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Scale of data

◦ Every day, we create 2.5 billion gigabytes of data

◦ Data stored grows 4x faster than world economy (Mayer-Schonberger)
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Deep learning revolution
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◦ Machine learning

◦ Statistical estimation and data analysis

◦ Signal processing and control theory

◦ Computational imaging

◦ Design and manufacturing

◦ Decision making

︸ ︷︷ ︸

minimize g(x) subject to constraints
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Machine learning and statistics

◦ More data points reduce sampling error, higher significance

→ Large scale optimization problems

◦ Complex models can improve accuracy

→ Non-convex optimization problems harder to solve as

dimensions grow

Data size
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Goals: 1. Find optimal trade-offs between

computation and accuracy

2. Leverage distributed

computation

3. Tackle non-convexity
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Machine learning and statistics

◦ More data points reduce sampling error, higher significance

→ Large scale optimization problems

◦ Complex models can improve accuracy

→ Non-convex optimization problems harder to solve as

dimensions grow

What if we could reduce the data volume without

losing any significant information ?
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Outline

Optimization and Big Data

Sketching

Distributed Sketching

Non-convex Problems

Ongoing work
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Convex optimization and big data

minimize f(Ax) subject to x ∈ C

◦ Data matrix A ∈ Rn×d is extremely large

Examples:

◦ Airline dataset (120GB) n = 120× 106, d = 28

Flight arrival and departure details from 1987 to 2008

◦ Imagenet dataset (1.31TB) n = 14× 106, d = 2× 105

14 Million images for visual recognition

[US Department of Transportation]

[Deng et al. 2009]

6



Convex optimization and big data

minimize f(Ax) subject to x ∈ C

◦ Data matrix A ∈ Rn×d is extremely large

Examples:

◦ Airline dataset (120GB) n = 120× 106, d = 28

Flight arrival and departure details from 1987 to 2008

◦ Imagenet dataset (1.31TB) n = 14× 106, d = 2× 105

14 Million images for visual recognition

[US Department of Transportation]

[Deng et al. 2009]

6



Convex optimization and big data

minimize f(Ax) subject to x ∈ C

◦ Data matrix A ∈ Rn×d is extremely large

Examples:

◦ Airline dataset (120GB) n = 120× 106, d = 28

Flight arrival and departure details from 1987 to 2008

◦ Imagenet dataset (1.31TB) n = 14× 106, d = 2× 105

14 Million images for visual recognition

[US Department of Transportation]

[Deng et al. 2009]

6



DATA OPTIMIZER

6



DATA OPTIMIZER

6



DATA OPTIMIZER

parameter

cost

all data

6



DATA OPTIMIZER

parameter

cost

all data

sample

6



DATA OPTIMIZER

parameter

cost

all data

6



DATA OPTIMIZER
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DATA OPTIMIZER

𝑤1

𝑤2

𝑤3

𝑤4

𝑤5

𝑤6

𝑤7

𝑤8
parameter

cost

all data

combined
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Example : Least squares prediction

◦ A : n× d feature matrix, and y : n× 1 response vector

◦ Original OPT = min
x∈C
‖Ax− y‖2︸ ︷︷ ︸

f(Ax)

◦ Approximate x̂ = arg min
x∈C
‖S(Ax− y)‖2

◦ S : m× n sketching matrix (e.g., i.i.d. ±1 random matrix)
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Example : Least squares prediction

◦ A : n× d feature matrix, and y : n× 1 response vector

◦ Original OPT = min
x∈C
‖Ax− y‖2︸ ︷︷ ︸

f(Ax)

◦ Approximate x̂ = arg min
x∈C
‖S(Ax− y)‖2

◦ S : m× n sketching matrix (e.g., i.i.d. ±1 random matrix)

An

d

S	  m SA	  
=

m

d

FAST	  O(nd)

[Candès	  &	  Tao,	  06;	  Krahmer	  &	  Ward	  11]	  

S	  =	  FD	  
subsampled discrete Fourier/Hadamard	   random diagonal	  ±1	  
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Example : Least squares prediction

◦ A : n× d feature matrix, and y : n× 1 response vector

◦ Original OPT = min
x∈C
‖Ax− y‖2︸ ︷︷ ︸

f(Ax)

◦ Approximate x̂ = arg min
x∈C
‖S(Ax− y)‖2

◦ S : m× n sketching matrix (e.g., i.i.d. ±1 random matrix)

Theorem : Cost approximation

If m ≥ 2 rank∗(A)/ε, then

OPT ≤ f(Ax̂) ≤ (1 + ε)OPT

with high probability

Sarlós 06; Rokhlin and Tygert 08; P. and Wainwright, IEEE Trans. Info. Theory 2015 ∗effective rank
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Example : Least squares prediction

◦ A : n× d feature matrix, and y : n× 1 response vector

◦ Original OPT = min
x∈C
‖Ax− y‖2︸ ︷︷ ︸

f(Ax)

◦ Approximate x̂ = arg min
x∈C
‖S(Ax− y)‖2

◦ S : m× n sketching matrix (e.g., i.i.d. ±1 random matrix)

Theorem : Converse

If m ≤ c0 rank∗(A)/ε, then

f(Ax̂) ≥ (1 + ε)OPT

with probability > 1
2

P. and Wainwright, IEEE Trans. Info. Theory 2015
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Example : Least squares prediction

◦ A : n× d feature matrix, and y : n× 1 response vector

◦ Original OPT = min
x∈C
‖Ax− y‖2︸ ︷︷ ︸

f(Ax)

◦ Approximate x̂ = arg min
x∈C
‖S(Ax− y)‖2

◦ S : m× n sketching matrix (e.g., i.i.d. ±1 random matrix)

Practical use

Airline dataset n = 120, 000, 000, d = 28

m = 500 gives 1.1-approximation

m = 5000 gives 1.01-approximation

[P and Wainwright, IEEE Trans. Info. Theory 2015]
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min
x
‖Ax− y‖22 and min

x
‖S(Ax− y)‖22

𝜖

original cost

approximate cost

ො𝑥

𝒙∗
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min
x
‖Ax− y‖22 and min

x
‖S(Ax− y)‖22

𝜖

original cost

approximate cost
?

ො𝑥

𝒙∗
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Least squares

min
x
‖Ax− y‖2

[Gauss, 1795]

variable

response
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Statistical error

◦ Consider the noisy observation model

y = Ax∗ + w, where w1, w2... ∼ N(0, σ2)

◦ estimation error:

E‖xLS − x∗‖22 = O

(
d

n
σ2
)
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Statistical error

◦ Observation model y = Ax∗ + w, where w ∼ N(0, σ2In)

◦ Is the sketched solution x̂ statistically optimal?

x̂ = arg min
x
‖SAx− Sy‖2 where S ∈ Rm×n
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Suboptimality of the Classical Sketch

◦ Is the sketched solution x̂ statistically optimal?

◦ No, information-theoretically impossible!

◦ For Gaussian, i.i.d. ±1 or DFT/Hadamard based S and

m = constant× rank(A)

Theorem

Any estimator that is a function of (SA, Sy) obeys

ES,w

[
‖x̂− x∗‖2

]
& σ2

statistical error computation

sketch suboptimal O(nd)

original optimal O(nd2)

[ P. and Wainwright, Journal of Machine Learning Research 2016]
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DATA OPTIMIZER

𝑛

Error∗ ≤
𝑑

𝑛
𝜎2

𝑂(𝑛𝑑)

𝑂(𝑛𝑑2)

𝑚
𝑠1
𝑇𝐴

𝑠𝑚
𝑇 𝐴
⋮

Is there an optimal algorithm with complexity O(nd) ?
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DATA OPTIMIZER

𝑛

Error∗ ≤
𝑑

𝑛
𝜎2

𝑂(𝑛𝑑)

𝑂(𝑛𝑑2)

𝑚
𝑠1
𝑇𝐴

𝑠𝑚
𝑇 𝐴
⋮

𝑟1
𝑇𝐴 𝑟1 = 𝐴ො𝑥1 − 𝑦

Is there an optimal algorithm with complexity O(nd) ?

YES!
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DATA OPTIMIZER

𝑛

Error∗ ≤
𝑑

𝑛
𝜎2

𝑂(𝑛𝑑)

𝑂(𝑛𝑑2)

𝑚
𝑠1
𝑇𝐴

𝑠𝑚
𝑇 𝐴
⋮

𝑟1
𝑇𝐴 𝑟1 = 𝐴ො𝑥1 − 𝑦

Error ≤ 𝑂
𝑑

𝑛
𝜎2

𝑟2 = 𝐴ො𝑥2 − 𝑦𝑟2
𝑇𝐴
⋮

⋮

log 𝑛

Is there an optimal algorithm with complexity O(nd) ?

YES!
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Numerical Simulation: Estimation Error
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Iterative Sketch

SA

rT1A
...

rTt A

◦ Statistical model : y = Ax∗ + w where x∗ ∈ C
Theorem ( Optimality )

Iterative Sketch achieves optimal prediction error with

log(n/d) iterations for any convex set C
statistical error computation

sketch suboptimal O(nd)

original optimal O(nd2)

iterative sketch optimal O(nd)

[ P. and Wainwright, Journal of Machine Learning Research 2016]
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Netflix Problem

◦ 500000 × 17000 matrix A of ratings (users × movies)

◦ Predict the ratings of a particular movie

◦ Least-squares regression with `2 regularization

min
x
‖Ax− y‖2 + λ‖x‖22

◦ Partition into test and training sets, solve for all values of

λ ∈ {1, 2, ..., 100}.

18



Netflix Problem

Regularization parameter : 100 values
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How to generalize to arbitrary functions ?

Convex objective, where A ∈ Rn×d is a large data matrix

x∗ = arg min
x∈C

f(Ax)

20



Gradient Descent vs Newton’s Method
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Gradient Descent vs Newton’s Method
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Gradient Descent vs Newton’s Method

affine 
invariant
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Introducing Newton Sketch

◦ Newton’s Method

xt+1 = arg min
x∈C

〈∇g(xt), x− xt〉+
1

2
‖∇2g(xt)1/2(x− xt)‖2

Definition (Newton Sketch)

xt+1 = arg min
x∈C

〈∇g(xt), x− xt〉+
1

2
‖St∇2g(xt)1/2(x− xt)‖2

◦ Iterative Sketch is a special case g(x) = ‖Ax− y‖2

21
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Convergence of Newton Sketch

Theorem

Newton Sketch is affine invariant in distribution and the number

of iterations for ε accuracy is less than

C log(1/ε)

C is a constant independent of f& data (same assumptions).

[ P. and Wainwright. SIAM Journal on Optimization, 2017]

computation

Gradient Descent O(κnd log(1/ε))

Newton’s Method O(nd2 log log(1/ε))

Newton Sketch O(nd log(1/ε))

Dependence on curvature κ is unavoidable among first order
methods [ Nesterov, 04]

22



Convergence of Newton Sketch

Theorem

Newton Sketch is affine invariant in distribution and the number

of iterations for ε accuracy is less than

C log(1/ε)

C is a constant independent of f& data (same assumptions).

[ P. and Wainwright. SIAM Journal on Optimization, 2017]

computation

Gradient Descent O(κnd log(1/ε))

Newton’s Method O(nd2 log log(1/ε))

Newton Sketch O(nd log(1/ε))

Dependence on curvature κ is unavoidable among first order
methods [ Nesterov, 04] 22



Logistic Regression (n = 500, 000, d = 5, 000 uncorrelated)
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Logistic Regression (n = 500, 000, d = 5, 000 correlation 0.1)
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Exact Newton

Newton Sketch

∑n

i=1

log(bi − ai
T x)

c 

cT x −µ

min cT x
Ax≤b
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Distributed Optimization

DATA
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Distributed Optimization
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Distributed optimization

◦ A : n× d feature matrix, and y : n× 1 response vector

◦ Partition data A =

[
A1

A2

]
, y =

[
y1

y2

]

◦ Least squares cost

min
x
‖Ax− y‖2 = min

x
‖A1x− y1‖2 + ‖A2x− y2‖2

Alternating Directions Method of Multipliers (ADMM)

(Hestenes, Powell 1969, Gabay et al. 1976, Boyd et al. 2011)

min
x
‖Ax− y‖2 = min

x1=x2

‖A1x1 − y1‖2 + ‖A2x2 − y2‖2

= min
x1,x2

‖A1x1 − y1‖2 + ‖A2x2 − y2‖2 + λT (x1 − x2)

29
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Alternating Directions Method of Multipliers

→ x1 update on machine 1

min
x1

‖A1x1 − y1‖2 + ‖A2x2 − y2‖2︸ ︷︷ ︸
constant

+λT (x1 − x2) + ρ‖x1 − x2‖2

involves only A1, y1, x2

→ x2 update on machine 2

min
x2

‖A1x1 − y1‖2︸ ︷︷ ︸
constant

+‖A2x2 − y2‖2 + λT (x1 − x2) + ρ‖x1 − x2‖2

involves only A2, y2, x1

→ communicate x1⇐⇒x2, update λ← λ+ρ(x1−x2)
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Alternating Directions Method of Multipliers

◦ (Informal) Under some assumptions, ADMM converges in

O(κA log(1/ε)) iterations, where κA is a conditioning

parameter

◦ # iterations = rounds of communication
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Distributed Sketching and ADMM

A1 and A2 are n× d

A =

[
A1

A2

]

Define multiple sketching matrices

S1 =
[
In×n, 0n×n

]
, S2 =

[
0n×n, In×n

]

S1A = A1

S2A = A2

ADMM is operating on (naive) sketches!
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Distributed Sketching

DATA

𝑤1

𝑤2

𝑤3

𝑤4

𝑤5

𝑤6

𝑤7

𝑤8

𝑆1A
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Distributed Sketching

DATA

𝑤1

𝑤2

𝑤3

𝑤4

𝑤5

𝑤6

𝑤7

𝑤8

𝑣1

𝑣2

𝑣3

𝑣4

𝑣5

𝑣6

𝑣7

𝑣8

𝑆1A

𝑆2A

34



Randomized Direction Method of Multipliers

Let S be a random orthogonal matrix, S =

[
S1

S2

]
, STS = I

e.g., DFT matrix with randomly permuted rows

→ x1 update on machine 1

min
x1

‖S1(Ax1−y)‖2+‖S2(Ax2 − y)‖2︸ ︷︷ ︸
constant

+λ>(x1−x2)+
ρ

2
‖A(x1−x2)‖2

→ x2 update on machine 2

min
x2

‖S1(Ax1−y)‖2︸ ︷︷ ︸
constant

+‖S2(Ax2 − y)‖2+λ>(x1−x2)+
ρ

2
‖A(x1−x2)‖2

→ communicate x1⇐⇒x2 and update λ
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Let S be a random orthogonal matrix, S =

[
S1

S2

]
, STS = I

e.g., DFT matrix with randomly permuted rows

→ x1 update on machine 1

min
x1

‖S1(Ax1−y)‖2+‖S2(Ax2 − y)‖2︸ ︷︷ ︸
constant

+λ>(x1−x2)+
1

2
‖A(x1−x2)‖2

→ x2 update on machine 2

min
x2

‖S2(Ax2−y)‖2︸ ︷︷ ︸
constant

+‖S2(Ax2 − y)‖2+λ>(x1−x2)+
1

2
‖A(x1−x2)‖2

→ communicate x1⇐⇒x2 and update λ
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Randomized Direction Method of Multipliers

Theorem

Local solutions converge, and number of iterations for ε accuracy

is less than

C log(1/ε) ,

where C is a constant independent of data.

[ P. and Candès, 2018]

◦ O(log(1/ε)) rounds of communication. No condition number

dependency.

◦ Exchanging O(d log(1/ε)) bits to communicate x1, x2, ..., xM

is information theoretically optimal
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Randomized Direction Method of Multipliers

Random i.i.d. heavy tailed data
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Randomized Direction Method of Multipliers
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Randomized Direction Method of Multipliers

Random i.i.d. data
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Randomized Direction Method of Multipliers

Random i.i.d. data
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Randomized Direction Method of Multipliers

Random i.i.d. data
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Non-convex Optimization Problems

◦ In general, very difficult to solve globally

◦ Need to make further assumptions

44



Non-convex Optimization Problems

min
x

n∑

i=1

(fx(ai)− yi)2

→ Heuristic: Gauss-Newton method

xt+1 = arg min
x
‖ fxt(A) + Jtx︸ ︷︷ ︸

Taylor’s approx for fx

−y‖22

where (Jt)ij = ∂
∂xj

fx(ai) is the Jacobian matrix
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Non-convex Optimization Problems

Deep learning, nonlinear least squares...

2 layer ReLU neural network training loss 46



Neural Networks

→ Randomized Gauss-Newton method

xt+1 = arg min
x
‖St(fxt(A) + Jtx− y)‖22.

◦ StJt backpropagation (Pearlmutter, 1994)
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Neural Networks

→ Randomized Gauss-Newton method

xt+1 = arg min
x
‖St(fxt(A) + Jtx− y)‖22.

◦ StJt backpropagation (Pearlmutter, 1994)

Theorem

(informal) Consider a single hidden layer neural network,

Gaussian input data A. Randomized Gauss-Newton method

converges to a global minimum in

C log(1/ε) ,

iterations.

[ P. and Candès, 2018]
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2 layer neural network on MNIST dataset

48



0 5 10 15 20 25

Time (seconds)

10 -2

10 -1

100

T
ra

in
in

g 
er

ro
r

5 10 15 20 25 30

Time (seconds)

10 -2

10 -1

T
es

t e
rr

or

Gauss-Newton
Randomized Gauss-Newton
Randomized Gauss-Newton (Iterative Sketch)
Batch SGD

49



Summary

1. Information theoretic lower bounds for sketching

2. Iterative sketching with statistical optimality

3. Distributed sketching

4. Non-convex problems
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Extensions: Streaming optimization

◦ Sketch can be updated by [S s+]

[
A

aT+

]
= SA+ s+a

T
+

Example: Adaptive filtering

time

M
SE

RLS
Iterative Sketch

NLMS

[Scheibler and Vetterli, 16] 51
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Extensions

◦ Privacy preserving optimization

◦ SA provides privacy

◦ Mutual information constraint I(SA;A) ≤ ε
Yang, P., Wainwright, Annals of Statistics, 2015, P. (book chapter) 2018,
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Extensions

◦ Distributed and fault tolerant computing

◦ S1A, S2A ..., SmA can be lost due to point failures

◦ Generate another sketch Sm+1A i.i.d.
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Thank you!

Questions ?
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