Computational Polarization: An Information-theoretic Method for Resilient Computing

Mert Pilanci March 27, 2020

Electrical Engineering Stanford University

Scale of data

- Every day, we create 2.5 billion gigabytes of data
- $\circ~$ Data stored grows 4x faster than world economy $_{\mbox{(Mayer-Schonberger)}}$

Deep learning revolution

ImageNet Classification, top-5 error (%)

in machine learning and data science

• more data results in better and accurate models \rightarrow large scale distributed computing problems

in machine learning and data science

- o more data results in better and accurate models
 - \rightarrow large scale distributed computing problems

Can we scale computation inexpensively ?

Our approach: serverless systems with error correction to auto-scale computation M. Pilanci, Computational Polarization: An Information-theoretic Method for Resilient Computing, accepted to IEEE Transactions on Information Theory, 2021 B. Bartan and M. Pilanci Straggler Resilient Serverless Computing Based on Polar Codes, Allerton 2019

Distributed computation

Error Resilient Matrix Multiplication

Speeding Up Distributed Machine Learning Using Codes. Lee et al., 2017

Error Resilient Matrix Multiplication

Speeding Up Distributed Machine Learning Using Codes. Lee et al., 2017

Serverless computing: AWS Lambda

- low cost, no upfront investment
- 900 seconds single-core, 3GB RAM
- $\circ\,$ Python, Java, C#

Serverless computing: AWS Lambda

- Lambda functions are stateless
 Local file system access and child processes may not extend beyond the lifetime of the request
 - Persistent state should be stored in a storage service (e.g., S3)
- Pywren (E. Jonas et al., 2017)
- Google Cloud and Microsoft Azure offer similar services

Serverless computing: AWS Lambda

• return times

- Polar Codes were invented by Arikan in 2009
- Combines communication channels recursively to obtain better/worse channels
- It is the first code with an explicit construction to provably achieve the channel capacity for all symmetric discrete memoryless channels
- 3rd Generation Partnership Project (3GPP) adopted polar codes as the official coding scheme for the control channels of the 5G New Radio interface.

Polar Codes: Recursive Channel Transformation

Computational Polar Codes

Computational Polar Codes

Hadamard transform

Butterfly coded computation

Decoding the original computation $f(A_1)$ and $f(A_2)$ for linear functions

Runtime distribution

4 by 4 construction

Computational Polarization Process

Computational Polarization Process

- Functional Martingale process
- \circ F(t) is the cumulative density function of the i.i.d. run-times

$$F_{n+1}(t) = \begin{cases} 1 - (1 - F_n(t))^2 & \text{with probability } \frac{1}{2} \\ F_n(t)^2 & \text{with probability } \frac{1}{2} \end{cases}$$

- $\circ \mathbb{E}[F_{n+1}(t)|F_n] = F_n(t)$
- **Theorem:** $||F_{n+1}(t) F_n(t)||_{L_2} \to 0$ as $n \to \infty$ with rate $O(2^{-2\sqrt{n}})$ $F_n(t)$ converges to unit step functions

run-time distributions converge to the Dirac measure

M. Pilanci, **Computational Polarization: An Information-theoretic Method for Resilient Computing**, arXiv preprint 2021

Run-time distributions

Fixing certain inputs to zero

Fixing certain inputs to zero

Computational Polarization

Computational Polarization

(B. Bartan and M. Pilanci, Straggler Resilient Serverless Computing Based on Polar Codes, 2019)

Comparison with other coding methods

- Reed-Solomon codes, LT codes, LDPC codes, Fermat Number Transform (FNT) based codes
- $\circ~$ Computational Polar codes have $O(n\log n)$ encoding and decoding complexity
- o only addition and subtraction operations in encoding and decoding
- can scale to 10,000 workers

Compute jobs

Elastic computing

- (a) uncoded: 500 workers
- (b) coded: 1500 workers (1000 redundant parity)

Computational Polarization for optimization on AWS Lambda

 encode data matrix A for gradient calculation, e.g., Ax and $A^T y$ for Least Squares and Generalized Linear Models random data (20000×4800)
 Imagenet (2013526×196608 ~ 1.2 TB)

- linear functions of data f(A)
- $\circ\,$ polynomial functions of data f(A)
- $\,\circ\,$ gradient and Hessian calculations involving data A

Computational Polarization for gradient estimation

o gradient estimator

$$\frac{\partial f(x)}{\partial x_i} \approx \frac{f(x+he_i) - f(x-he_i)}{2h}$$

coded gradient estimator

$$\frac{f(x+hz_i) - f(x-hz_i)}{2h}$$

- z_i : redundant function evaluation directions =
- decode the gradient $\frac{\partial f(x)}{\partial x}$ from $\langle \frac{\partial f(x)}{\partial x}, z_i \rangle$
 - B. Bartan, M. Pilanci, Distributed Black-Box Optimization via Error Correcting Codes, 2019

Adversarial Examples

- given a trained neural network
- o constrained optimization problem

 $\min_{x} ||x - x_0||$ subject to probability_i(x) > probability_i(x)

(Szegedy et al., 2014, Goodfellow et al., 2015)

Comparison with finite differences and random search

• plane classified as truck in CIFAR10

Choromanski et al. Structured evolution with compact architectures for scalable policy optimization, 2018

Conclusions and future work

 \checkmark Scalable and error resilient distributed computing system

- $\checkmark\,$ cheap encoding and decoding
- \checkmark distributed Least Squares and GLMS
- \rightarrow privacy and encryption

 \rightarrow more general convex optimization problems with constraints, e.g., convex optimization for neural networks

M. Pilanci, T. Ergen

Neural Networks are Convex Regularizers: Exact Polynomial-time Convex Optimization Formulations for Two-Layer Networks, arXiv:2002.10553 stanford.edu/~pilanci

 M. Pilanci, Computational Polarization: An Information-theoretic Method for Resilient Computing arXiv Preprint, 2021. https://arxiv.org/pdf/2109.03877.pdf

B. Bartan, M. Pilanci, Straggler Resilient Serverless Computing Based on Polar Codes. 57th Annual Allerton Conference on Communication, Control, and Computing 2019, https://arxiv.org/pdf/1901.06811.pdf

B. Bartan, M. Pilanci, Distributed Black-Box Optimization via Error Correcting Codes. 57th Annual Allerton Conference on Communication, Control, and Computing 2019, https://arxiv.org/pdf/1907.05984.pdf

M. Pilanci, T. Ergen, Neural Networks are Convex Regularizers: Exact Polynomial-time Convex Optimization Formulations for Two-Layer Networks, ICML 2020