_2, y_2, x_1

 \rightarrow communicate $x_1 \Longleftrightarrow x_2$, update $\lambda \leftarrow \lambda + \rho(x_1 - x_2)$

- (Informal) Under some assumptions, ADMM converges in $O(\kappa_A \log(1/\epsilon))$ iterations, where κ_A is a conditioning parameter
- \circ # iterations = rounds of communication

Distributed Sketching and ADMM

 A_1 and A_2 are $n \times d$

$$A = \left[\begin{array}{c} A_1 \\ A_2 \end{array} \right]$$

Define multiple sketching matrices

$$S_1 = \left[I_{n \times n}, 0_{n \times n} \right], \quad S_2 = \left[0_{n \times n}, I_{n \times n} \right]$$

Distributed Sketching and ADMM

 A_1 and A_2 are $n \times d$

$$A = \left[\begin{array}{c} A_1 \\ A_2 \end{array} \right]$$

Define multiple sketching matrices

$$S_1 = \left[I_{n \times n}, 0_{n \times n} \right], \quad S_2 = \left[0_{n \times n}, I_{n \times n} \right]$$

$$S_1 A = A_1$$
$$S_2 A = A_2$$

Distributed Sketching and ADMM

 A_1 and A_2 are $n \times d$

$$A = \left[\begin{array}{c} A_1 \\ A_2 \end{array} \right]$$

Define multiple sketching matrices

$$S_1 = \left[I_{n \times n}, 0_{n \times n} \right], \quad S_2 = \left[0_{n \times n}, I_{n \times n} \right]$$

$$S_1 A = A_1$$
$$S_2 A = A_2$$

ADMM is operating on (naive) sketches!

Distributed Sketching

Distributed Sketching

Let S be a random orthogonal matrix, $S = \left[\begin{array}{c} S_1 \\ S_2 \end{array} \right]$, $S^TS = I$

e.g., DFT matrix with randomly permuted rows

Let S be a random orthogonal matrix, $S = \begin{bmatrix} S_1 \\ S_2 \end{bmatrix}$, $S^T S = I$

e.g., DFT matrix with randomly permuted rows

 $\rightarrow x_1$ update on machine 1

$$\min_{x_1} \|S_1(Ax_1 - y)\|^2 + \underbrace{\|S_2(Ax_2 - y)\|^2}_{constant} + \lambda^\top (x_1 - x_2) + \frac{\rho}{2} \|A(x_1 - x_2)\|^2$$

 $\rightarrow x_2$ update on machine 2

$$\min_{x_2} \underbrace{\|S_1(Ax_1-y)\|^2}_{constant} + \|S_2(Ax_2-y)\|^2 + \lambda^\top (x_1-x_2) + \frac{\rho}{2} \|A(x_1-x_2)\|^2$$

 \rightarrow communicate $x_1 \Longleftrightarrow x_2$ and update λ

Let S be a random orthogonal matrix, $S = \begin{bmatrix} S_1 \\ S_2 \end{bmatrix}$, $S^T S = I$

e.g., DFT matrix with randomly permuted rows

 $\rightarrow x_1$ update on machine 1

$$\min_{x_1} \|S_1(Ax_1 - y)\|^2 + \underbrace{\|S_2(Ax_2 - y)\|^2}_{constant} + \lambda^\top (x_1 - x_2) + \frac{1}{2} \|A(x_1 - x_2)\|^2$$

 $\rightarrow x_2$ update on machine 2

$$\min_{x_2} \underbrace{\|S_2(Ax_2-y)\|^2}_{constant} + \|S_2(Ax_2-y)\|^2 + \lambda^\top (x_1-x_2) + \frac{1}{2} \|A(x_1-x_2)\|^2$$

 \rightarrow communicate $x_1 \Longleftrightarrow x_2$ and update λ

Theorem

Local solutions converge, and number of iterations for ϵ accuracy is less than

 $C\log(1/\epsilon)$,

where C is a constant independent of data.

[**P**. and Candès, 2018]

Theorem

Local solutions converge, and number of iterations for ϵ accuracy is less than

 $C\log(1/\epsilon)$,

where C is a constant **independent** of data.

- [**P**. and Candès, 2018]
 - $O(\log(1/\epsilon))$ rounds of communication. No condition number dependency.

Theorem

Local solutions converge, and number of iterations for ϵ accuracy is less than

 $C\log(1/\epsilon)$,

where C is a constant **independent** of data.

- [**P**. and Candès, 2018]
 - $O(\log(1/\epsilon))$ rounds of communication. No condition number dependency.
 - Exchanging $O(d \log(1/\epsilon))$ bits to communicate $x_1, x_2, ..., x_M$ is information theoretically **optimal**

Random i.i.d. heavy tailed data

- In general, very difficult to solve globally
- Need to make further assumptions

$$\min_{x} \sum_{i=1}^{n} (f_x(a_i) - y_i)^2$$

$$\min_{x} \sum_{i=1}^{n} (f_x(a_i) - y_i)^2$$

$\rightarrow\,$ Heuristic: Gauss-Newton method

$$x_{t+1} = \arg\min_{x} \quad \|\underbrace{f_{x_t}(A) + J_t x}_{\text{Taylor's approx for } f_x} - y\|_2^2$$

where $(J_t)_{ij} = rac{\partial}{\partial x_j} f_x(a_i)$ is the Jacobian matrix

Deep learning, nonlinear least squares...

$\rightarrow~\text{Randomized}$ Gauss-Newton method

$$x_{t+1} = \arg\min_{x} \|S_t(f_{x_t}(A) + J_t x - y)\|_2^2$$

• $S_t J_t$ backpropagation (Pearlmutter, 1994)

 \rightarrow Randomized Gauss-Newton method

$$x_{t+1} = \arg\min_{x} \|S_t(f_{x_t}(A) + J_t x - y)\|_2^2.$$

• $S_t J_t$ backpropagation (Pearlmutter, 1994)

Theorem

(informal) Consider a single hidden layer neural network, Gaussian input data A. Randomized Gauss-Newton method converges to a global minimum in

 $C\log(1/\epsilon)$,

iterations.

[**P**. and Candès, 2018]

2 layer neural network on MNIST dataset

- 1. Information theoretic lower bounds for sketching
- 2. Iterative sketching with statistical optimality
- 3. Distributed sketching
- 4. Non-convex problems
Extensions: Streaming optimization

Extensions: Streaming optimization

Extensions

• Privacy preserving optimization

Extensions

• Privacy preserving optimization

- \circ **S**A provides privacy
- $\circ~$ Mutual information constraint $I({\it S}A;A) \leq \epsilon$

Yang, P., Wainwright, Annals of Statistics, 2015, P. (book chapter) 2018,

• Distributed and fault tolerant computing

\circ S_1A , S_2A ..., S_mA can be lost due to point failures

• Distributed and fault tolerant computing

- S_1A , S_2A ..., S_mA can be lost due to point failures
- Generate another sketch $S_{m+1}A$ i.i.d.

Thank you! Questions ?