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Abstract
We develop exact representations of two layer neu-
ral networks with rectified linear units in terms of
a single convex program with number of variables
polynomial in the number of training samples and
number of hidden neurons. Our theory utilizes
semi-infinite duality and minimum norm regu-
larization. Moreover, we show that certain stan-
dard multi-layer convolutional neural networks
are equivalent to L1 regularized linear models in
a polynomial sized discrete Fourier feature space.
We also introduce exact semi-definite program-
ming representations of convolutional and fully
connected linear multi-layer networks which are
polynomial size in both the sample size and di-
mension.

1. Introduction
In this paper, we introduce a finite dimensional, polynomial-
size convex program that globally solves the training prob-
lem for two-layer neural networks with rectified linear unit
activation functions. The key to our analysis is a generic
convex duality method we introduce, and is of independent
interest for other non-convex problems. We further prove
that strong duality holds in a variety of architectures.

1.1. Related work and overview

Convex neural network training was considered in the litera-
ture (Bengio et al., 2006; Bach, 2017). However, convexity
arguments in the existing work are restricted to infinite width
networks, where infinite dimensional optimization problems
need to be solved. In fact, adding even a single neuron to the
model requires the solution of a non-convex problem where
no efficient algorithm is known (Bach, 2017). In this work,
we develop a novel duality theory and introduce polynomial-
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time finite dimensional convex programs, which are exact
and computationally tractable.

Several recent studies considered over-parameterized neural
networks, where the width approaches infinity by leveraging
connections to kernel methods, and showed that randomly
initialized gradient descent can fit all the training samples
(Jacot et al., 2018; Du et al., 2019; Allen-Zhu et al., 2019).
However, in this kernel regime, the analysis shows that al-
most no hidden neurons move from their initial values to
actively learn useful features (Chizat & Bach, 2018). Ex-
periments also confirm that the kernel approximation as the
width tends to infinity is unable to fully explain the success
of non-convex neural network models (Arora et al., 2019).
On the contrary, our work precisely characterizes the mech-
anism behind extraordinary properties of neural network
models for any finite number of hidden neurons. We prove
that networks with rectified linear units are identical to con-
vex regularization methods in a finite higher dimensional
space.

Consider a two-layer neural network f : Rd → R with m
hidden neurons and a scalar output.

f(x) =

m∑
j=1

φ(xTuj)αj , (1)

where u1, . . . , um ∈ Rd are the weight vectors of hidden
neurons, α1, . . . , αm ∈ R are the corresponding second
layer weights, and φ is the activation function. We will
assume that φ(t) = (t)+ := max(t, 0) is the ReLU activa-
tion function throughout the paper unless noted otherwise.
We extend the definition of scalar functions to vectors and
matrices entry-wise. We use Bp to denote the unit `p ball
in Rd. We denote the set of integers from 1 to n as [n].
Furthermore, we use σ to denote singular values.

In order to keep the notation simple and clearly convey
the main idea, we will restrict our attention to two-layer
ReLU networks with scalar output trained with squared
loss. All of our results immediately extend to vector outputs,
tensor inputs, arbitrary convex classification and regression
loss functions, and certain other network architectures (see
Appendix).
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(a) Ellipsoidal set:
{Xu |u ∈ Rd, ‖u‖2 ≤ 1}

(b) Rectified ellipsoidal setQX :{(
Xu

)
+
|u ∈ Rd, ‖u‖2 ≤ 1

} (c) Polar set (QX ∪ −QX)◦:
{v | | vTw| ≤ 1 ∀w ∈ QX}

Figure 1: Sets involved in the construction of the Neural Gauge. Ellipsoidal set, rectified ellipsoid QX and the polar of
QX ∪ −QX .

Given a data matrix X ∈ Rn×d and label vector y ∈ Rn,
and a regularization parameter β > 0, consider minimizing
the sum of the squared loss objective and squared `2-norm
of all parameters

p∗ := min
{αj ,uj}mj=1

1

2

∥∥∥ m∑
j=1

(Xuj)+αj − y
∥∥∥2
2

+
β

2

m∑
j=1

(‖uj‖22 + α2
j ) .

(2)

The above objective is highly non-convex due to non-linear
ReLU activations and product between hidden and outer
layer weights. The best known algorithm for globally mini-
mizing the above objective is a brute-force search over all
possible piece-wise linear regions of ReLU activations of m
neurons and output layer sign patterns (Arora et al., 2018).
This algorithm has complexity O(2mndm) (see Theorem
4.1 in (Arora et al., 2018)). In fact, known algorithms for ap-
proximately learningm hidden neuron ReLU networks have
complexity O(2

√
m) (see Theorem 5 of (Goel et al., 2017))

due to similar combinatorial explosion with the number of
neurons m.

2. Convex duality for two-layer networks
Now we introduce our main technical tool for deriving con-
vex representations of the non-convex objective function
(2). We start with the `1 penalized representation, which is
equivalent to (2) (see Appendix).

p∗ = min
‖uj‖2≤1
∀j∈[m]

min
{αj}mj=1

1

2

∥∥∥ m∑
j=1

(Xuj)+αj − y
∥∥∥2
2

+ β

m∑
j=1

|αj | ,

(3)

Replacing the inner minimization problem with its convex
dual, we obtain (see Appendix)

p∗ = min
‖uj‖2≤1
∀j∈[m]

max
v∈Rn s.t.

|vT (Xuj)+|≤β, ∀j∈[m]

−1

2
‖y − v‖22 +

1

2
‖y‖22 .

Interchanging the order of min and max, we obtain the
lower-bound d∗ via weak duality

p∗ ≥ d∗ := max
v∈Rn s.t.

|vT (Xu)+|≤β ∀u∈B2

−1

2
‖y − v‖22 +

1

2
‖y‖22 , (4)

where B2 is the unit `2 ball in Rd. The above problem is a
convex semi-infinite optimization problem with n variables
and infinitely many constraints. We will show that strong
duality holds, i.e., p∗ = d∗ as long as the number of hidden
neurons m satisfies m ≥ m∗ for some m∗ ∈ N, 1 ≤ m∗ ≤
n, which will be defined in the sequel. As it will be shown,
m∗ can be smaller than n. The dual of the dual program (4)
can be derived using standard semi-infinite programming
theory (Goberna & López-Cerdá, 1998), and corresponds to
the bi-dual of the non-convex problem (2).

Now we briefly introduce basic properties of signed mea-
sures that is necessary to state the dual of (4) and refer
the reader to (Rosset et al., 2007; Bach, 2017) for further
details. Consider an arbitrary measurable input space X
with a set of continuous basis functions φu : X → R
parameterized by u ∈ B2. We then consider real-valued
Radon measures equipped with the uniform norm (Rudin,
1964). For a signed Radon measure µ, we can define an
infinite width neural network output for the input x ∈ X
as f(x) =

∫
u∈B2

φu(x)dµ(u) . The total variation norm
of the signed measure µ is defined as the supremum of∫
u∈B2

q(u)dµ(u) over all continuous functions q(u) that
satisfy |q(u)| ≤ 1. Consider the ReLU basis functions
φu(x) =

(
xTu

)
+

. We may express networks with finitely
many neurons as in (1) by

f(x) =

m∑
j=1

φuj (x)αj ,

which corresponds to µ =
∑m
j=1 αjδ(u−uj) where δ is the

Dirac delta function. And the total variation norm ‖µ‖TV
of µ reduces to the `1 norm ‖α‖1.
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Now we can state the dual of (4) (see Section 2 of (Shapiro,
2009) and Section 8.6 of (Goberna & López-Cerdá, 1998))
as follows

d∗ ≤ p∗∞ = min
µ

1

2

∥∥∥∥∫
u∈B2

(
Xu
)
+
dµ(u)− y

∥∥∥∥2
2

+ β ‖µ‖TV

(5)

where ‖µ‖TV stands for the total variation norm of
the Radon measure µ. Furthermore, an application of
Caratheodory’s theorem shows that the infinite dimensional
bi-dual (5) always has a solution that is supported with
finitely many Dirac delta functions, whose exact number
we define as m∗, where m∗ ≤ n+ 1 (Rosset et al., 2007).
Therefore we have

p∞∗ = min
‖uj‖2≤1
{αj ,uj}m

∗
j=1

1

2

∥∥∥ m∗∑
j=1

(Xuj)+αj − y
∥∥∥2
2

+ β

m∗∑
j=1

|αj | ,

= p∗ ,

as long as m ≥ m∗. We show that strong duality holds,
i.e., d∗ = p∗ in Appendix A.8 and A.11. In the sequel, we
illustrate howm∗ can be determined via a finite-dimensional
parameterization of (4) and its dual.

2.1. A geometric insight: Neural Gauge Function

An interesting geometric insight can be provided in the
weakly regularized case where β → 0. In this case, mini-
mizers of (3) and hence (2) approach minimum norm inter-
polation p∗β→0 := limβ→0 β

−1p∗ given by

p∗β→0 = min
{uj ,αj}mj=1

m∑
j=1

|αj | (6)

s.t.
m∑
j=1

(Xuj)+αj = y, ‖uj‖2 ≤ 1∀j.

It can be shown that p∗β→0 is the gauge function of the
convex hull of QX ∪ −QX where QX := {(Xu)+ : u ∈
B2} (see Appendix), i.e.,

p∗β→0 = inf
t:t≥0

t

y ∈ tConv{QX ∪ −QX} .

We call the above problem Neural Gauge due to the con-
nection to the minimum norm interpolation problem. Using
classical polar gauge duality (see e.g. (Rockafellar, 1970),
it holds that

p∗β→0 = max yT z (7)

z ∈ (QX ∪ −QX)◦ ,

where (QX ∪ −QX)◦ is the polar of the set QX ∪ −QX .
Therefore, evaluating the support function of this polar set
is equivalent to solving the neural gauge problem, i.e., min-
imum norm interpolation p∗β→0. These sets are illustrated
in Figure 1. Note that the polar set (QX ∪ −QX)◦ is al-
ways convex (see Figure 1c), which also appears in the dual
problem (4) as a constraint. In particular, limβ→0 β

−1d∗ is
equal to the support function. Our finite dimensional convex
program leverages the convexity and an efficient description
of this set as we discuss next.

3. An exact finite dimensional convex
program

Consider diagonal matrices Diag(1[Xu ≥ 0]) where u ∈
Rd is arbitrary and 1[Xu ≥ 0] ∈ {0, 1}n is an indicator
vector with Boolean elements [1[xT1 u ≥]0, . . . , 1[xTnu ≥
0]]. Let us enumerate all such distinct diagonal matrices that
can be obtained for all possible u ∈ Rd, and denote them
as D1, ..., DP . P is the number of regions in a partition
of Rd by hyperplanes passing through the origin, and are
perpendicular to the rows of X . It is well known that

P ≤ 2

r−1∑
k=0

(
n− 1

k

)
≤ 2r

(e(n− 1)

r

)r
,

for r ≤ n where r := rank(X). (Ojha, 2000; Stanley
et al., 2004; Winder, 1966; Cover, 1965) (see Appendix for
details).

Consider the finite dimensional convex problem

min
{vi,wi}Pi=1

1

2

∥∥∥ P∑
i=1

DiX(vi − wi)− y
∥∥∥2
2

+ β

P∑
i=1

(‖vi‖2 + ‖wi‖2)

s.t. (2Di − In)Xvi ≥ 0, (2Di − In)Xwi ≥ 0, ∀i ∈ [P ].
(8)

Theorem 1. The convex program (8) and the non-convex
problem (2) where m ≥ m∗ has identical optimal values1.
Moreover, an optimal solution to (2) with m∗ neurons can
be constructed from an optimal solution to (8) as follows

(u∗ji , α
∗
ji) =


(

v∗i√
‖v∗i ‖2

,
√
‖v∗i ‖2

)
if v∗i 6= 0(

w∗i√
‖w∗i ‖2

,−
√
‖w∗i ‖2

)
if w∗i 6= 0 ,

where v∗i , w
∗
i are the optimal solutions to (8), and either

v∗i or w∗i is non-zero for all i = 1, ..., P . We have m∗ =∑P
j:v∗j 6=0 or u∗j 6=0 1, where {v∗i , w∗i }Pi=1 are optimal in (8).

Remark 3.1. Theorem 1 shows that two layer ReLU net-
works with m hidden neurons can be globally optimized

1m∗ is defined as the number of Dirac deltas in the optimal
solution to (5). If the optimum is not unique, we may pick the
minimum cardinality solution.
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via the second order cone program (8) with 2dP variables

and 2nP linear inequalities where P = 2r
(
e(n−1)

r

)r
,

and r = rank(X). The computational complexity is

O
(
r3
(
n
r

)3r)
using standard interior-point solvers. For

fixed rank r (or dimension d), the complexity is polynomial
in n and m, which is an exponential improvement over the
state of the art (Arora et al., 2018; Bienstock et al., 2018).
Note that d is a small number that corresponds to the filter
size in CNNs as we illustrate in the next section. However,
for fixed n and rank(X) = d, the complexity is exponential
in d, which can not be improved unless P = NP even for
m = 2 (Boob et al., 2018). We also remark that further
theoretical insight as well as faster numerical solvers can
be developed due to the similarity to group Lasso (Yuan &
Lin, 2006) and related structured regularization methods.

Remark 3.2. We note that the convex program (8) can
be approximated by sampling a set of diagonal matri-
ces D1, ..., DP̃ . For example, one can generate u ∼
N(0, Id), or from any distribution P̃ times, and let D1 =
Diag(1[Xu1 ≥ 0]), ..., DP̃ = Diag(1[XuP̃ ≥ 0]) and
solve the reduced convex problem, where remaining vari-
ables are set to zero. This is essentially a type of coordinate
descent applied to (8). In Section 6, we show that this
approximation in fact works extremely well, often better
than backpropagation. In fact, backpropagation (BP) can
be viewed as a heuristic method to solve the convex objec-
tive (8). The global optima of this convex program (8) are
among the fixed points of BP, i.e., stationary points of (2).
Moreover, we can bound the suboptimality of any feasible
solution, e.g., from backpropagation, in the non-convex cost
(2) using the dual of (8).

The proof of Theorem 1 can be found in Section 5.

4. Convolutional neural networks
Here, we introduce extensions of our approach to convolu-
tional neural networks (CNNs). Two-layer convolutional
networks with m hidden neurons (filters) of dimension d
and fully connected output layer weights (flattened activa-
tions) can be described by patch matrices Xk ∈ Rn×d, k =
1, ...,K as f(X1, ..., XK) =

∑m
j=1

∑K
k=1 φ(Xkuj)αjk.

This formulation also includes image, or tensor inputs.

4.1. ReLU convolutional networks with vector outputs

Consider the training problem

min
{αj ,uj}mj=1

1

2

K∑
k=1

∥∥∥ m∑
j=1

(Xkuj)+αj − yk
∥∥∥2
2

+
β

2

m∑
j=1

(‖uj‖22 + α2
j ) ,

where y1, ..., yK are known labels Then the above can be
reduced to (2) by defining X ′ = [XT

1 , ..., X
T
K ]T and y′ =

[y1, ..., yK ]T . Therefore, the convex program (8) solves the
above problem exactly in O

(
r3
(
n
r

)3r)
complexity, where

r is the number of variables in a single filter. We note that
typical CNNs use m filters of size 3 × 3 (r=9) in the first
hidden layer (He et al., 2016).

4.2. Linear convolutional networks are Semi-definite
Programs (SDPs)

We now start with the simple case of linear activations
φ(t) = t, where the training problem becomes

min
{uj ,αj}mj=1

1

2

∥∥∥ K∑
k=1

m∑
j=1

Xkujαjk − y
∥∥∥2
2

(9)

+
β

2

m∑
j=1

(
‖uj‖22 + ‖αj‖22

)
.

The corresponding dual problem is given by

max
v
−1

2
‖v − y‖22 +

1

2
‖y‖22 s.t. max

‖u‖2≤1

∑
k

(
vTXku

)2 ≤ 1.

(10)

Similar arguments to those used in the proof of Theorem
1, strong duality holds (see Appendix). Further, the maxi-
mizers of the inner problem are the maximal eigenvectors
of
∑
kX

T
k vv

TXk, which are optimal neurons (filters). We
can express (10) as the SDP

max
v
−1

2
‖v − y‖22 +

1

2
‖y‖22

s.t. σmax

(
[XT

1 v ...X
T
Kv]
)
≤ β (11)

The dual of the above SDP is a nuclear norm penalized
convex optimization problem (see Appendix)

min
zk∈Rd,∀k

1

2

∥∥∥ K∑
k=1

Xkzk − y
∥∥∥2
2

+ β
∥∥∥[z1, . . . , zK ]

∥∥∥
∗
, (12)

where
∥∥∥[z1, ..., zK ]

∥∥∥
∗

= ‖Z‖∗ :=
∑
i σi(Z) is the `1 norm

of singular values, i.e., nuclear norm (Recht et al., 2010).

4.3. Linear circular convolutional networks

Now, if we assume that the patches are padded with enough
zeros and extracted with stride one, then the circular version
of (9) can be written as

min
{uj ,αj}mj=1

1

2

∥∥∥ m∑
j=1

XUjαj − y
∥∥∥2
2

+
β

2

m∑
j=1

(
‖uj‖22 + ‖αj‖22

)
(13)
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where Uj ∈ Rd×d is a circulant matrix generated by a
circular shift modulo d using the elements ui ∈ Rh. Then,
the SDP (11) reduces to (see Appendix)

min
z∈Cd

1

2

∥∥∥X̃z − y∥∥∥2
2

+ β‖z‖1, (14)

where X̃ = XF , and F ∈ Cd×d is the DFT matrix.

5. Proof of the main result (Theorem 1)
We now prove the main result for scalar output two-layer
ReLU networks with squared loss2. We start with the dual
representation

max
v
−1

2
‖v − y‖22 +

1

2
‖y‖22 (15)

s.t. max
u: ‖u‖2≤1

|vT (Xu)+| ≤ β .

Note that the constraint (15) can be represented as{
v : max
‖u‖2≤1

vT (Xu)+ ≤ β
}
∩
{
v : max
‖u‖2≤1

−vT (Xu)+ ≤ β
}
.

We now focus on a single-sided dual constraint

max
u: ‖u‖2≤1

vT (Xu)+ ≤ β, (16)

by considering hyperplane arrangements and a convex dual-
ity argument over each partition. We first partition Rd into
the following subsets

PS := {u : xTi u ≥ 0,∀i ∈ S, xTj u ≤ 0,∀j ∈ Sc}

Let HX be the set of all hyperplane arrangement patterns
for the matrix X , defined as the following set

HX =
⋃{
{sign(Xu)} : u ∈ Rd

}
.

It is obvious that the setH is bounded, i.e., ∃NH ∈ N <∞
such that |H| ≤ NH .

We next define an alternative representation of the sign pat-
terns inHX , which is the collection of sets that correspond
to positive signs for each element inH. More precisely, let

SX :=
{
{∪hi=1{i}} : h ∈ HX

}
We now express the maximization in the dual constraint in

2See Appendix for generic convex loss functions

(16) over all possible hyperplane arrangement patterns as

max
u: ‖u‖2≤1

vT (Xu)+

= max
u: ‖u‖2≤1

vTDiag(Xu ≥ 0)Xu

= max
S⊆{1,...,n}
S∈SX

max
u: ‖u‖2≤1
xT
i u≥0 ∀i∈S
xT
j u≤0 ∀j∈S

c

vTDiag(Xu ≥ 0)Xu

= max
S⊆{1,...,n}
S∈SX

max
u: ‖u‖2≤1
u∈PS

vTDiag(Xu ≥ 0)Xu

Let us define the diagonal matrix D(S) ∈ Rn×n which is a
function of the subset S ⊆ {1, . . . , n}.

D(S)ii :=

{
1 if i ∈ S
0 otherwise.

Note that D(Sc) = In−D(S), since Sc is the complement
of the set S. With this notation, we can represent PS as

PS = {u : D(S)Xu ≥ 0, (In −D(S))u ≤ 0} ,

and the maximization in the dual constraint as

max
u: ‖u‖2≤1

vT (Xu)+ = max
S⊆{1,...,n}
S∈SX

max
u: ‖u‖2≤1
u∈PS

vTD(S)Xu .

Enumerating all hyperplane arrangements HX , or equiv-
alently SX , we index them in an arbitrary order via i ∈
{1, ..., |SX |}. We denote M = |SX |. Hence, S1, ..., SM ∈
SX is the list of all M elements of SX . Next we use the
strong duality result from Lemma 4 (see Appendix) for the
inner maximization problem. The dual constraint (16) can
be represented as

(16) ⇐⇒ ∀i ∈ {1, ...,M} it holds that

min
α∈R|Si|

β∈R|S
c
i |

α≥0
β≥0

‖XTD(Si)
(
v + α+ β

)
−XTβ‖2 ≤ β

⇐⇒ ∀i ∈ {1, ...,M} ∃(αi, βi) ∈ Rn s.t.
αi ≥ 0βi ≥ 0

‖XTD(Si)
(
v + αi + βi

)
−XTβi‖2 ≤ β .

Therefore, recalling the two-sided constraint in (15), we
can represent the dual optimization problem in (15) as a
finite dimensional convex optimization problem with vari-
ables v ∈ Rn, (αi, βi, α′i, β′i) ∈ Rn, i = 1, ...,M , and 2M
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second order cone constraints as follows

max
v∈Rn

(αi,βi)∈Rn

αi,βi≥0, ∀i∈[M ]
(α′i,β

′
i)∈R

n

α′i,β
′
i≥0, ∀i∈[M ]

−1

2
‖v − y‖22 +

1

2
‖y‖22

s.t. ‖XTD(S1)
(
v + α1 + β1

)
−XTβ1‖2 ≤ β

...

‖XTD(SM )
(
v + αM + βM

)
−XTβM‖2 ≤ β

‖XTD(S1)
(
− v + α′1 + β′1

)
−XTβ′1‖2 ≤ β

...

‖XTD(SM )
(
− v + α′M + β′M

)
−XTβ′M‖2 ≤ β

The above problem can be represented as a standard finite
dimensional second order cone program. Note that the par-
ticular choice of parameters v = 0, αi = 0, βi = 0 for
i = 1, ...,M are strictly feasible in the above constraints
as long as β > 0. Therefore Slater’s condition and conse-
quently strong duality holds (Boyd & Vandenberghe, 2004a).
The dual problem (15) can be written as

min
λ,λ′∈RM

λ,λ′≥0

max
v∈Rn

(αi,βi)∈Rn

αi,βi≥0, ∀i∈[M ]
(α′i,β

′
i)∈R

n

α′i,β
′
i≥0, ∀i∈[M ]

−1

2
‖v − y‖22 +

1

2
‖y‖22

+

M∑
i=1

λi
(
β − ‖XTD(Si)

(
v + αi + βi

)
−XTβi‖2

)
+

M∑
i=1

λ′i
(
β − ‖XTD(Si)

(
− v + α′i + β′i

)
−XTβ′i‖2

)
.

Next we introduce variables r1, . . . , rM , r′1, . . . , r
′
M ∈ Rd

and represent the dual problem (15) as

min
λ,λ′∈RM

λ,λ′≥0

max
v∈Rn

(αi,βi)∈Rn

αi,βi≥0, ∀i∈[M ]
(α′i,β

′
i)∈R

n

α′i,β
′
i≥0, ∀i∈[M ]

min
ri∈Rd, ‖ri‖2≤1
∀i∈[M ]

−1

2
‖v − y‖22 +

1

2
‖y‖22

+

M∑
i=1

λi
(
β + rTi X

TD(Si)
(
v + αi + βi

)
− rTi XTβi

)
+

M∑
i=1

λ′i
(
β + r′i

T
XTD(Si)

(
− v + α′i + β′i

)
− r′i

T
XTβ′i

)
.

We note that the objective is concave in v, αi, βi for i =
1, ...,M and convex in r1, ...rM , r′1, . . . , r

′
M . Moreover the

constraint sets ‖ri‖2 ≤ 1 ‖r′i‖2 ≤ 1 ∀i are convex and
compact. Invoking Sion’s minimax theorem (Sion, 1958)
for the inner max min problem, we may express the strong
dual of the problem (15) as

min
λ,λ′∈RM

λ,λ′≥0

min
ri∈Rd, ‖ri‖2≤1
r′i∈R

d, ‖r′i‖2≤1
i=1,...,M

max
v∈Rn

(αi,βi)∈Rn

αi,βi≥0, ∀i∈[M ]
(α′i,β

′
i)∈R

n

α′i,β
′
i≥0, ∀i∈[M ]

−1

2
‖v − y‖22 +

1

2
‖y‖22

+

M∑
i=1

λi
(
β + rTi X

TD(Si)
(
v + αi + βi

)
− rTi XTβi

)
+

M∑
i=1

λ′i
(
β + r′i

T
XTD(Si)

(
− v + α′i + β′i

)
− r′i

T
XTβ′i

)
.

Computing the maximum with respect to v, αi, βi for i =
1, ...,M analytically we obtain the strong dual to (15) as

min
λ,λ′∈RM

λ,λ′≥0

min
ri∈Rd, ‖ri‖2≤1
r′i∈R

d, ‖r′i‖2≤1
i=1,...,M

(2D(Si)−In)Xri≥0
(2D(Si)−In)Xr′i≥0

1

2

∥∥∥ M∑
i=1

λiD(Si)Xri

− λ′iD(Si)Xr
′
i − y

∥∥∥2
2

+ β

M∑
i=1

(λi + λ′i)

Now we apply a change of variables and define wi = λiri
and w′i = λ′ir

′
i for i = 1, . . . ,M . Note that we can take

ri = 0 when λi = 0 without changing the optimal value.
We obtain

min
wi∈PSi

‖wi‖2≤λi

w′i∈PSi

‖w′i‖2≤λ
′
i

i=1,...,M
λ,λ′≥0

1

2

∥∥∥ M∑
i=1

D(Si)X(wi − w′i)− y
∥∥∥2
2

+ β

M∑
i=1

(λi + λ′i)

The variables λi, λ′i, i = 1, . . . ,M can be eliminated since
λi = ‖wi‖2 and λ′i = ‖w′i‖2 are feasible and optimal.
Plugging in these expressions, we get

min
wi∈PSi

w′i∈PSi

1

2

∥∥∥ M∑
i=1

D(Si)X(wi − w′i)− y
∥∥∥2
2

+ β

M∑
i=1

(‖wi‖2 + ‖w′i‖2) .

which is identical to (8), and proves that the objective values
are equal. Given a solution to (8), we can form the network
output as prescribed in the theorem statement, there will
be m∗ pairs {v∗i , w∗i } for i = 1, . . . , P , where either v∗i or



Neural Networks are Convex Regularizers

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Iteration

10-3

10-2

10-1

100

O
b

je
c
ti
v
e

 V
a

lu
e Trial #1

Trial #2

Trial #3

Trial #4

Trial #5

Trial #6

Trial #7

Trial #8

Trial #9

Trial #10

Optimal

(a) m = 8

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Iteration

10-3

10-2

10-1

100

O
b

je
c
ti
v
e

 V
a

lu
e

Trial #1

Trial #2

Trial #3

Trial #4

Trial #5

Trial #6

Trial #7

Trial #8

Trial #9

Trial #10

Optimal

(b) m = 15

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Iteration

10-3

10-2

10-1

100

O
b

je
c
ti
v
e

 V
a

lu
e

Trial #1

Trial #2

Trial #3

Trial #4

Trial #5

Trial #6

Trial #7

Trial #8

Trial #9

Trial #10

Optimal

(c) m = 50

Figure 2: Training cost of a two-layer ReLU network trained with SGD (10 initialization trials) on a two dimensional dataset
(d = 2), where Optimal denotes the objective value obtained by the proposed convex program in (8).

(a) Independent realizations with m = 50 (b) Decision boundaries

Figure 3: Training cost of a two-layer ReLU network trained with SGD (10 initialization trials) on a two-dimensional
dataset, where Optimal and Approximate denote the objective value obtained by the proposed convex program in (8) and its
approximation by sampling variables, respectively. Learned decision boundaries are also depicted.

w∗i is non-zero since either the constraint vT (Xu∗) ≤ β, or
−vT (Xu∗) ≤ β can be active at any optima in (15). Con-
structing {u∗i , α∗i }m

∗

i=1 as stated in the theorem, and plugging
in the non-convex objective (2), we obtain the value

p∗ ≤1

2

∥∥∥ m∗∑
i=1

(Xu∗i )+α
∗
i − y

∥∥∥2
2

+
β

2

m∗∑
i=1,v∗i 6=0

∥∥∥ v∗i√
‖v∗i ‖2

∥∥∥2
2

+
∥∥∥√‖v∗i ‖2∥∥∥2

2

+
β

2

m∗∑
i=1,w∗i 6=0

∥∥∥ w∗i√
‖w∗i ‖2

∥∥∥2
2

+
∥∥∥√‖w∗i ‖2∥∥∥2

2

which is identical to the objective value of the convex pro-
gram (8). Since the value convex program is equal to the
value of it’s dual d∗ in (15), and p∗ ≥ d∗, we conclude that
p∗ = d∗, which is equal to the value of the convex program
(8) achieved by the prescribed parameters.

6. Numerical experiments
In this section, we present small scale numerical experi-
ments to verify our results in the previous sections3. We
first consider a one-dimensional dataset with n = 5, i.e.,
X = [−2 − 1 0 1 2]T and y = [1 − 1 1 1 − 1]T . We
then fit these data points using a two-layer ReLU network
trained with SGD and the proposed convex program, where
we use squared loss as a performance metric. In Figure 2,
we plot the value of the regularized objective function with
respect to the iteration index. Here, we plot 10 independent
realizations for SGD and denote the convex program in (8)
as “Optimal”. Additionally, we repeat the same experiment
for different number of neurons, particularly, m = 8, 15,
and 50. As demonstrated in the figure, when the number
of neurons is small, SGD is stuck at local minima. As we
increase m, the number of trials that achieve the optimal
performance gradually increases as well. We also note that
Optimal achieves the smallest objective value as claimed in
the previous sections. We then compare the performances

3Additional numerical results can be found in the Appendix
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Figure 4: Training cost of a two-layer ReLU network trained with SGD (10 initialization trials) on a subset of CIFAR-10 and
the proposed convex program (8) denoted as Alg1. Alg2 and Alg3 denote approximations of the proposed convex program
by sampling variables.
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Figure 5: Training accuracy of a two-layer linear CNN trained with SGD (5 initialization trials) on a subset of CIFAR-10,
where L1-Convex denotes the proposed convex program in (14). Filters found via SGD converge to the solution of (14).

on two-dimensional datasets with n = 50, m = 50 and
y ∈ {+1,−1}n, where we use SGD with the batch size 25
and hinge loss as a performance metric. In these experi-
ments, we also consider an approximate convex program,
i.e., denoted as “Approximate” for which we use only a
random subset of the diagonal matrices D1, ...DP of size
m. As illustrated in Figure 3, most of the SGD realiza-
tions converge to a slightly higher objective than Optimal.
Interestingly, we also observe that even Approximate can
outperform SGD in this case. In the same figure, we also
provide the decision boundaries obtained by each method.

We also evaluate the performance of the algorithms on
a small subset of CIFAR-10 for binary classification
(Krizhevsky et al., 2014). Particularly, in each experiment,
we first select two classes and then randomly under-sample
to create a subset of the original dataset. For these experi-
ments, we use hinge loss and SGD. In the first experiment,
we train a two-layer ReLU network on the subset of CIFAR-
10, where we include three different versions denoted as
“Alg1”, “Alg2”, and “Alg3”, respectively. For Alg1 and
Alg2, we use a random subset of the diagonal matrices
D1, ..., Dp which match the sign patterns of the initialized
and optimized (by GD) network, respectively. For Alg3,

we performed a heuristic adaptive sampling for the diago-
nal matrices: we first examine the values of Xu for each
neuron using the initial weights and flip the sign pattern
corresponding to small values and use it along with the orig-
inal sign pattern. In Figure 4, we plot both the objective
value and the corresponding test accuracy for 10 indepen-
dent realizations with n = 106, d = 100, m = 12, and
batch size 25. We observe that Alg1 achieves the lowest
objective value and highest test accuracy. Finally, we train a
two-layer linear CNN architecture on a subset of CIFAR-10,
where we denote the proposed convex program in (14) as
“L1-Convex”. In Figure 5, we plot both the objective value
and the Euclidean distance between the filters found by GD
and L1-Convex for 5 independent realizations with n = 387,
m = 30, h = 10, and batch size 60. In this experiment, all
the realizations converge to the objective value obtained by
L1-Convex and find almost the same filters.

7. Concluding remarks
We introduced a convex duality theory for non-convex neu-
ral network objectives and developed an exact representation
via a convex program with polynomial many variables and
constraints. Our results provide an equivalent characteriza-
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tion of neural network models in terms of convex regular-
ization in a higher dimensional space where the data matrix
is partitioned over all possible hyperplane arrangements.
Neural networks, in fact behave precisely as convex regular-
izers, where piecewise linear models are fitted via an `1− `2
group norm regularizer. There are a multitude of open re-
search directions. One can obtain a better understanding
of neural networks and their generalization properties by
leveraging convexity, and high dimensional regularization
theory (Wainwright, 2019). In the light of our results, one
can view backpropagation as a heuristic method to solve the
convex program (8), since the global minima are necessarily
stationary points of the non-convex objective (2), i.e., fixed
points of the update rule. Efficient optimization algorithms
that approximate the convex program can be developed for
larger scale experiments.
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A. Appendix
A.1. Additional numerical results

(a) Independent SGD initialization trials with m = 50 (b) Decision boundaries

Figure 6: Training of a two-layer ReLU network with SGD (10 initialization trials) and proposed convex programs on a
two-dimensional dataset. Optimal and Approximate denote the objective value obtained by the proposed convex program
(8) and its approximation, respectively. Learned decision boundaries are also depicted.

We now present another numerical experiment on a two-dimensional dataset4, where we place a negative sample (y = −1)
near the positive samples (y = +1) to have a more challenging loss landscape. In Figure 6, we observe that all the SGD
realizations are stuck at local minima, therefore, achieve a significantly higher objective value compared to both Optimal
and Approximate, which are based on convex optimization.

In addition to the classification datasets, we evaluate the performance of the algorithms on three regression datasets, i.e., the
Boston Housing, Kinematics, and Bank datasets (Torgo). In Figure 7, we plot the objective value and the corresponding test
error of 5 independent initialization trials with respect to time in seconds, where we use squared loss and choose n = 400,
d = 13, m = 12, and batch size(bs) 25. Similarly, we plot the objective values and test errors for the Kinematics and Bank
datasets in Figure 8 and 9, where (n, d,m, bs) = (4000, 8, 12, 25) and (n, d,m, bs) = (4000, 32, 12, 25), respectively. We
observe that Alg1 achieves the lowest objective value and test error in both cases.

We also consider the training of the following two-layer CNN architecture

min
{αj ,uj}mj=1

1

2

∥∥∥ K∑
k=1

m∑
j=1

(Xkuj)+αjk − yk
∥∥∥2
2

+
β

2

m∑
j=1

(‖uj‖22 + ‖αj‖22) ,

which has an equivalent convex program as follows

min
{wj ,w′j}mj=1

1

2

∥∥∥ K∑
k=1

m∑
j=1

D(Sjk)Xk(wj − w′j)− yk
∥∥∥2
2

+ β

m∑
j=1

(‖wj‖2 + ‖w′j‖2)

s.t. (2D(Sjk)− In)Xkwj ≥ 0, (2D(Sjk)− In)Xkw
′
j ≥ 0, ‖wj‖2 ≤ 1, ‖w′j‖2 ≤ 1, ∀j ∈ [m],∀k ∈ [K].

In Figure 10, we provide the binary classification performance of the algorithms on a subset of CIFAR-10, where we use
hinge loss and choose (n, d,m, bs) = (195, 3072, 50, 20), filter size 4× 4× 3, and stride 4. This experiment also illustrates
that Alg1 achieves lower objective value and higher test accuracy compared with the other methods including GD. We also
emphasize that in this experiment, we use sign patterns of a clustered subset of patches, specifically 50 clusters, as well as
the GD patterns for Alg1. As depicted in Figure 11, the neurons that correspond to the sign patterns of GD matches with the

4In all the experiments, we use CVX (Grant & Boyd, 2014) and CVXPY (Diamond & Boyd, 2016; Agrawal et al., 2018) with the
SDPT3 solver (Tütüncü et al., 2001) to solve convex optimization problems.
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neurons found by GD. Thus, the performance difference stems from the additional sign patterns found by clustering the
patches.

In order to evaluate the computational complexity of the introduced approaches, in Table 1, we provide the training time
of each algorithm in the main paper. This data clearly shows that the introduced convex programs outperform GD while
requiring significantly less training time.
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Figure 7: Training and test errors of the algorithms on the Boston Housing dataset (n = 400 and d = 13) where we run
SGD independently in 5 initialization trials. For the convex program (8) (Alg1), and its approximations (Alg2 and Alg3),
crossed markers correspond to the total computation time of the convex optimization solver.
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Figure 8: Performance comparison of the algorithms on the Kinematics dataset (n = 4000 and d = 8) where we run SGD
independently in 5 initialization trials. For the convex program (8) (Alg1), and its approximations (Alg2 and Alg3), crossed
markers correspond to the total computation time of the convex optimization solver.

A.2. Constructing hyperplane arrangements in polynomial time

We now consider the number of all distinct sign patterns sign(Xz) for all possible choices z ∈ Rd. Note that this number is
the number of regions in a partition of Rd by hyperplanes passing through the origin, and are perpendicular to the rows
of X . We now show that the dimension d can be replaced with rank(X) without loss of generality. Suppose that the data
matrix X has rank r. We may express X = UΣV T using its Singular Value Decomposition in compact form, where
U ∈ Rn×r,Σ ∈ Rr×r, V T ∈ Rr×d. For any vector z ∈ Rd we have Xz = UΣV T z = Uz′ for some z′ ∈ Rr. Therefore,
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Figure 9: Performance comparison of the algorithms on the Bank dataset (n = 4000 and d = 32) where we run SGD
independently in 5 initialization trials. For the convex program (8) (Alg1), and its approximations (Alg2 and Alg3), crossed
markers correspond to the total computation time of the convex optimization solver.
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Figure 10: Performance of the algorithms for two-layer CNN training on a subset of CIFAR-10 (n = 195 and filter
size 4 × 4 × 3) where we run SGD independently in 5 initialization trials. For the convex program (8) (Alg1), and its
approximations (Alg2 and Alg3), crossed markers correspond to the total computation time of the convex optimization
solver.

the number of distinct sign patterns sign(Xz) for all possible z ∈ Rd is equal to the number of distinct sign patterns
sign(Uz′) for all possible z ∈ Rr.

Consider an arrangement of n hyperplanes ∈ Rr, where n ≥ r. Let us denote the number of regions in this arrangement by
Pn,r. In (Ojha, 2000; Cover, 1965) it’s shown that this number satisfies

Pn,r ≤ 2

r−1∑
k=0

(
n− 1

k

)
. (17)

For hyperplanes in general position, the above inequality is in fact an equality. In (Edelsbrunner et al., 1986), the authors
present an algorithm that enumerates all possible hyperplane arrangements O(nr) time, which can be used to construct the
data for the convex program (8).
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Figure 11: Visualization of the distance (using the Euclidean norm of the difference) between the neurons found by GD
and our convex program in Figure 10. The ijth entries of the distance plots are

∥∥∥ wi

‖wi‖2 −
uj

‖uj‖2

∥∥∥
2

and
∥∥∥ w′i
‖w′i‖2

− uj

‖uj‖2

∥∥∥
2
,

respectively.

Table 1: Training time(in seconds), final objective value and test accuracy(%) of each algorithm in the main paper,where we
use the CVX SDPT3 solver to optimize the convex programs.

Figure 2 Figure 3 Figure 4 Figure 5

SGD Optimal GD Approx. Optimal GD Alg1 Alg2 Alg3 GD L1-Convex

Time(s) 420.663 1.225 890.339 1.498 117.858 624.787 108.065 5.931 12.009 65.365 1.404
Train. Objective 0.001 0.001 0.0032 0.0028 0.0026 0.0042 0.0022 0.0032 0.0032 0.804 0.803
Test Accuracy(%) - - - - - 62.75 66.80 60.15 60.20 - -

A.3. Equivalence of the `1 penalized neural network training cost

In this section, we prove the equivalence between (2) and (3).

Lemma 2 ((Savarese et al., 2019; Neyshabur et al., 2014)). The following two problems are equivalent:

min
{uj ,αj}mj=1

1

2

∥∥∥∥∥∥
m∑
j=1

(Xuj)+αj − y

∥∥∥∥∥∥
2

2

+
β

2

m∑
j=1

(‖uj‖22 + α2
j ) = min

‖uj‖2≤1
min
{αj}mj=1

1

2

∥∥∥ m∑
j=1

(Xuj)+αj − y
∥∥∥2
2

+ β

m∑
j=1

|αj | ,.

[Proof of Lemma 2] We can rescale the parameters as ūj = γjuj and ᾱj = αj/γj , for any γj > 0. Then, the output
becomes

m∑
j=1

(Xūj)+ᾱj =

m∑
j=1

(Xujγj)+
αj
γj

=

m∑
j=1

(Xuj)+αj ,

which proves that the scaling does not change the network output. In addition to this, we have the following basic inequality

1

2

m∑
j=1

(α2
j + ‖uj‖22) ≥

m∑
j=1

(|αj | ‖uj‖2),

where the equality is achieved with the scaling choice γj =
( |αj |
‖uj‖2

) 1
2 is used. Since the scaling operation does not change

the right-hand side of the inequality, we can set ‖uj‖2 = 1,∀j. Therefore, the right-hand side becomes ‖α‖1.
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Now, let us consider a modified version of the problem, where the unit norm equality constraint is relaxed as ‖uj‖2 ≤ 1. Let
us also assume that for a certain index j, we obtain ‖uj‖2 < 1 with αj 6= 0 as an optimal solution. This shows that the unit
norm inequality constraint is not active for uj , and hence removing the constraint for uj will not change the optimal solution.
However, when we remove the constraint, ‖uj‖2 →∞ reduces the objective value since it yields αj = 0. Therefore, we
have a contradiction, which proves that all the constraints that correspond to a nonzero αj must be active for an optimal
solution. This also shows that replacing ‖uj‖2 = 1 with ‖uj‖2 ≤ 1 does not change the solution to the problem.

A.4. Dual problem for (3)

The following lemma proves the dual form of (3).

Lemma 3. The dual form of the following primal problem

min
‖uj‖2≤1

min
{αj}mj=1

1

2

∥∥∥ m∑
j=1

(Xuj)+αj − y
∥∥∥2
2

+ β

m∑
j=1

|αj | ,

is given by the following

min
‖uj‖2≤1

max
v∈Rn s.t.

|vT (Xuj)+|≤β

−1

2
‖y − v‖22 +

1

2
‖y‖22 .

[Proof of Lemma 3] Let us first reparametrize the primal problem as follows

min
‖uj‖2≤1

min
r,{αj}mj=1

1

2
‖r‖22 + β

m∑
j=1

|αj | s.t. r =

m∑
j=1

(Xuj)+αj − y,

which has the following Lagrangian

L(v, r, uj , αj) =
1

2
‖r‖22 + β

m∑
j=1

|αj |+ vT r + vT y − vT
m∑
j=1

(Xuj)+αj .

Then, minimizing over r and α yields the proposed dual form.

A.5. Dual problem for (11)

Let us first reparameterize the primal problem as follows

max
M,v
−1

2
‖v − y‖22 +

1

2
‖y‖22 s.t. σmax (M) ≤ β, M = [XT

1 v ...X
T
Kv].

Then the Lagrangian is as follows

L(λ, Z,M, v) = −1

2
‖v − y‖22 +

1

2
‖y‖22 + λ (β − σmax (M)) + trace(ZTM)− trace(ZT [XT

1 v ...X
T
Kv])

= −1

2
‖v − y‖22 +

1

2
‖y‖22 + λ (β − σmax (M)) + trace(ZTM)− vT

K∑
k=1

Xkzk

where λ ≥ 0. Then maximizing over M and v yields the following dual form

min
zk∈Rd,∀k∈[K]

1

2

∥∥∥ K∑
k=1

Xkzk − y
∥∥∥2
2

+ β
∥∥∥[z1, ..., zK ]

∥∥∥
∗
,

where
∥∥∥[z1, ..., zK ]

∥∥∥
∗

= ‖Z‖∗ =
∑
i σi(Z) is the `1 norm of singular values, i.e., nuclear norm (Recht et al., 2010).
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A.6. Dual problem for (13)

Let us denote the eigenvalue decomposition of Uj as Uj = FDjF
H , where F ∈ Cd×d is the Discrete Fourier Transform

matrix and Dj ∈ Cd×d is a diagonal matrix. Then, applying the scaling in Lemma 2 and then taking the dual as in Lemma 3
yields

max
v
−1

2
‖v − y‖22 +

1

2
‖y‖22 s.t. ‖vTXFDFH‖2 ≤ β, ∀D : ‖D‖2F ≤ 1

which can be equivalently written as

max
v
−1

2
‖v − y‖22 +

1

2
‖y‖22 s.t. ‖vT X̃D‖2 ≤ β, ∀D : ‖D‖2F ≤ 1.

where ‖ · ‖F denotes the Frobenius norm. Since D is diagonal, ‖D‖2F ≤ 1 is equivalent to
∑d
i=1D

2
ii ≤ 1. Therefore, the

problem above can be further simplified as

max
v
−1

2
‖v − y‖22 +

1

2
‖y‖22 s.t. ‖vT X̃‖∞ ≤ β .

Then, taking the dual of this problem gives the following

min
z∈Cd

1

2

∥∥∥X̃z − y∥∥∥2
2

+ β‖z‖1.

A.7. Dual problem for vector output two-layer linear convolutional networks

Vector version of the two-layer linear convolutional network training problem has the following dual

max
V

traceV TY (18)

s.t. max
‖u‖2≤1

∑
k

‖V TXku‖22 ≤ 1 (19)

Similarly, extreme points are the maximal eigenvectors of
∑
kX

T
k V V

TXk When V = Y , and one-hot encoding is used,
these are the right singular vectors of the matrix [XT

1,cX
T
2,c ... X

T
K,c]

T whose rows contain all the patch vectors for class c.

A.8. Semi-infinite strong duality

Note that the semi-infinite problem (4) is convex. We first show that the optimal value is finite. For β > 0, it is clear that
v = 0 is strictly feasible, and achieves 0 objective value. Since −‖y − v‖22 ≤ 0, the optimal objective value p∗ satisfies
p∗ ≤ ‖y‖22, and hence 0 ≤ d∗ ≤ 1

2‖y‖
2
2. Consequently, Theorem 2.2 of (Shapiro, 2009) implies that strong duality holds,

i.e., p∗ = d∗∞, if the solution set of the semi-infinite problem in (4) is nonempty and bounded. Next, we note that the
solution set of (4) is the Euclidean projection of y onto the polar set (QX ∪ −QX)◦ which is a convex, closed and bounded
set since the function

(
Xu
)
+

can be expressed as the union of finitely many convex closed and bounded sets.

A.9. Semi-infinite strong gauge duality

Now we prove strong duality for (7). We invoke the semi-infinite optimality conditions for the dual (7), in particular we
apply Theorem 7.2 of (Goberna & López-Cerdá, 1998) and use the standard notation therein. We first define the set

K = cone

{(
s
(
Xu
)
+

1

)
, u ∈ B2, s ∈ {−1,+1};

(
0
−1

)}
.

Note that K is the union of finitely many convex closed sets, since the function
(
Xu
)
+

can be expressed as the union of
finitely many convex closed sets. Therefore the set K is closed. By Theorem 5.3 (Goberna & López-Cerdá, 1998), this
implies that the set of constraints in (15) forms a Farkas-Minkowski system. By Theorem 8.4 of (Goberna & López-Cerdá,
1998), primal and dual values are equal, given that the system is consistent. Moreover, the system is discretizable, i.e.,
there exists a sequence of problems with finitely many constraints whose optimal values approach to the optimal value of
(15).
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A.10. Neural Gauge function and equivalence to minimum norm networks

Consider the gauge function

pg = min
r≥0

r (20)

s.t. ry ∈ conv(QX ∪ −QX). (21)

and its dual representation in terms of the support function of the polar of conv(QX ∪ −QX).

dg = max
v

vT y (22)

v ∈ (QX ∪ −QX)◦. (23)

Since the set QX ∪ −QX is a closed convex set that contains the origin, we have pg = dg (Rockafellar, 1970) and
(conv(QX ∪ −QX))

◦
= (QX ∪−QX)◦. The result in Section A.8 implies that the above value is equal to the semi-infinite

dual value, i.e., pd = pg∞, where

pg∞ := min
µ
‖µ‖TV s.t.

∫
u∈B2

(Xu)+dµ(u) = y . (24)

By Caratheodory’s theorem, there exists optimal solutions the above problem consisting of m∗ Dirac deltas (Rockafellar,
1970; Rosset et al., 2007), and therefore

pg∞ = min
uj∈B2,j∈[m∗]

m∗∑
j=1

|αj | s.t.
m∗∑
j=1

(Xuj)+dαj = y , (25)

where we define m∗ as the number of Dirac delta’s in the optimal solution to pg∞. If the optimizer is non-unique, we define
m∗ as the minimum cardinality solution among the set of optimal solutions. Now consider the non-convex problem

min
{uj ,αj}mj=1

‖α‖1 (26)

s.t.
m∑
j=1

(Xuj)+αj = y (27)

‖uj‖2 ≤ 1 . (28)

Using the standard parameterization for `1 norm we get

min
{uj}mj=1,s≥0,t≥0

m∑
j=1

(tj + sj) (29)

s.t.
m∑
j=1

(Xuj)+tj − (Xuj)+sj = y (30)

‖uj‖2 ≤ 1 ,∀j. (31)

Introducing a slack variable r ∈ R+, an equivalent representation can be written as

min
{uj}mj=1,s≥0,t≥0,r≥0

r (32)

s.t.
m∑
j=1

(Xuj)+tj − (Xuj)+sj = y (33)

m∑
j=1

(tj + sj) = r (34)

‖uj‖2 ≤ 1 ,∀j. (35)
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Note that r > 0 as long as y 6= 0. Rescaling variables by letting t′j = tj/r, s′j = sj/r in the above program, we obtain

min
{uj}mj=1,s

′≥0,t′≥0,r≥0
r (36)

s.t.
m∑
j=1

(
(Xuj)+t

′
j − (Xuj)+s

′
j

)
= ry

m∑
j=1

(t′j + s′j) = 1

‖uj‖2 ≤ 1 ,∀j .

Suppose that m ≥ m∗. It holds that

∃s′, t′ ≥ 0 , {uj}mj=1 s.t.
m∑
j=1

(t′j + s′j) = 1, ‖uj‖2 ≤ 1, ∀j
m∑
j=1

(Xuj)t
′
j − (Xuj)+s

′
j = ry ⇐⇒ ry ∈ conv(QX ∪ −QX).

(37)

We conclude that the optimal value of (36) is identical to the gauge function pg .

A.11. Alternative proof of the semi-infinite strong duality

It holds that p∗ ≥ d∗ by weak duality in (4). Theorem 1 proves that the objective value of (15) is identical to the value of (2)
as long as m ≥ m∗. Therefore we have p∗ = d∗.

A.12. Finite Dimensional Strong Duality Results for Theorem 1

Lemma 4. Suppose D(S), D(Sc) are fixed diagonal matrices as described earlier, and X is a fixed matrices. The dual of
the convex optimization problem

max
u∈Rd

‖u‖2≤1
D(S)Xu≥0
D(Sc)Xu≤0

vTD(S)Xu

is given by

min
α∈R|S|
β∈R|S

c|

α≥0
β≥0

‖XTD(S)
(
v + α+ β

)
−XTβ‖2 ,

and strong duality holds.

Note that the linear inequality constraints specify valid hyperplane arrangements. Then there exists strictly feasible points in
the constraints of the maximization problem. Standard finite second order cone programming duality implies that strong
duality holds (Boyd & Vandenberghe, 2004b) and the dual is as specified.

A.13. General loss functions

In this section, we extend our derivations to arbitrary convex loss functions.

Consider minimizing the sum of the squared loss objective and squared `2-norm of all parameters

p∗ := min
{αj ,uj}mj=1

`

 m∑
j=1

(Xuj)+αj , y

+
β

2

m∑
j=1

(‖uj‖22 + α2
j ) . (38)
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where where `(·, y) is a convex loss function. Then, consider the following finite dimensional convex optimization problem

min
{vi,wi}Pi=1

`

(
P∑
i=1

DiX(vi − wi), y

)
+ β

P∑
i=1

(‖vi‖2 + ‖wi‖2)

s.t.
(2Di − I)Xvi ≥ 0, (2Di − I)Xwi ≥ 0, ∀i ∈ [P ], (39)

Let us define m∗ :=
∑P
j:v∗j 6=0 or u∗j 6=0 1, where {v∗i , w∗i }Pi=1 are optimal in (39).

Theorem 5. The convex program (39) and the non-convex problem (38) where m ≥ m∗ has identical optimal values.
Moreover, an optimal solution to (38) can be constructed from an optimal solution to (39) as follows

u∗i =


v∗i√
‖v∗i ‖2

, α∗j =
√
‖v∗i ‖2 if ‖v∗i ‖2 > 0

w∗i√
‖w∗i ‖2

, α∗j = −
√
‖w∗i ‖2 otherwise ,

where v∗i , w
∗
i are the optimal solutions to (39), and either v∗i or w∗i is non-zero for all i = 1, ..., P .

[Proof of Theorem 5] The proof parallels the proof of the main result section and Theorem 6. We note that dual constraint
set remains the same, and analogous strong duality results apply as we show next.

We also show that our dual characterization holds for arbitrary convex loss functions.

min
{uj ,αj}mj=1

`

 m∑
j=1

(Xuj)+αj , y

+ β‖α‖1 s.t. ‖uj‖2 ≤ 1, ∀j, (40)

where `(·, y) is a convex loss function.

Theorem 6. The dual of (40) is given by

max
v
−`∗(v) s.t. |vT (Xu)+| ≤ β, ∀u ∈ B2 ,

where `∗ is the Fenchel conjugate function defined as

`∗(v) = max
z
zT v − `(z, y) .

[Proof of Theorem 6] The proof follows from classical Fenchel duality (Boyd & Vandenberghe, 2004b). We first describe
(40) in an equivalent form as follows

min
z,{uj ,αj}mj=1

`(z, y) + β‖α‖1 s.t. z =

m∑
j=1

(Xuj)+αj , ‖uj‖2 ≤ 1,∀j.

Then the dual function is

g(v) = min
z,{uj ,αj}mj=1

`(z, y)− vT z + vT
m∑
j=1

(Xuj)+αj + β‖α‖1 s.t. ‖uj‖2 ≤ 1,∀j.

Therefore, using the classical Fenchel duality (Boyd & Vandenberghe, 2004b) yields the claimed dual form.
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