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ABSTRACT

Automated COVID-19 detection based on analysis of cough record-
ings has been an important field of study, as efficient and accurate
methods are necessary to contain the spread of the global pandemic
and relieve the burden on medical facilities. While previous works
presented lightweight machine learning models [9], these models
may sacrifice accuracy and interpretability to integrate into mo-
bile devices. Besides, the question of how to effectively associate
indicators from audio signals to other modality inputs (i.e. patient
information) is still largely unexplored, as previous works predom-
inantly relied on simply concatenated features to learn. To tackle
these issues, this paper proposes a novel Hierarchical Multi-modal
Transformer (HMT) that learns more informative multi-modal rep-
resentations with a cross attention module during the feature fusion
procedure. Besides, the block aggregation algorithm for the HMT
provides an efficient and improved solution from the Vanilla Vision
Transformer for limited COVID-19 benchmark datasets. Extensive
experiments show the effectiveness of our proposed model for more
accurate COVID-19 detection, which yield state-of-the-art results
on two public datasets, Coswara and COUGHVID.
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1 INTRODUCTION

The COVID-19 pandemic has shaken society globally, claiming
millions of lives and causing trillions of dollars in damage to GDP.
As of May 5th, 2022, the World Health Organization (WHO) reports
513M COVID positive cases and 6.2M deaths [1]. Experts claim that
mass testing plays an essential role in social distancing, contact
tracing and impeding the spread of the virus [17]. The gold standard
for COVID-19 diagnosis is the PCR test. Although the PCR test
receives general acceptance, this clinical test is limited to the areas
with enough testing equipment, trained clinical staff, and other
medical resources. Additionally, during infection spikes, testing
centers are often overwhelmed with massive testing needs.

The development of machine learning techniques and digital
health shows promise in providing an alternative solution for COVID-
19 testing. Researchers have studied COVID-19 prediction from
image analysis and audio analysis. Researchers in [23] used CT
scanning to classify COVID-19 infected patients from healthy in-
dividuals. Minaee et al. predicted COVID-19 from around 5,000
chest X-ray images using deep transfer learning [13] However, X-
ray and CT scanning still requires clinical equipment, and as such
this image-based machine learning method is difficult to apply to
general testing circumstances.

On the other hand, cough sounds have been utilized for many res-
piratory disease studies and have shown great value in conveying
vital information. Korpa et al. [12] applied basic signal processing
techniques, inspecting both time-domain waveform and frequency-
domain periodograms and showed the difference between normal
cough and inflammation cough. Furthermore, cough sound anal-
ysis has proved helpful in diagnosing respiratory conditions like
pertussis, pneumonia and asthma [2, 16]. Since the COVID-19 pan-
demic, cough sound classification has been studied for developing
affordable and diagnostic Al tools. And many researchers have con-
tributed to building COVID-19 cough audio databases providing the
foundation for COVID-19 cough analysis algorithm development.

Previous works [3, 6] have shown that combining three modali-
ties as inputs: raw audio spectrogram, MFCCs, and clinical features
could yield the optimal performance. However, these methods are
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not effective in capturing the importance of different modalities and
their correlation with the final prediction. The underlying reason
is that different modalities are neither completely independent nor
correlated, posing challenges for filtering out the noise and keeping
useful information in each modality during fusion. Previous works
only consider straightforward data concatenations to fuse these
features from different modalities, which may yield suboptimal
performance.

Transformer models [24] have become dominant deep learning
architectures that outperform the traditional recurrent neural net-
works (RNNs) in many natural language processing benchmarks.
Vision Transformer (ViT) [5] also shows improved results over the
traditional convolutional neural networks (CNNs) in image recog-
nition tasks. Transformer-based architectures such as the Audio
Spectrogram Transformer (AST) [7, 8] also shows promising results
over CNNss in processing and learning audio spectrograms. How-
ever, global self-attention between pixel pairs is computationally
expensive and is hard to integrate with mobile devices. In addition,
the AST leveraged the pretraining process, which is not practical
as the quantity of cough audio files is limited. Data-efficient ViT
(DeiT) [22] attempts to address this problem by introducing teacher
distillation from a convolutional network. Despite its effectiveness
to the limited data, it increases the training complexity and is not
possible to leverage other clinical features during the training.

To tackle the above-mentioned challenges, in this paper, we pro-
pose Hierarchical Multi-modal Transformer (HMT), an end-to-end
deep neural network that detects and classifies COVID-19 based
on the cough sounds. It consists of three branches: Multilayer Per-
ceptron (MLP) networks for the 1D clinical and audio features and
transformer for the 2D audio spectrograms. Inspired by [15, 21], we
propose a cross-attention module that fuses the intermediate rep-
resentations from each branch, effectively capturing the relations
between each of them and their importance contributed to the final
prediction. Inspired by the work of Pan et al. [25], the transformer
branch integrates nested transformer layers with block aggre-
gation algorithm, which conducts local self-attention on every
non-overlapping image block independently, and then nests them
hierarchically. Not only this approach outperforms the traditional
convolutional based models and vanilla ViT, but also substantially
simplifies previous sophisticated (local) self-attention mechanisms
and improves data efficiency.

In summary, our contributions are threefold:

1. We propose a novel transformer based neural network called
HMT that can fuse audio signals and clinical features and explores
their underlying interactions with a cross-attention module.

2. To the best of our knowledge, this is the first attempt to use
hierarchically stacked transformers to classify the audio spectro-
grams. The block aggregation algorithm significantly improves the
efficiency and cross-block communication without adding extra
training complexity.

3. We conduct extensive experiments on two public COVID-19
cough audio datasets: Coswara and COUGHVID and achieve new
state-of-the-art results. Additionally, ablation studies are conducted
to demonstrate the the effectiveness of the proposed modules.

Tang, et al.

2 DATA AND PREPROCESSING

For this paper, we chose to work with two open-access cough audio-
recording datasets for model training. The first is the Coswara
dataset [19], a public crowd-sourced database prepared by the In-
dian Institute of Science (IISc) Bangalore for COVID-19 diagnostic
study. The data is collected from healthy individuals and COVID-19
patients via a crowd-sourcing web portal. The dataset contains 2,746
audio samples with metadata collected between April 2020 and Feb-
ruary 2022. Audio recordings include breathing, cough, and speech
sounds of healthy and COVID-19 patients. Metadata consists of the
participant’s age, gender, location (country, state/province), cur-
rent health status (healthy /exposed /positive /recovered) and the
presence of comorbidities. We chose the "shallow-cough" recording
as the input source among the various sound recordings in the
dataset. From the metadata, we decided on "fever muscle pain" and
"respiratory condition" as extra clinical information for prediction
in a 1D vector of binary numbers. For COVID-19 status labeling,
samples labeled with *positive mild’, *positive moderate’, and ’posi-
tive asymp’ are classified in the positive class (n=681), and all other
statuses are classified as negative (n=2,065).

The second open-access dataset we used for training is the
COUGHVID dataset [14] prepared by the Swiss Federal Institute of
Technology Lausanne (EPFL) for automatic COVID-19 screening
research. COUGHVID provides over 25,000 crowd-sourced cough
recordings, with 1,155 claiming COVID-19 positive (n=1,155) col-
lected between April 1st, 2020 and December 1st, 2020 via crowd-
sourcing in a web portal. Similar to the Coswara dataset, participant
location, age, gender, and respiratory conditions are also included
as labels. In the COUGHVID dataset, the “dry-cough” recording
is chosen as the input audio source. We also included the com-
mon metadata “fever muscle pain” and “respiratory condition” as
training features. To address quality issues in the crowd-sourced
datasets, COUGHVID’s cough detection classifier filters out audio
files with the “cough-detected” level below 90%. As a result, there
are 8868 useful samples in total, including 441 positive samples and
8427 negative samples.

To combine the two datasets of different sizes, we include the
entire smaller dataset (Coswara) and a subset of the more extensive
dataset (COUGHVID) as our training and evaluation dataset. Since
the datasets are highly imbalanced, we include all data samples
with COVID-19 positive class and randomly sampled 1,000 samples
with COVID-19 negative class from the COUGHVID dataset. After
manually balancing the dataset and removing data with missing
labels, clinical features, or audio sources, our combined dataset
contains 4,102 data samples, including 1,023 positive samples and
3,079 negative samples.

To extract information from the cough audios, we chose two
main representations: mel-frequency cepstral coefficient (MFCC)
and mel-frequency spectrogram, which are very commonly used
for audio processing and speech recognition. MFCC is an acoustic
parametric representation derived from the power spectrogram [4].
The audio signal is decomposed into an unevenly sampled time-
frequency distribution that mimics the human auditory peripheral
system’s response to sound by a biologically inspired spectral filter
[18]. Additionally, we use the Librosa package to extract the first
39 MFCC features of each frame, from a 2048-window-length Fast
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Figure 1: Illustration of Proposed Model. In our setting, the block aggregation in the red dotted box is performed between
hierarchies = 3 to achieve cross-block communication on the audio spectrogram plane.

Fourier Transform with hop length of 512 successive frames and a
hamming window function. To represent the characteristics of the
whole audio signal, we take the average value among time frames.
The other feature representation is the mel-spectrogram which
visualizes the time-frequency information. For each audio input, a
spectrogram image is generated by the Librosa, reshaped into (288,
432, 3), and used as input to the model.

3 METHODS

The proposed HMT is shown on Fig. 1. We have used the MFCC,
extra clinical features, and audio spectrogram for each individual
cough recording as the input. Note that in our setting, the MFCCs
have the shape (#batch size, 39), the clinical features have the shape
(#batch size, 39), and spectrograms have the shape (#batch size, 3,
224, 224). The HMT consists of two MLP sub-networks (branches)
for the MFCC and extra clinical features, and one Nested Hierar-
chical Transformer followed by an MLP layer as the sub-network
for the spectrograms. The intermediate outputs from these three
sub-networks are fused, passed through the Multi-modal Cross At-
tention module, and fed through a final MLP layer with the Sigmoid
function, which outputs the logits for COVID-19 binary classifica-
tion. Below we elaborate on each component in detail.

3.1 MLP Branches

The first branch for the MFCC inputs is an MLP neural network
consisting of two stacked dense (fully-connected) layers of 256 units
each. Each layer is followed by a 1D batch normalization layer and
a dropout layer.

The second branch for the clinical features is also an MLP neural
network of two stacked dense layers of 64 units each. Similar to

the first branch, each layer is followed by a 1D batch normalization
layer and a dropout layer.

3.2 Nested Hierarchical Transformer

Due to the confidentiality of COVID-19 patient data, cough record-
ing training data is limited and it is not feasible to conduct self-
supervised pre-training with large amounts of unlabeled data. Teacher
distillation from a large pre-trained convolutional network [22]
could address this problem, however this increases the training
complexity, making it unfeasible to combine other features (MFCCs,
clinical features) during training. Inspired by the NesT [25], we
leverage the block aggregation algorithm shown in Algorithm 1
to address the problem and significantly improve data efficiency,
making our model easier to train on Coswara and COUGHVID.
Specifically, the 2D spectrogram batches are patchified, linearly
embedded, and concatenated with trainable position embeddings.
Then the block function is applied to partition all the patches based
on the hyperparameter num_hierarchy.

Inside each block, we stack a number of canonical transformer
layers [24], notated as T;, which are multi-head self-attention (MHSA)
layers followed by a feed-forward fully connected network (FFN)
with skip connections and layer normalization. Note that all the
blocks inside each hierarchy share one set of parameters, which
reduces the training complexity. Thereafter, we build a nested hier-
archy to aggregate every four spatially connected blocks into one,
as is shown in the red dotted box in Fig. 1. Since every block pro-
cesses information independently via canonical transformer layers,
we ensure global (cross-block) communication by applying:

1. The unblock process to obtain the full image plane,

2. Spatial operations to reduce the number of blocks (here 3x3
convolution and 3x3 max pooling are used),
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3. Blocking back to obtain the next hierarchical blocks.

At the end of the block aggregation that the iteration reaches the
num_hierarchy, a global average pooling and an MLP layer of
256 units are applied to the intermediate representations.

3.3 Multi-modal Cross Attention

After obtaining the representations from each branch, we concate-
nate them and pass them through the multi-modal cross atten-
tion module, which computes the cross-modal attention and self-
attention. This encodes important information that let the model
pays more attention to the useful modalities while filtering the
trivial ones. We denote the representations from the MFCC branch,
clinical feature branch, and spectrogram branch as M, C, S, respec-
tively.
We compute the query with a learnable weight:

Gm = WingM, e = WegC, g5 = WS (1)

The key K}, and value V;,, for M are computed below with a new
set of learnable weights (K, V¢, K, Vs are computed using the same

way):
Km = concat{M" W, CTW,., STWyi}

@)
Vin = concat{MTsz,, cTw,,, STWSU}

The cross-modal and self-attention scores are computed by the
cosine similarity of the query and keys. Instead of a vanilla atten-
tion mechanism that uses dot product pairwise on each element,
the cosine similarity provides a more efficient way without losing
information. The interaction of different modalities answering the
query is given in Equation 3:

m = softmax(CosineSimilarity(qm, Km))Vm
¢ = softmax(CosineSimilarity(qc, K¢))Ve (3)
§ = softmax(CosineSimilarity(qs, Ks))Vs

The m, ¢, § are then concatenated together, added to the original
m, ¢, s, and passed through a final MLP layer that had learned the
ensembled representation. Sigmoid activation function is used to
obtain the binary classification logits.

4 EXPERIMENTS AND RESULTS

4.1 Implementation Details

To align with our previous studies [3, 6], the combined Coswara and
COUGHVID datasets are used to evaluate the proposed network
under 5-fold cross-validation. We use both area under the ROC
curve (AUC) and accuracy as metrics. We implement our proposed
HMT on the PyTorch framework and PyTorch Vision library for the
ViT structures and train with a Tesla 100 GPU on Google Colab Pro.
During training, we choose the Adam optimizer [11] and set the
hyperparameters as follows: learning rate of 0.0003, 20 epochs with
early stopping, dropout rate of 0.4 for all fully connected layers,
num_hierarchy of 3, and patch size of 4 for splitting spectrograms.

Tang, et al.

ALGORITHM 1: Block Aggregation Algorithm

Input: Spectrogram (#batch size, channel, height, width)
Parameter: num_hierarchy = 3, T; = Transformer layers
Output: Intermediate representation (#block, sequence

length, embedding dimension)
Function aggregate Input
x « Block(PatchEmbed(Input));
forall i < 1 to num_hierarchy do

y < Ti(x);

if i < num_hierarchy - 1 then
z « UnBlock(y);
z < ConvMaxPool(z);
z < Block(z);
end
end
h « GlobalAvgPool(x);

return h;

end

Tue Positive Rate

00 02 04 06 08 10
False Positive Rate

Figure 2: AUC curve for the proposed HMT model. The blue
line the 5-fold cross-validation average. The shaded area
is the 95% confidence region for the 5-fold cross-validation
results.)

4.2 Comparison and Analysis

The experimental results for the proposed HMT and previous ap-
proaches are shown in Table 1. We leverage the source code pro-
vided by Virufy [3, 6] to re-implement their models in our setting.
Each implementation is optimized using grid search to ensure a
fair comparison. We find that our HMT performs better than the
compared methods, attaining the best overall AUC score and ac-
curacy with approximately +4% improvements. We also compare
the vanilla ViT without block aggregation algorithm, which de-
creases the overall performance by 4%. Finally, we visualize the
5-fold cross-validation AUC results in Figure 2.
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Table 1: 5 fold cross-validation results

Model Name Average AUC | Average Accuracy
Inception ResNet V2 Branch [20] 0.6621 0.6576
DenseNet 121 [10] 0.6871 0.6790
Virufy Multi-branch w. CNN [3] 0.7684 0.7540
Virufy Multi-branch w. ResNet50 encoder [6] 0.7730 0.7701
Virufy Multi-branch w. ViT encoder 0.7782 0.7716
Proposed HMT 0.8206 0.8132

4.3 Ablation Studies ACKNOWLEDGMENTS

To measure the impact of each component in the proposed HMT
model, we conducted an ablation study using the same datasets
with the average AUC reported, as shown in Table 2. With only
an MFCC branch that consists of MLP layers as a baseline, the
performance was reduced by around 30%. Adding the extra clinical
branch that consists of MLP layers slightly increased the perfor-
mance by about 4%. Adding the spectrogram branch (without the
transformer architecture but only the CNNs) led to around 20% per-
formance boost, which is aligned with Virufy’s previous model’s
performance [3] and demonstrates the useful information provided
by the spectrograms. Upgrading the CNNs to the Nested Hierarchi-
cal Transformer resulted in another performance boost of 3%, which
is already better than the state-of-the-art as reported in [6]. Lastly,
we adding the multi-modal cross attention module in our proposed
HMT model which led to the new state-of-the-art performance.

Table 2: Ablation Studies.

MFCC  Clinical ~ Spectrogram NesT  Cross Attn | AUC
v 0.53
v v 0.57
v v v 0.76
v v v v 0.79
v v v v v 0.82

5 CONCLUSION AND FUTURE WORK

In this paper, we proposed HMT (Hierarchical Multi-modal Trans-
former), a multi-branch Transformer-based network for better per-
formance in COVID-19 cough classification. HMT is equipped with
two MLP networks for MFCCs and clinical features, a Nested Hi-
erarchical Transformer for the audio spectrogram, and a novel
multi-modal cross attention module that effectively fuses these
modality inputs. Our method addresses the challenges of limited
cough recording data and under-explored interactions between the
audio and other modalities. Extensive experiments on two public
datasets show the effectiveness of our approach, proving it as a
potential solution to help alleviate the pandemic. Additionally, ab-
lation studies further demonstrate the efficacy of each component
of our HMT model.

This work is fully supported by Virufy Al Research Group. Virufy
is a nonprofit research organization developing artificial intelli-
gence (AI) technology to screen for COVID-19 from cough patterns,
rapidly and at no cost through use of a smartphone. Mert Pilanci is
partially supported by an Army Research Office Early Career Award,
and the National Science Foundation under grants ECCS-2037304
and DMS-2134248.
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