
DISTRIBUTED SKETCHING FOR RANDOMIZED OPTIMIZATION 1

Distributed Sketching for Randomized
Optimization: Exact Characterization, Concentration

and Lower Bounds
Burak Bartan and Mert Pilanci, Member, IEEE

Abstract—We consider distributed optimization methods for
problems where forming the Hessian is computationally challeng-
ing and communication is a significant bottleneck. We leverage
randomized sketches for reducing the problem dimensions as
well as preserving privacy and improving straggler resilience in
asynchronous distributed systems. We derive novel approxima-
tion guarantees for classical sketching methods and establish tight
concentration results that serve as both upper and lower bounds
on the error. We then extend our analysis to the accuracy of
parameter averaging for distributed sketches. Furthermore, we
develop unbiased parameter averaging methods for randomized
second order optimization in regularized problems that employ
sketching of the Hessian. Existing works do not take the bias of
the estimators into consideration, which limits their application
to massively parallel computation. We provide closed-form for-
mulas for regularization parameters and step sizes that provably
minimize the bias for sketched Newton directions. Additionally,
we demonstrate the implications of our theoretical findings via
large scale experiments on a serverless cloud computing platform.

Index Terms—sketching, distributed optimization, randomized
algorithms, convex optimization, regularized least squares, second
order optimization, large scale problems, differential privacy

I. INTRODUCTION

WE investigate distributed sketching methods for solving
large scale optimization problems, including regular-

ized linear regression as a special case. A standard model that
we consider in this work is the least squares problem given
by

x∗ = arg min
x
‖Ax− b‖22 + λ‖x‖22 (1)

where A ∈ Rn×d is the data matrix and b ∈ Rn is the target
vector. Here, λ ∈ R is the coefficient for the squared `2 norm
regularization on the parameters x ∈ Rd. We consider the
setting where the data matrix A is large and thus distributing
the computation among multiple computing nodes is desirable.
We consider both underdetermined and overdetermined linear
regression problems in the regime where the data does not fit
in main memory. Such linear regression problems and linear
systems are commonly encountered in a multitude of problems
ranging from statistics and machine learning to optimization.

B. Bartan is with the Department of Electrical Engineering, Stanford
University, CA, 94305 USA (e-mail: bbartan@stanford.edu).

M. Pilanci is with the Department of Electrical Engineering, Stanford
University, CA, 94305 USA (e-mail: pilanci@stanford.edu).

worker node 1
sketch S1A

worker node 2
sketch S2A

...

worker node q
sketch SqA

central node

Fig. 1. Distributed computing model. There is a single central node and q
worker nodes. The worker nodes only communicate with the central node.

Being able to solve large scale linear regression problems
efficiently is crucial for many applications.

We focus on a centralized distributed computing model.
Namely, we assume a single central node and multiple worker
nodes that operate in parallel. This model is visualized in
Figure 1. The worker nodes only communicate with the central
node, i.e., no communication among worker nodes is assumed.
The algorithms that we study in this work typically involve
worker nodes computing an estimate solution based on a
sketch or subsampled form of the data, which is then com-
municated to the central node. The central node averages the
estimates from the worker nodes. We will establish theoretical
results for the approximation error of the resulting estimate.

In the proposed scheme, the workers compute their lo-
cal estimates by solving smaller subproblems. The way the
subproblems are constructed is through random sketches or
subsamples. Rather than considering the entire data A, b,
worker nodes perform computations on sketched data SA, Sb
where S ∈ Rm×n is a random sketching matrix with m� n.
Applications of randomized sketches and dimension reduction
to linear regression and other optimization problems have
been extensively studied in the recent literature including [1],
[2], [3], [4], [5], [6]. In this work, we investigate averag-
ing the solutions of sketched sub-problems. The setting for
overdetermined problems was also studied in [2]. In addition,
we consider underdetermined regression problems where the
number of data samples is less than the dimension of the
unknown parameter and investigate the properties of averaging
for such problems.

DISTRIBUTED SKETCHING FOR RANDOMIZED OPTIMIZATION 2

We extend our results to problems beyond least squares
regression through iterative randomized optimization methods
including Newton Sketch [7], [3] and introduce their dis-
tributed variants. We focus on the communication-efficient
setting where we avoid the communication of approximate
Hessian matrices of size d2 and communicate only the approx-
imate solutions of size d, where d is the parameter dimension.
Averaging sketched solutions was proposed in the literature in
certain restrictive settings [8]. The presence of a regularization
term requires a more detailed analysis, as we will show that
naı̈ve averaging leads to biased estimators of the solution (see
Theorem 4.3). We note that this bias is with respect to the
randomness of the sketching matrices; the input data are not
assumed to be sampled from a probability distribution. Al-
though the bias is often overlooked in the literature, we show
that one can re-calibrate the regularization coefficient of the
sketched problems to obtain unbiased estimators. We show that
having unbiased estimators leads to better performance without
imposing any additional computational cost. Furthermore, we
show that our bias correction method empirically works for
many other non-Gaussian sketches, including row sampling.

Another important advantage of the proposed scheme is
in asynchronous distributed computing. Employing parame-
ter averaging enables asynchronous updates, since a running
average of available parameters can approximate the result
without requiring all worker nodes to finish their tasks. In
other words, an important advantage of randomized sketching
in distributed computing is the independent and identically
distributed nature of all of the computational tasks. Therefore,
distributed sketching offers a resilient computing model where
node failures and stragglers as well as additions of new
nodes can be easily handled, e.g., via generating additional
data sketches. An alternative to averaging that would offer
similar benefits is the asynchronous stochastic gradient descent
(SGD) algorithm [9], [10]. However, the convergence rates
of asynchronous SGD methods necessarily depend on the
properties of the input data such as its condition number [9],
[10]. In contrast, as we show in this work, distributed sketching
has stronger convergence guarantees that do not depend on
the condition number of the data matrix. Moreover, sketching
provably preserves the privacy of the data (see Section V),
making it an attractive choice for massively parallel cloud
computing.

Although the main focus of this paper is on distributed
computing and parameter averaging, we provide improved
theoretical results for classical, i.e., non-distributed, sketching.
Novel solution approximation results including exact charac-
terizations of the expected error and exponential concentration
are derived for the single sketch estimator as well. Table I
summarizes the classes of problems studied in this work. The
last column of the table contains references to the theorems
and lemmas for each result. We first focus on Gaussian
sketches for the ease of exposition and leave extensions to
other sketches (e.g., row sampling, leverage sampling and
Hadamard) to the appendix.

A. Cloud Computing

The methods considered in this paper can be used various
distributed computing environments, including both conven-
tional server-based systems and serverless systems. Serverless
computing is a relatively new approach to distributed systems
that offers computing on the cloud without requiring any
server management from end users [11], [12], [13]. Functions
in serverless computing can be thought of worker nodes
which have very limited resources and a lifetime, but also are
very scalable. It is possible to launch thousands of serverless
computing jobs within a few seconds. The methods that we
introduce in this paper are particularly suitable for serverless
computing platforms, since the algorithms do not require peer-
to-peer communication among different worker nodes, and
have low memory and compute requirements per node. In
addition, we present novel exact expressions for the expected
error of distributed averaging estimators. These are most useful
when the number of nodes q in the distributed computing
system is large, which is readily achieved by serverless com-
puting. In Section VII, we provide a large scale evaluation
of our methods on the serverless computing platform AWS
Lambda.

Data privacy is an increasingly important issue in cloud
computing, one that has been studied in many recent works
including [14], [15], [16], [17]. A remarkable benefit of
distributed sketching methods we consider is privacy preser-
vation. To be more precise, let us consider a setting where the
center node computes sketched data SkA, Skb, k = 1, . . . , q
locally where Sk ∈ Rm×n are the sketching matrices and
A ∈ Rn×d, b ∈ Rn are the data matrix and the output vector,
respectively, for the regression problem minx ‖Ax−b‖22. In the
distributed sketching setting, the central node sends only the
sketched data to worker nodes for computational efficiency,
as well as data privacy preservation. In particular, the mutual
information and differential privacy can be controlled when we
reveal SkA and keep A hidden. Furthermore, one can trade
privacy for accuracy by choosing a suitable sketch dimension
m (see Theorem 5.2).

B. Notation

We use hats x̂ to denote the estimator for a single sketch
and bars x̄ to denote the averaged estimator x̄ := 1

q

∑q
k=1 x̂k,

where x̂k is the estimator for the k’th worker node. Stars
are used to denote the optimal solution x∗. The data matrix
and target vector are denoted by A ∈ Rn×d and b ∈ Rn,
respectively. We use f(·) to denote the objective of the
optimization problem being considered at that point in the
text. The letter ε is used for error while ε is used as the
differential privacy parameter. For instance, to analyze the
concentration of the approximation error, we typically show
high probability bounds for the event

∣∣ f(x̄)
f(x∗) − E f(x̄)

f(x∗)

∣∣∣ < ε.
The notation σmin(·) denotes the smallest nonzero singular
value of its argument. O(·) is used for the big-O notation.

All the expectations in the paper are with respect to the
randomness over the sketching matrices, and no randomness
assumptions are made for the data. We use S ∈ Rm×n to
denote random sketching matrices and we often refer to m

DISTRIBUTED SKETCHING FOR RANDOMIZED OPTIMIZATION 3

TABLE I
SUMMARY OF THEORETICAL RESULTS. THE DATA MATRIX IS A ∈ Rn×d AND THE OUTPUT VECTOR IS b ∈ Rn .

Problem Sketch Type Method and Theorem
minx ‖Ax− b‖22 Gaussian Distributed randomized regression: Theorem 2.2, 2.8, 2.11

Gaussian Distributed Iterative Hessian sketch: Theorem 3.2
Other Distributed randomized regression: Lemma A.3, A.4, A.5, Theorem A.6

minx ‖x‖22 s.t. Ax = b Gaussian Right sketch: Theorem 2.13
minx ‖Ax− b‖22 + λ1‖x‖22 Gaussian Distributed randomized ridge regression: Theorem 4.3

Convex problems with Gaussian Distributed Newton sketch: Theorem 3.5
Hessian (H

1/2
t)TH

1/2
t (step size for unbiasedness)

Convex problems with Gaussian Distributed Newton sketch: Theorem 4.5
Hessian (H

1/2
t)TH

1/2
t + λ1Id (regularization coefficient for unbiasedness)

as the sketch size. For non-iterative distributed algorithms, we
use Sk ∈ Rm×n for the sketching matrix used by worker node
k. For iterative algorithms, St,k ∈ Rm×n is used to denote the
sketching matrix used by worker k in iteration t. We assume
the sketching matrices are scaled such that E[STS] = In. We
omit the subscripts in Sk and St,k for simplicity whenever
it does not cause confusion. The notation m & d is used to
denote that there exists a positive finite constant c such that
m ≥ cd. We denote the thin SVD decomposition of the data
matrix as A = UΣV T .

For regularized problems, we use λ1 for the regularization
coefficient of the original problem, and λ2 for the regulariza-
tion coefficient of the sketched problem. For instance, in the
case of the regularized least squares problem, we have

x∗ = arg min
x
‖Ax− b‖22 + λ1‖x‖22 ,

x̂ = arg min
x
‖SAx− Sb‖22 + λ2‖x‖22 . (2)

We will derive expressions in the sequel for the optimal
selection of the coefficient λ2 which we denote as λ∗2.

C. Related Work

Random projections are a popular way of performing ran-
domized dimensionality reduction, which are widely used in
many computational and learning problems [18], [5], [19],
[20]. Many works have studied randomized sketching methods
for least squares and other optimization problems [21], [22],
[1], [6], [7], [2], [23].

Sarlós [24] showed that the relative error of the single Gaus-
sian sketch estimator in (2) in the unregularized case λ1 =
λ2 = 0 is bounded as f(x̂)/f(x∗) ≤ (1 + Cd log(d)/m)2

with probability at least 1/3, where C is a constant. The
relative error was improved to f(x̂)/f(x∗) ≤ (1+Cd/m) with
exponentially small failure probability in subsequent work [6].
In contrast, we derive the expectation of the error exactly and
show exponential concentration around this expected value in
this paper. As a result, we obtain a tight upper and lower
bound for the relative error that holds with exponentially high
probability (see Theorem 2.8).

The work [2] investigates distributed sketching and averag-
ing for regression from optimization and statistical perspec-
tives. The most relevant result in [2], using our notation,
can be stated as follows. Setting the sketch dimension m =
O(µd(log d)/ε) for uniform sampling, where µ is row coher-
ence µ := n/ rank(A) maxi `i and `i is the i’th row leverage

score, and m = Õ(d/ε) (with Õ hiding logarithmic factors) for
other sketches, the inequality f(x̄)−f(x∗) ≤ (ε/q+ε2)f(x∗)
holds with high probability. According to this result, for large
q, the cost at the averaged solution f(x̄) will be upper bounded
by ε2f(x∗). In this work we prove that for Gaussian sketch,
f(x̄) will converge to the optimal cost f(x∗) as q increases.
We also identify the exact expected error for a given number
of workers q. In addition, our results on regularized least
squares regression improve on the results in [2] for averaging
multiple sketched solutions. In particular, in [2], the sketched
sub-problems use the same regularization parameter as the
original problem, which leads to biased solutions. We analyze
the bias of the averaged solution, and provide explicit formulas
for selecting the regularization parameter of the sketched sub-
problems to achieve unbiasedness.

We show that the expected difference between the costs
of the averaged solution and the optimal solution has two
components, namely variance and squared bias (see Lemma
A.1). This result implies that for the Gaussian sketch, which
we prove to be unbiased (see Lemma 2.1), the number of
workers required for a target error ε scales as 1/ε. Remarkably,
this result does not involve condition numbers. In contrast,
for the asynchronous Hogwild algorithm [10], the number of
iterations required for error ε scales with log(1/ε)/ε and also
depends on the condition number of the input data, although
it addresses a more general class of problems.

One of the crucial results of our work is developing bias
correction for averaging sketched solutions. Namely, the set-
ting considered in [23] is based on a distributed second order
optimization method that involves averaging approximate up-
date directions. However, in that work, the bias was not taken
into account which degrades accuracy and limits applicability
to massively parallel computation. We additionally provide
results for the unregularized case, which corresponds to the
distributed version of the Newton sketch algorithm introduced
in [7].

D. Overview of Our Contributions

• We characterize the exact expected error of the averaged
estimator for Gaussian sketch in closed form as

E[f(x̄)]− f(x∗)

f(x∗)
=

1

q

d

m− d− 1
(3)

where x̄ = 1
q

∑q
k=1 x̂k is the averaged solution and x̂k =

arg minx ‖SkAx−Skb‖22 is the output of the k’th worker

DISTRIBUTED SKETCHING FOR RANDOMIZED OPTIMIZATION 4

node. In addition, we obtain a similar result for the error
of the averaged estimator for the least-norm solution in
the underdetermined case n < d.

• For both the single sketch and averaged estimator, we
show that the relative error f(x̄)−f(x∗)

f(x∗) is concentrated
around its expectation given in (3) with exponentially
high probability. This provides both an upper and lower
bound on the performance of sketching, unlike previous
results in the literature. Moreover, it offers a guaranteed
recipe to set the sketch size m and number of workers q.

• We show that for Gaussian distributed sketch, the ex-
pected error of the averaged estimator E[f(x̄)] − f(x∗)
matches the error lower bound for any unbiased estimator
obtained via Fisher information. In addition, we provide a
lower bound for general, possibly biased sketching based
estimators.

• We consider the privacy preserving properties of dis-
tributed sketching methods, in which only random projec-
tions of the data matrix A need to be shared with worker
nodes. We derive conditions on the (ε, δ)-differential
privacy when S is the i.i.d. Gaussian sketch matrix.
Combined with our results, we show that the approxima-
tion error of this distributed privacy preserving regression
algorithm scales as O(1/ε2).

• We analyze the convergence rate of a distributed version
of the iterative Hessian sketch algorithm which was
introduced in [3] and show that the number of iterations
required to reach error ε with q workers scales with
log(1/ε)/ log(q).

• We show that x̂ = arg minx ‖SAx − Sb‖22 + λ2‖x‖22 is
not an unbiased estimator of the optimal solution, i.e.
E[A(x̂ − x∗)] 6= 0 when λ2 = λ1 and provide a closed
form expression for the regularization coefficient λ∗2 to
make the estimator unbiased under certain assumptions.

• In addition to Gaussian sketch, we derive bias bounds
for uniform sampling, randomized Hadamard sketch and
leverage score sampling. Analysis of the bias term is
critical in understanding how close to the optimal solution
we can hope to get and establishing the dependence on
the sketch dimension m. Moreover, we utilize the derived
bias bounds and find an upper bound on the error of the
averaged estimator for these other sketching methods.

• We discuss averaging for the distributed version of New-
ton Sketch [7] and show that using the same regulariza-
tion coefficient as the original problem, i.e., λ2 = λ1,
as most works in the literature consider, is not optimal.
Furthermore, we derive an expression for choosing the
regularization coefficient λ∗2 for unbiasedness.

• We provide numerical simulations that illustrate the prac-
ticality and scalability of distributed sketching meth-
ods on the serverless cloud computing platform AWS
Lambda.

E. Preliminaries on Sketching Matrices

We consider various sketching matrices in this work includ-
ing Gaussian sketch, uniform sampling, randomized Hadamard
sketch, Sparse Johnson-Lindenstrauss Transform (SJLT), and

hybrid sketch. We now briefly describe each of these sketching
methods:

1) Gaussian sketch [24]: Entries of S ∈ Rm×n are i.i.d.
and sampled from the Gaussian distribution. Sketching a
matrix A ∈ Rn×d using Gaussian sketch requires com-
puting the matrix product SA which has computational
complexity equal to O(mnd).

2) Randomized Hadamard sketch [25]: The sketch matrix
in this case can be represented as S = PHD where P ∈
Rm×n is for uniform sampling of m rows out of n rows,
H ∈ Rn×n is the Hadamard matrix, and D ∈ Rn×n is a
diagonal matrix with diagonal entries sampled randomly
from the Rademacher distribution. Multiplication by D
to obtain DA requires O(nd) scalar multiplications.
Hadamard transform can be implemented as a fast trans-
form with complexity O(n log(n)) per column, and a
total complexity of O(nd log(n)) to sketch all d columns
of DA.

3) Uniform sampling [26]: Uniform sampling randomly
selects m rows out of the n rows of A where the
probability of any row being selected is the same.

4) Leverage score sampling: Row leverage scores of a
matrix A are given by `i = ‖ũi‖22 for i = 1, . . . , n
where ũi ∈ Rd denotes the i’th row of U . The
matrix U is the matrix whose columns are the left
singular vectors of A, i.e., A = UΣV T . There is only
one nonzero element in every row si ∈ Rn of the
sketching matrix S and the probability that the j’th
entry of si is nonzero is proportional to the leverage
score `j . More precisely, the rows s1, . . . , sm are sam-
pled i.i.d. such that P[si = ek/

√
mpk] = pk, ∀i, ∀k

where pk = `k∑n
j=1 `j

. Note that we have E[STS] =

E[
∑m
i=1 sis

T
i] = m

∑n
k=1 pkeke

T
k /(mpk) = In. Naı̈ve

algorithm for computing leverage scores runs in O(nd2)
time while the approximation algorithm in [27] runs in
O(nd log(n)) time.

5) Sparse Johnson-Lindenstrauss Transform (SJLT) [28]:
The sketching matrix for SJLT is a sparse matrix where
each column has exactly s nonzero entries and the
columns are independently distributed. The nonzero
entries are sampled from the Rademacher distribution.
It takes O(snd/m) addition operations to sketch a data
matrix using SJLT.

6) Hybrid sketch: The method that we refer to as hybrid
sketch is a sequential application of two different sketch-
ing methods. In particular, it might be computationally
feasible for worker nodes to sample as much data as
possible, say m′ rows, and then reduce the dimension
of the available data to the final sketch dimension m
using another sketch with better error properties than
uniform sampling such as Gaussian sketch or SJLT. For
instance, a hybrid sketch of uniform sampling followed
by Gaussian sketch would have computational complex-
ity O(mm′d).

DISTRIBUTED SKETCHING FOR RANDOMIZED OPTIMIZATION 5

F. Paper Organization

Section II deals with the application of distributed sketching
to quadratic problems for Gaussian sketch. The algorithms
in Section II are non-iterative. In Section III we consider
distributed sketching algorithms for iterative algorithms and
show how these ideas are applied to second order optimization
for unconstrained convex problems. In Section IV, we present
our results on bias correction for randomized sketching in
regularized problems. Section V deals with the privacy pre-
serving property of distributed sketching. Section VI provides
an overview of applications and example problems where
distributed sketching methods could be applied. Section VII
presents numerical results and Section VIII concludes the main
part of the paper. Section A of the appendix gives theoretical
results for randomized Hadamard sketch, uniform sampling,
and leverage score sampling. We give the proofs for the
majority of the lemmas and theorems in the appendix along
with additional numerical results.

II. DISTRIBUTED SKETCHING FOR QUADRATIC
OPTIMIZATION PROBLEMS

In this section, we focus on the regularized Least Squares
optimization problem

x∗ = arg min
x
‖Ax− b‖22 + λ1‖x‖22 . (4)

We study various distributed algorithms for solving problems
of this form based on model averaging. Some of these algo-
rithms are tailored for the unregularized case λ1 = 0.

A. Closed Form Expressions for the Expected Error of Gaus-
sian Sketch

We begin with a non-iterative model averaging based algo-
rithm, which we refer to as distributed randomized regression.
This algorithm is for the unregularized case λ1 = 0. Each of
the worker nodes computes an approximate solution x̂k and
these are averaged at the master node to compute the final
solution x̄. This method is outlined in Algorithm 1. The theo-
retical analysis in this section assumes that the sketch matrix is
Gaussian, which is generalized to other sketching matrices in
Section A. Although computing the Gaussian sketch is not
as efficient as other fast sketches such as the randomized
Hadamard sketch, it has several significant advantages over
other sketches: (1) exact relative error expressions can be
derived as we show in this section, (2) the solution is unbiased,
(3) a differential privacy bound can be provided as we show in
Section V, and (4) computation of the sketch can be trivially
parallelized.

We first obtain a characterization of the expected error for
the single sketch estimator in Lemma 2.1.

Lemma 2.1: For the Gaussian sketch with m > d + 1, the
estimator x̂ satisfies

E[‖A(x̂− x∗)‖22] = E[f(x̂)]− f(x∗) = f(x∗)
d

m− d− 1
,

(5)

where f(x) := ‖Ax− b‖22 and x∗ = arg minx f(x).

Algorithm 1: Distributed Randomized Regression

Input: Data matrix A ∈ Rn×d, target vector b ∈ Rn.
for worker k = 1, . . . , q in parallel do

Obtain the sketched data and sketched output: SkA and
Skb.
Solve x̂k = arg minx ‖SkAx− Skb‖22 and send x̂k to
the master node.

end for
Master node: return x̄ = 1

q

∑q
k=1 x̂k.

(Master node: return x̄ = 1
|A|
∑
k∈A x̂k, optional)

Proof of Lemma 2.1: Suppose that the matrix A is full
column rank. Then, for m ≥ d, the matrix ATSTSA follows
a Wishart distribution, and is invertible with probability one.
Conditioned on the invertibility of ATSTSA, we have

x̂ = (ATSTSA)−1ATSTSb

= (ATSTSA)−1ATSTS(Ax∗ + b⊥)

= x∗ + (ATSTSA)−1ATSTSb⊥ ,

where we have defined b⊥ := b−Ax∗ . Note that SA and Sb⊥

are independent since they are Gaussian and uncorrelated as a
result of the normal equations AT b⊥ = 0. Conditioned on the
realization of the matrix SA and the event ATSTSA � 0, a
simple covariance calculation shows that

x̂ ∼ N
(
x∗,

1

m
f(x∗)(ATSTSA)−1

)
. (6)

Multiplying with the data matrix A on the left yields the
distribution of the prediction error, conditioned on SA, as

A(x̂− x∗) ∼ N
(
0,

1

m
f(x∗)A(ATSTSA)−1AT

)
. (7)

Then we can compute the conditional expectation of the
squared norm of the error

E[‖A(x̂− x∗)‖22
∣∣SA] =

f(x∗)

m
E[tr(A(ATSTSA)−1AT)] .

Next we recall that the expected inverse of the Wishart matrix
ATSTSA satisfies (see, e.g., [29])

E[(ATSTSA)−1] = (ATA)−1 m

m− d− 1
.

Plugging in the previous result and using the tower property
of expectations and then noting that tr(A(ATA)−1AT) = d
give us the claimed result.

To the best of our knowledge, this result of exact error
characterization is novel in the theory of sketching. Similar
tools to those that we used in this proof were used in [30],
however, the exact context in which they are used and the end
result are different from this work. The expected error of the
single sketch estimator appears in [31] as well. Furthermore,
existing results (see e.g. [5], [2], [19]) characterize a high
probability upper bound on the error, whereas the above is
a sharp and exact formula for the expected squared norm of
the error. Theorem 2.2 builds on Lemma 2.1 to characterize
the expected error for the averaged solution x̄.

DISTRIBUTED SKETCHING FOR RANDOMIZED OPTIMIZATION 6

Theorem 2.2 (Expected error of the averaging estimator):
Let Sk, k = 1, . . . , q be Gaussian sketching matrices, then
Algorithm 1 runs in time O(md2), and the error of the
averaged solution x̄ satisfies

E[f(x̄)]− f(x∗)

f(x∗)
=

1

q

d

m− d− 1
. (8)

Consequently, Markov’s inequality implies that f(x̄)−f(x∗)
f(x∗) ≤

ε holds with probability at least
(

1− 1
qε

d
m−d−1

)
for any ε >

0.
Theorem 2.2 illustrates that the expected error scales as 1/q,

and converges to zero as q → ∞ as long as m ≥ d + 2.
This is due to the unbiasedness of the Gaussian sketch. Other
sketching methods such as uniform sampling or randomized
Hadamard sketch do not have this property, as we further
investigate in Section A.

Remark 2.3: In Algorithm 1, the worker nodes are tasked
with obtaining the sketched data SkA and the sketched output
Skb. We identify two options for this step:
• Option 1: The master node computes the sketched data
SkA,Skb, k = 1, . . . , q and transmits to worker nodes.
This option preserves data privacy, which we discuss in
Section V.

• Option 2: The worker nodes have access to the data
A, b and compute the sketched data SkA and Skb. This
option does not preserve privacy, however, parallelizes
the computation of the sketch via the workers.

It provides insight to compare the result in Theorem 2.2
against the baseline where the master node computes a sketch
of size mq. Note that the error performance of the single
big sketch would in fact outperform the distributed sketch
case. The error of the single sketch is d

mq−d−1 while the
error of the distributed averaging case is 1

q
d

m−d−1 . Since
d

mq−d−1 ≤
d

mq−dq−q , the error of the single big sketch case
is smaller. It is important to point out that when m � d,
the errors are asymptotically the same, i.e., O(d

mq). In addi-
tion, there are many advantages for the distributed averaging
case over the single sketch case including parallelization of
the computations of sketches and sub-problems, lower cost
subproblems per worker node, and hence faster run time. In
the single sketch case, solving the corresponding linear system
is of complexity O(mqd2), while it is O(md2) per node in
the distributed sketch case.

We note that Algorithm 1 is robust against straggling nodes
and failures since the final output does not rely on any specific
set of node outputs. This is reflected in the last line of
Algorithm 1 where we average only the available set of node
outputs A. The observation here is that rather than waiting for
the output of all q nodes, we can simply collect the available
set of outputs and average them. The algorithms given in the
remainder of the paper satisfy this property as well since they
are all based on averaging i.i.d. node estimates.

B. Exponential Concentration of the Gaussian Sketch Estima-
tor

In this subsection, we show high probability concentration
bounds for the error of the Gaussian sketch. Importantly, our

result provides both an upper and lower bounds on the relative
error with exponentially small failure probability. We begin
with the single sketch estimator x̂ and extend the results to
the averaged estimator x̄ = 1

q

∑q
k=1 x̂k.

The next theorem states the main concentration result for
the single sketch estimator. Both upper and lower bounds are
given for the ratio of the cost of the sketched solution to the
optimal solution. The full proof is given in the Appendix.

Theorem 2.4 (Concentration bound for the single sketch
estimator x̂): Suppose that the sketch size is such that m & d.
Then, the optimality ratio of x̂ with respect to the optimal
solution x∗ is concentrated around its mean as

P

(∣∣∣ f(x̂)

f(x∗)
− 1− d

m− d− 1

∣∣∣ < ε

)
≥ 1− C1e

−C2ε
4m (9)

where C1, C2 are positive constants.
Proof sketch: Our proof technique involves the concentration
of Gaussian quadratic forms for Sb conditioned on SA. We
leverage that the error ‖A(x̂− x∗)‖22 is a Gaussian quadratic
when conditioned on SA as shown in (7). In particular, we
use the concentration result given in Lemma 2.5 for quadratic
form of Gaussian random variables.

Lemma 2.5 (Concentration of Gaussian quadratic forms,
[32]): Let the entries of z ∈ Rm be distributed as i.i.d.
N (0, 1). For any G ∈ Rm×m and ε > 0,

P
(
zTGz − E[zTGz] > 2‖G‖F

√
ε+ 2‖G‖2ε

)
≤ e−ε . (10)

Then we note that after applying Lemma 2.5, the conditional
expectation of the error is given by E[‖A(x̂ − x∗)‖22 |SA] =
f(x∗)
m tr((UTSTSU)−1). Next, we focus on the trace term

tr((UTSTSU)−1) and relate it to the Stieltjes transform [33].
Definition 2.6 (Stieltjes Transform): We define the Stieltjes

Transform for a random rectangular matrix S ∈ Rm×d such
that d ≤ m as

mS(z) : =
1

d
tr(STS − zI)−1 (11)

=
1

d

d∑
i=1

1

λi(STS)− z
. (12)

Here λi(STS) denotes the i’th eigenvalue of the symmetric
matrix STS.

We derive a high probability bound for the trace term around
its expectation by leveraging the concentration of the empirical
Stieltjes transform to its expectation, which is given in Lemma
2.7 below.

Lemma 2.7: The trace tr((UTSTSU)−1) is concentrated
around its mean with high probability as follows

P
(
| tr((UTSTSU)−1)− E[tr((UTSTSU)−1)]| ≤ ε

)
≥ 1− 4e−

ε4(1−
√
d/m−δ)8

210md2 − e−mδ
2/2 , (13)

for any ε, δ > 0.
The proof of Lemma 2.7 is provided in the Appendix. Com-
bining the concentration of the Stieltjes transform with the
concentration of Gaussian quadratic forms completes the proof
of Theorem 2.4.

DISTRIBUTED SKETCHING FOR RANDOMIZED OPTIMIZATION 7

1.0 1.1 1.2 1.3 1.4 1.5 1.6
Optimality ratio

0

200
Fr

eq
ue

nc
y

q=1

1.0 1.1 1.2 1.3 1.4 1.5 1.6
Optimality ratio

0

200

Fr
eq

ue
nc

y

q=4

1.0 1.1 1.2 1.3 1.4 1.5 1.6
Optimality ratio

0

200

Fr
eq

ue
nc

y

q=10

Mean - Gaussian
Mean - Rand. Hadamard

Histogram - Gaussian
Histogram - Rand. Hadamard

Fig. 2. Histograms of the optimality ratio f(x̄)/f(x∗) for both Gaussian
sketch and randomized Hadamard sketch. The vertical lines indicate the
empirical mean of the error. The dataset is synthetically generated with
n = 512, d = 20 and the sketch size is m = 100. The histogram is calculated
over 2500 independent trials. The plot at the top shows the performance of the
single sketch estimator, and the middle and bottom plots are for the averaged
estimator with q = 4 and q = 10 workers, respectively.

Next, we show that the relative error of the averaged
estimator is also concentrated with exponentially small failure
probability.

Theorem 2.8 (Concentration bound for the averaged esti-
mator x̄): Let the sketch size satisfy m & d. Then, the ratio
of the cost for the averaged estimator x̄ = 1

q

∑q
k=1 x̂k to the

optimal cost is concentrated around its mean as follows

P

(∣∣∣ f(x̄)

f(x∗)
− 1− 1

q

d

m− d− 1

∣∣∣ < ε

)
≥ 1− qC1e

−C2(qε)4m

(14)

where C1, C2 are positive constants.
The above result shows that the relative error of the averaged

estimator using distributed sketching concentrates consider-
ably faster compared to a single sketch. Moreover, the above
bound offers a method to choose the values of the sketch size
m and number of workers q to achieve a desired relative error
with exponentially small error probability. This concentration
result provides more insight when ε is not smaller than
O(1/m1/4), e.g., when ε is a constant. We note that it may
be possible to improve the ε4 dependence in future work.

Figure 2 shows the histograms for the single sketch (q = 1)
and averaged estimator (q = 4 and q = 10) for Gaussian
and randomized Hadamard sketches. This experiment demon-
strates that the optimality ratio f(x̄)/f(x∗) is concentrated
around its mean and its mean and concentration improve as
we increase the number of workers q.

C. Error Lower Bounds via Fisher Information

We now present an error lower bound result for the Gaussian
sketch. We first consider single sketch estimators and then
discuss the distributed sketching case. Two different lower

bounds can be obtained depending on whether the estimator
is restricted to be unbiased or not. Lemma 2.9 and 2.10
provide error lower bounds for all unbiased and general (i.e.,
possibly biased) estimators, respectively. The proof of Lemma
2.9 is based on Fisher information and Cramér-Rao lower
bound while Lemma 2.10 additionally employs the van Trees
inequality. We refer the reader to [31] for details on these
single sketch lower bounds.

Lemma 2.9 (Unbiased estimators, [31]): For any single
sketch unbiased estimator x̂ obtained from the Gaussian
sketched data SA and Sb, the expected error is lower bounded
as follows

E[f(x̂)]− f(x∗) ≥ f(x∗)
d

m− d− 1
. (15)

We note that the expected error of the single sketch estima-
tor that we provide in Lemma 2.1 exactly matches the error
lower bound in Lemma 2.9. Therefore, we conclude that no
other unbiased estimator based on a single sketch SA, Sb can
achieve a better expected relative error.

Lemma 2.10 (General estimators, [31]): For any single
sketch estimator x̂, which is possibly biased, obtained from
the Gaussian sketched data SA and Sb, the expected error is
lower bounded as follows

E[f(x̂)]− f(x∗) ≥ f(x∗)
d

m
. (16)

We now provide a novel generalized lower bound that
applies to averaged estimators x̄ obtained via distributed
sketching. Theorem 2.11 states the main lower bound result
for the averaged estimator.

Theorem 2.11: For any averaged estimator x̄ = 1
q

∑q
k=1 x̂k,

where each x̂k is based on Gaussian sketched data SkA,Skb,
k = 1, . . . , q, the expected error is lower bounded as follows

(i) for unbiased estimators satisfying E[x̂k] = x∗

E[f(x̄)]− f(x∗) ≥ f(x∗)

q

d

m− d− 1
. (17)

(ii) for general (i.e., possibly biased) estimators

E[f(x̄)]− f(x∗) ≥ f(x∗)

q

d

m
. (18)

We note that the expected error of the averaged estimator
given in Theorem 2.2 matches exactly the lower bound in
Theorem 2.11 for unbiased estimators. For general estimators,
we observe that the lower bound matches the upper bound for
large m, e.g., when m− d− 1 = O(m).

D. Distributed Sketching for Least-Norm Problems

In this section, we consider the underdetermined case where
n < d and applying the sketching matrix from the right, i.e.,
on the features. We will refer to this method as right sketch.
Let us define the minimum norm solution

x∗ = arg min
x
‖x‖22 s.t. Ax = b. (19)

The above problem has a closed-form solution given by x∗ =
AT (AAT)−1b when the matrix A is full row rank. We will
assume that the full row rank condition holds in the sequel. Let

DISTRIBUTED SKETCHING FOR RANDOMIZED OPTIMIZATION 8

us denote the optimal value of the minimum norm objective as
f(x∗) = ‖x∗‖22 = bT (AAT)−1b. The k’th worker node will
compute the approximate solution

ẑk = arg min
z
‖z‖22 s.t. ASTk z = b, (20)

where Sk ∈ Rm×d and z ∈ Rm. Then, the estimate x̂k
will be computed using x̂k = STk ẑk which is followed by
the communication of the estimate x̂k to the master node.
The averaged solution is computed at the master node as
x̄ = 1

q

∑q
k=1 x̂k. We will assume that the sketch matrices Sk

are i.i.d. Gaussian in deriving the error expressions. Lemma
2.12 establishes the approximation error for a single right
sketch estimator.

Lemma 2.12: For the Gaussian sketch with sketch size m >
n+ 1, the estimator x̂ satisfies

E[‖x̂− x∗‖22] =
d− n

m− n− 1
f(x∗).

Proof of Lemma 2.12: Conditioned on AST , we have

x̂ ∼ N
(
x∗, PNull(A)‖AS

T (ASTSAT)−1b‖22
)
.

Noting that E[(ASTSAT)−1] = AAT m
m−n−1 , taking the

expectation and noting that tr(PNull(A)) = d− n, we obtain

E[‖x̂− x∗‖22] =
d− n

m− n− 1
bT (AAT)−1b =

d− n
m− n− 1

f(x∗).

(21)

An exact formula for averaging multiple outputs in right
sketch that parallels Theorem 2.2 can be obtained in a similar
fashion:

E[‖x̄− x∗‖22] =
1

q
E[‖x̂k − x∗‖22] =

1

q

d− n
m− n− 1

f(x∗).

Hence, for the distributed Gaussian right sketch, we establish
the approximation error as stated in Theorem 2.13.

Theorem 2.13 (Cost approximation for least-norm prob-
lems): Let Sk, k = 1, . . . , q be Gaussian sketching matrices,
then the error of the averaged solution x̄ satisfies

E[f(x̄)]− f(x∗)

f(x∗)
=

1

q

d− n
m− n− 1

. (22)

Consequently, Markov’s inequality implies that f(x̄)−f(x∗)
f(x∗) ≤

ε holds with probability at least
(

1− 1
qε

d−n
m−n−1

)
for any ε >

0.

III. DISTRIBUTED SKETCHING FOR ITERATIVE
ALGORITHMS

A. Distributed Iterative Hessian Sketch

In this section, we consider an iterative algorithm for solving
the unregularized least squares problem in (4), where λ1 =
0 with higher accuracy. Let us consider applying Newton’s
method to this problem

xt+1 = xt − µ(ATA)−1AT (Axt − b) , (23)

where µ > 0 is the step size. Note that, Newton’s method
terminates in one step since the Hessian is ATA and the update

Algorithm 2: Distributed Iterative Hessian Sketch
Input: Number of iterations T , step size µ.
for t = 1 to T do

for worker k = 1, . . . , q in parallel do
Obtain the sketched data St,kA.
Compute gradient gt = AT (Axt − b).
Solve ∆̂t,k = arg min∆

1
2‖St,kA∆‖22 + gTt ∆ and

send to master node.
end for
Master node: Update xt+1 = xt + µ 1

q

∑q
k=1 ∆̂t,k and

send xt+1 to worker nodes.
end for
return xT

reduces to directly solving the normal equations (ATA)x =
AT b for µ = 1. However, the computational cost of this
direct solution is often prohibitive for large scale problems. To
remedy this, the method of iterative Hessian sketch introduced
in [3] employs a randomly sketched Hessian ATSTt S

T
t A as

follows

xt+1 = xt − µ(ATSTt StA)−1AT (Axt − b),

where St corresponds to the sketching matrix at iteration t.
Sketching reduces the row dimension of the data from n to
m and hence computing an approximate Hessian ATSTt StA
is computationally cheaper than the exact Hessian ATA.
Moreover, for regularized problems one can choose m to be
smaller than d as we investigate in Section IV-A.

In a distributed computing setting, one can obtain more
accurate update directions by averaging multiple trials, where
each worker node computes an independent estimate of the
update direction. These approximate update directions can be
averaged at the master node and the following update takes
place

xt+1 = xt − µ
1

q

q∑
k=1

(ATSTt,kSt,kA)−1AT (Axt − b). (24)

Here St,k is the sketching matrix for the k’th node at iteration
t. The details of the distributed IHS algorithm are given
in Algorithm 2. We note that although the update equation
involves a matrix inverse term, in practice, this can be replaced
with an approximate linear system solver. In particular, it
might be computationally more efficient for worker nodes to
compute their approximate update directions using indirect
methods such as conjugate gradient.

We note that in Algorithm 2, worker nodes communicate
their approximate update directions and not the approximate
Hessian matrix, which reduces the communication complexity
from O(d2) to O(d) for each worker per iteration.

We establish the convergence rate for Gaussian sketch in
Theorem 3.2, which provides an exact characterization of the
expected error. First, we give the definition of the error in
Definition 3.1.

Definition 3.1: To quantify the approximation quality of the
iterate xt ∈ Rd with respect to the optimal solution x∗ ∈ Rd,
we define the error as eAt := A(xt − x∗).

DISTRIBUTED SKETCHING FOR RANDOMIZED OPTIMIZATION 9

To state the result, we first introduce the following moments
of the inverse Wishart distribution (see the appendix).

θ1 :=
m

m− d− 1
,

θ2 :=
m2(m− 1)

(m− d)(m− d− 1)(m− d− 3)
. (25)

Theorem 3.2 (Expected error decay for Gaussian sketch):
In Algorithm 2, let us set µ = 1/θ1 and assume St,k’s are
i.i.d. Gaussian sketches, then the expected squared norm of
the error eAt evolves according to the following relation:

E[‖eAt+1‖22] =
1

q

(
θ2

θ2
1

− 1

)
‖eAt ‖22.

Next, Corollary 3.3 builds on Theorem 3.2 to characterize
the number of iterations for Algorithm 2 to achieve an error
of ε. The number of iterations required for error ε scales with
log(1/ε)/ log(q).

Corollary 3.3: Let St,k ∈ Rm×n (t = 1, . . . , T , k =
1, . . . , q) be Gaussian sketching matrices. Then, Algorithm 2
outputs xT that is ε-accurate with respect to the initial error
in expectation, that is, E[‖eAT ‖

2
2

‖Ax∗‖22
= ε where T is given by

T =
log(1/ε)

log(q)− log
(
θ2
θ21
− 1
) ,

where the overall required communication is Tqd real num-
bers, and the computational complexity per worker is

O(Tmnd+ Tmd2 + Td3).

Remark 3.4: Provided that m is at least 2d, the term
log
(
θ2
θ21
− 1
)

is negative. Hence, T is upper-bounded by
log(1/ε)
log(q) .

Distributed iterative Hessian sketch (IHS) and its conver-
gence analysis have been considered for the first time in this
work. Our technique leads to exact expected error expressions
for Gaussian sketches. A particular way that the expected
error result can be viewed is through the lens of massively
parallel computing (where q is very large). In this case, as
q gets larger, the error will converge to the expected error.
[34] presents high probability bounds for the error of the
distributed IHS algorithm, which we proposed and studied
in this work. Differently from our work, the result of [34]
assumes surrogate sketches. Surrogate sketches are defined by
modifying standard sketching techniques using determinantal
point processes. [34] also extends the result on distributed IHS
to distributed Newton sketch.

B. Distributed Newton Sketch

The update equation for Newton’s method is of the form
xt+1 = xt − α1H

−1
t gt, where Ht ∈ Rd×d and gt ∈ Rd

denote the Hessian matrix and the gradient vector at iteration
t respectively, and α1 is the step size. In contrast, Newton
Sketch performs the approximate updates

xt+1 = xt + α1 arg min
∆

(
1

2
‖StH1/2

t ∆‖22 + gTt ∆), (26)

Algorithm 3: Distributed Newton Sketch
Input: Tolerance ε
while gTt

(∑q
k=1 ∆̂t,k

)
/2 ≤ ε do

for worker k = 1, . . . , q in parallel do
Obtain St,kH

1/2
t .

Obtain the gradient gt.
Compute approximate Newton direction
∆̂t,k = arg min∆(1

2‖St,kH
1/2
t ∆‖22 + gTt ∆) and send

to master node.
end for
Master node: Determine step size α2 and update
xt+1 = xt + α2

1
q

∑q
k=1 ∆̂t,k.

end while

where the sketching matrices St ∈ Rm×n are refreshed every
iteration. There can be a multitude of options for devising a
distributed Newton’s method or a distributed Newton sketch
algorithm. Here we consider a scheme that is similar in spirit to
the GIANT algorithm [23] where worker nodes communicate
length-d approximate update directions to be averaged at
the master node. Another alternative scheme would be to
communicate the approximate Hessian matrices, which would
require an increased communication load of d2 numbers.

We consider Hessian matrices of the form Ht =
(H

1/2
t)TH

1/2
t , where we assume that H1/2

t ∈ Rn×d is a full
column rank matrix and n ≥ d. Note that this factorization is
already available in terms of scaled data matrices in various
problems. For instance, in the Least Squares, we simply have
H

1/2
t = A. More generally, for functions of type f(Ax),

the Hessian takes the form AT f ′′(Ax)A. The factorization
Ht = (H

1/2
t)TH

1/2
t can be computed by simply considering

the factorization of f ′′(Ax). For large scale data matrices A,
this factorization could be computationally inexpensive as long
as f ′′(Ax) is easy to factorize, e.g., diagonal f ′′(Ax). Please
refer to Section VI for further details and examples including
logistic regression and inequality constrained optimization.

The factorization of the Hessian matrix enables the fast
construction of an approximation of Ht by applying sketch-
ing StH

1/2
t which leads to the approximation Ĥt =

(StH
1/2
t)TStH

1/2
t . Averaging for regularized problems with

Hessian matrices of the form Ht = (H
1/2
t)TH

1/2
t +λ1Id will

be considered in the next subsection.
The update equation for distributed Newton sketch for a

system with q worker nodes can be written as

xt+1 = xt + α2
1

q

q∑
k=1

arg min
∆

(
1

2
‖St,kH1/2

t ∆‖22 + gTt ∆

)
.

(27)

Note that the above update requires access to the full gradient
gt. If worker nodes do not have access to the entire dataset,
then this requires an additional communication round per iter-
ation where worker nodes communicate their local gradients
with the master node, which computes the full gradient and
broadcasts to worker nodes. The details of the distributed
Newton sketch method are given in Algorithm 3.

DISTRIBUTED SKETCHING FOR RANDOMIZED OPTIMIZATION 10

0 5 10 15 20 25
iteration

10−13

10−9

10−5

10−1

103

107

1011

co
st

 a
pp

ro
xi

m
at

io
n

αs = 0.498
αs = 0.247

(a) q = 10 workers

0 5 10 15 20 25
iteration

10−2

103

108

1013

1018

co
st

 a
pp

ro
xi

m
at

io
n

αs = 0.498
αs = 0.247

(b) q = 2 workers

Fig. 3. Cost approximation (f(xt)−f(x∗))/f(x∗) for Algorithm 3 against
iteration number t for various step sizes in solving a linear least squares
problem on randomly generated data. The cyan colored dotted lines show cost
approximation when we make a search for the learning rate αs between 0.05
and 1. The blue line with circle markers corresponds to αs = 1/θ1 that leads
to the unbiased estimator and the red line with square markers corresponds to
αs = θ1/θ2 that gives the minimum variance. The resulting step size scaling
factors αs are shown in the legends of the plots. The parameters used in these
experiments are n = 1000, d = 200, m = 400.

We analyze the bias and the variance of the update directions
for distributed Newton sketch, and derive exact expressions for
Gaussian sketching matrices. First, we establish the notation
for update directions. We will let ∆∗t denote the optimal
Newton update direction at iteration t

∆∗t = ((H
1/2
t)TH

1/2
t)−1gt (28)

and let ∆̂t,k denote the approximate update direction returned
by worker node k at iteration t, which has the closed form
expression

∆̂t,k = αs

(
(H

1/2
t)TSTt,kSt,kH

1/2
t

)−1

gt. (29)

Note that the step size for the averaged update direction will
be calculated as α2 = α1αs. Theorem 3.5 characterizes how
the update directions need to be scaled to obtain an unbiased
update direction, and also a minimum variance estimator.

Theorem 3.5: For Gaussian sketches St,k, assuming H
1/2
t

is full column rank, the variance E[‖H1/2
t (∆̂t,k − ∆∗t)‖22] is

minimized when αs is chosen as αs = θ1
θ2

whereas the bias
E[H

1/2
t (∆̂t,k −∆∗t)] is zero when αs = 1

θ1
, where θ1 and θ2

are as defined in (25).
Figure 3 demonstrates that choosing α2 = α1αs when αs

is calculated using the unbiased estimator formula αs = 1/θ1

leads to faster decrease of the objective value when the number
of workers is high. If the number of workers is small, one
should choose the step size that minimizes variance using
αs = θ1/θ2 instead. Furthermore, Figure 3(a) illustrates that
the blue curve with square markers is in fact the best one could
hope to achieve as it is very close to the best cyan dotted line.

We note that our bias correction result considers Gaussian
sketch. In [34], our bias correction result is extended to
surrogate sketches. Surrogate sketches typically allow exact
expectation expressions to be obtained. The theoretical anal-
ysis for the Gaussian case requires identical singular values
for the data matrix in deriving exact bias expressions. This
assumption is relaxed in [34] for surrogate sketches.

IV. BIAS CORRECTION FOR REGULARIZED PROBLEMS

A. Bias Correction for Regularized Least Squares

We have so far studied distributed randomized regression
for unregularized problems and showed that Gaussian sketch
leads to unbiased estimators. In this section, we focus on the
regularized case and show that using the original regularization
coefficient for the sketched problems causes the estimators to
be biased. In addition, we provide a bias correction procedure.
More precisely, the method described in this section is based
on non-iterative averaging for solving the linear least squares
problem with `2 regularization, i.e., ridge regression.

Note that we have λ1 as the regularization coefficient of the
original problem and λ2 for the sketched sub-problems. If λ2

is chosen to be equal to λ1, then this scheme reduces to the
framework given in the work of [2] and we show in Theorem
4.3 that λ2 = λ1 leads to a biased estimator, which does not
converge to the optimal solution.

We first introduce the following results on traces involving
random Gaussian matrices which are instrumental in our result.

Lemma 4.1 ([35]): For a Gaussian sketching matrix S, the
following asymptotic formula holds

lim
n→∞

E[tr((UTSTSU + λ2I)−1)] = d× θ3(d/m, λ2),

where θ3(d/m, λ2) :=

=
−λ2 + d/m− 1 +

√
(−λ2 + d/m− 1)2 + 4λ2d/m

2λ2d/m
.

Lemma 4.2: For a Gaussian sketching matrix S, the follow-
ing asymptotic formula holds

lim
n→∞

E[(UTSTSU + λ2I)−1] = θ3(d/m, λ2)Id,

where θ3(d/m, λ2) is as defined in Lemma 4.1.
We list the distributed randomized ridge regression method

in Algorithm 4. This algorithm assumes that our goal is to
solve a large scale regression problem for a given value of
regularization coefficient λ1. Theorem 4.3 states the main
result of this subsection. In short, for the averaged result
to converge to the optimal solution x∗, the regularization
coefficient needs to be modified to λ∗2.

Theorem 4.3: Given the thin SVD decomposition A =
UΣV T ∈ Rn×d and n ≥ d, and assuming A has full rank and
has identical singular values (i.e., Σ = σId for some σ > 0),
there is a value of λ2 that yields a zero bias of the single
sketch estimator E[A(x̂k − x∗)] as n tends to infinity if
(i) m > d or

(ii) m ≤ d and λ1 ≥ σ2
(
d
m − 1

)
and the value of λ2 that achieves zero bias is given by

λ∗2 = λ1 −
d

m

λ1

1 + λ1/σ2
, (30)

where the matrix Sk in x̂k = arg minx ‖SkAx − Skb‖22 +
λ2‖x‖22 is the Gaussian sketch.

Figure 4 illustrates the practical implications of Theorem
4.3. If λ2 is chosen according to the formula in (30), then the
averaged solution x̄ gives a significantly better approximation
to x∗ than if we had used λ2 = λ1. The data matrix A in

DISTRIBUTED SKETCHING FOR RANDOMIZED OPTIMIZATION 11

Algorithm 4: Distributed Randomized Ridge Regres-
sion

Set σ to the mean of singular values of A.
Calculate λ∗2 = λ1 − d

m
λ1

1+λ1/σ2 .
for worker k = 1, . . . , q in parallel do

Obtain the sketched data and sketched output: SkA and
Skb.
Solve x̂k = arg minx ‖SkAx− Skb‖22 + λ∗2‖x‖22 and
send x̂k to master node.

end for
Master node: return x̄ = 1

q

∑q
k=1 x̂k.

0 200 400 600 800 1000
number of averaged outputs

10−1

100

||x
*

−
̂ x|
| 2/

||x
* |

| 2

λ2 = λ1 = 5
λ2 = λ *

2 = 0.833

(a) Identical singular values

0 200 400 600 800 1000
number of averaged outputs

10−1

100

||x
*

−
̂ x|
| 2/

||x
* |

| 2

λ2 = λ1 = 5
λ2 = λ *

2 = 0.833

(b) Non-identical singular values

Fig. 4. Plots of ‖x̄ − x∗‖2/‖x∗‖2 against the number of averaged worker
outputs for an unconstrained least squares problem with regularization using
Algorithm 4. The dashed blue line corresponds to the case where λ2 is
determined according to the formula (30), and the solid red line corresponds
to the case where λ2 is the same as λ1. The parameters are as follows:
n = 1000, d = 100, λ1 = 5, m = 20, sketch type is Gaussian. (a) All
singular values of A are 1. (b) Singular values of A are not identical and
their mean is 1.

Figure 4(a) has identical singular values, and 4(b) shows the
case where the singular values of A are not identical. When
the singular values of A are not all equal to each other, we set
σ to the mean of the singular values of A as a heuristic, which
works extremely well as shown in Figure 4(b). According to
the formula in (30), the value of λ2 that we need to use to
achieve zero bias is found to be λ∗2 = 0.833 whereas λ1 = 5.
The plot in Figure 4(b) illustrates that even if the assumption
that Σ = σId in Theorem 4.3 is violated, the proposed bias
corrected averaging method outperforms vanilla averaging in
[2] where λ2 = λ1.

Remark 4.4 (Varying sketch sizes): Let us now consider
the scenario where we have different sketch sizes for each
worker node. This situation frequently arises in heterogeneous
computing environments. Specifically, let us assume that the
sketch size for worker k is mk, k = 1, . . . , q. It follows from
Theorem 4.3 that by choosing the regularization parameter for
worker node k as

λ∗2(k) = λ1 −
d

mk

λ1

1 + λ1/σ2
,

it is possible to obtain unbiased estimators x̂k, k = 1, . . . , q
and hence an unbiased averaged result x̄. Note that here
we assume that the sketch size for each worker satisfies the
condition in Theorem 4.3, that is, either mk > d or mk ≤ d
and λ1 ≥ σ2(d/mk − 1).

B. Distributed Newton Sketch for Regularized Problems

We now consider problems with squared `2-norm reg-
ularization. In particular, we study problems with Hessian
matrices of the form Ht = (H

1/2
t)TH

1/2
t + λ1Id. Sketching

can be applied to obtain approximate Hessian matrices as
Ht = (StH

1/2
t)TStH

1/2
t + λ2Id. Note that the case λ2 = λ1

corresponds to the setting in the GIANT algorithm described in
[23] when the sketch is uniform row sampling. The theoretical
result given in this section assumes Gaussian sketch. As we
will show in the numerical results section, using the bias
correction formula improves the performance of other sketch
types as well in our experiments.

Theorem 4.5 establishes that λ2 should be chosen according
to the formula (31) under the assumption that the singular
values of H

1/2
t are identical. We later verify empirically

that when the singular values are not identical, plugging the
mean of the singular values into the formula still leads to
improvements over the case of λ2 = λ1.

Theorem 4.5: Given the thin SVD decomposition H
1/2
t =

UΣV T ∈ Rn×d and n ≥ d where H1/2
t is assumed to have

full rank and satisfy Σ = σId, the bias of the single sketch
Newton step estimator E[H

1/2
t (∆̂t,k − ∆∗t)] is equal to zero

as n goes to infinity when λ2 is chosen as

λ∗2 =

(
λ1 +

d

m
σ2

)(
1− d/m

1 + λ1σ−2 + d/m

)
, (31)

where ∆∗t = ((H
1/2
t)TH

1/2
t + λ1Id)

−1gt and ∆̂t,k =

((St,kH
1/2
t)TSt,kH

1/2
t +λ2Id)

−1gt, and St,k is the Gaussian
sketch.

Remark 4.6: The proof of Theorem 4.5 builds on the proof
of Theorem 4.3 (see the appendix). The main difference
between these results is that the setting in Theorem 4.5 is
such that we assume access to the full gradient, i.e. only the
Hessian matrix is sketched. In contrast, the setting in Theorem
4.3 does not use the exact gradient.

V. PRIVACY PRESERVING PROPERTIES

We now digress from the error and convergence properties
of distributed sketching methods to consider the privacy pre-
serving properties of distributed sketching. We use the notion
of differential privacy for our privacy result given in Definition
5.1. Differential privacy is a worst case type of privacy notion
which does not require distribution assumptions on the data.
It has been the privacy framework adopted by many works in
the literature.

Definition 5.1 ((ε, δ)-Differential Privacy, [36], [37]): An
algorithm ALG which maps (n × d)-matrices into some
range R satisfies (ε, δ)-differential privacy if for all pairs of
neighboring inputs A and A′ (i.e. they differ only in a single
row) and all subsets S ⊂ R, it holds that P (ALG(A) ∈ S) ≤
eεP (ALG(A′) ∈ S) + δ.

Theorem 5.2 characterizes the required conditions and the
sketch size to guarantee (ε, δ)-differential privacy for a given
dataset. The proof of Theorem 5.2 is based on the (ε, δ)-
differential privacy result for i.i.d. Gaussian random projec-
tions from [37]. Note that Theorem 5.2 assumes a sketch size

DISTRIBUTED SKETCHING FOR RANDOMIZED OPTIMIZATION 12

required for privacy. The sketch size depends on whether we
consider privacy against all q worker nodes or a single node.

Theorem 5.2: Given the data matrix A ∈ Rn×d and the
output vector b ∈ Rn, let Ac := [A, b] ∈ Rn×(d+1).
Define β := ln(4/δ). Define σ0 := σmin(Ac)/

√
n, and

B0 := maxi,j |Ac,ij |. Suppose that the conditions

n

d+ 1
≥
(

3 +
2β

ε

)
B2

0

σ2
0

and m > d+ 1 (32)

are satisfied and the sketch size satisfies

m = O

(
β

n2

(d+ 1)2

ε2

(ε+ β)2

)
for privacy w.r.t. one node, or

(33)

m = O

(
β

q

n2

(d+ 1)2

ε2

(ε+ β)2

)
for privacy w.r.t. q nodes.

(34)

Then, for Gaussian sketch matrices Sk ∈ Rm×n, publishing
the sketched matrices SkAc ∈ Rm×(d+1), k = 1, . . . , q is
(ε, δ)-differentially private for any ε > 0, β > 1 + ln(4).

Remark 5.3: For fixed values of β, σmin, B0, n and d,
the approximation error is on the order of O

(
1
ε2

)
for (ε, δ)-

differential privacy with respect to all q workers.
The work [38] considers convex optimization under privacy

constraints and shows that ε-differential privacy (i.e. equivalent
to Definition 5.1 with δ = 0), the approximation error of their
distributed iterative algorithm is on the order of O(1

ε2), which
is on the same order as Algorithm 1. The two algorithms
however have different dependencies on parameters, which are
hidden in the O-notation. We note that the approximation error
of the algorithm in [38] depends on parameters that Algorithm
1 does not have such as the initial step size, the step size
decay rate, and noise decay rate. The reason for this is that the
algorithm in [38] is a synchronous iterative algorithm designed
to solve a more general class of optimization problems.
Algorithm 1, on the other hand, is designed to solve linear
regression problems and offers a significant advantage due to
its single-round communication requirement.

Remark 5.4: A similar privacy guarantee holds for the right
sketch method discussed in Section II-D. In right sketch, we
only sketch the data matrix A and not the output vector b. For
publishing ASTk to be (ε, δ)-differentially private, Theorem
5.2 still holds with the modification that we replace Ac with
AT .

VI. APPLICATIONS OF DISTRIBUTED SKETCHING

This section describes some example problems where our
methodology can be applied. In particular, the problems in
this section are convex problems that are efficiently addressed
by our methods in distributed systems. We present numerical
results on these problems in Section VII.

A. Logistic Regression

We begin by considering the well-known logistic regres-
sion model with squared `2-norm penalty. The optimization

problem for this model can be formulated as minimizexf(x)
where

f(x) = −
n∑
i=1

(yi log(pi) + (1− yi) log(1− pi)) +
λ1

2
‖x‖22,

(35)

and p ∈ Rn is defined such that pi = 1/(1 + exp(−ãTi x)).
ãi ∈ Rd denotes the i’th row of the data matrix A ∈ Rn×d.
The output vector is denoted by y ∈ Rn.

We can use the distributed Newton sketch algorithm to solve
this optimization problem. The gradient and Hessian for f(x)
are as follows

g = AT (p− y) + λ1x,

H = ATDA+ λ1Id .

D is a diagonal matrix with the elements of the vector p(1−p)
as its diagonal entries. The sketched Hessian matrix in this
case can be formed as (SD1/2A)T (SD1/2A) + λ∗2Id where
λ∗2 can be calculated using (31), and we can set σ to the mean
of the singular values of D1/2A. Since the entries of the matrix
D are a function of the variable x, the matrix D gets updated
every iteration. It might be computationally expensive to re-
compute the mean of the singular values of D1/2A in every
iteration. However, we have found through experiments that it
is not required to compute the exact value of the mean of the
singular values for bias reduction. For instance, setting σ to
the mean of the diagonals of the matrix D1/2 as a heuristic
works sufficiently well.

B. Inequality Constrained Optimization

The second application that we consider is the inequality
constrained optimization problem of the form

minimizex ‖x− c‖22
subject to ‖Ax‖∞ ≤ λ (36)

where A ∈ Rn×d, and c ∈ Rd are the problem data, and λ ∈ R
is a positive scalar. Note that this problem is the dual of the
Lasso problem given by minx λ‖x‖1 + 1

2‖Ax− c‖
2
2.

The above problem can be tackled by the standard log-
barrier method [39], by solving sequences of unconstrained
barrier penalized problems as follows

minimizex −
n∑
i=1

log(−ãTi x+ λ)−
n∑
i=1

log(ãTi x+ λ)

+ λ1‖x‖22 − 2λ1c
Tx+ λ1‖c‖22 (37)

where ãi represents the i’th row of A. The distributed Newton
sketch algorithm could be used to solve this problem. The
gradient and Hessian of the objective are given by

g = −ATc D12n×1 + 2λ1x− 2λ1c,

H = (DAc)
T (DAc) + 2λ1Id.

Here Ac = [AT ,−AT]T and D is a diagonal matrix with
the element-wise inverse of the vector (Acx − 12n×1) as
its diagonal entries. 12n×1 is the length-2n vector of all

DISTRIBUTED SKETCHING FOR RANDOMIZED OPTIMIZATION 13

1’s. The sketched Hessian can be written in the form of
(SDAc)

T (SDAc) + λ2Id.
Remark 6.1: Since the contribution of the regularization

term in the Hessian matrix is 2λ1Id, we need to plug 2λ1

instead of λ1 in the formula for computing λ∗2.

C. Fine Tuning of Pre-Trained Neural Networks

The third application is neural network fine tuning. Let
fNN (·) : Rd → Rr represent the output of the (L − 1)’st
layer of a pre-trained network which consists of L layers. We
are interested in re-using a pre-trained neural network for, say,
a task on a different dataset by learning a different final layer.
More precisely, assuming squared loss, one way that we can
formulate this problem is as follows

W ∗L = arg min
WL

∥∥∥∥∥
fNN (ã1)T

...
fNN (ãn)T

︸ ︷︷ ︸

fNN (A)

WL − b

∥∥∥∥∥
2

F

+ λ1‖WL‖2F ,

(38)

where WL ∈ Rr×C is the weight matrix of the final layer.
The vectors ãi ∈ Rd i = 1, . . . , n denote the rows of the data
matrix A ∈ Rn×d and b ∈ Rn×C is the output matrix. In a
classification problem, C would correspond to the number of
classes.

For large scale datasets, it is important to develop efficient
methods for solving the problem in (38). Distributed random-
ized ridge regression algorithm (listed in Algorithm 4) could
be applied to this problem where the sketched sub-problems
are of the form

ŴL,k = arg min
WL

‖SkfNN (A)WL − Skb‖2F + λ∗2‖WL‖2F
(39)

and the averaged solution can be computed at the master
node as W̄L = 1

q

∑q
k=1 ŴL,k. This leads to an efficient

non-iterative asynchronous method for fine-tuning of a neural
network.

VII. NUMERICAL RESULTS

We have implemented the distributed sketching methods for
AWS Lambda in Python using the Pywren package [11]. The
setting for the experiments is a centralized computing model
where a single master node collects and averages the outputs of
the q worker nodes. The majority of the figures in this section
plots the approximation error which we define as (f(x̄) −
f(x∗))/f(x∗).

A. Hybrid Sketch

In a distributed computing setting, the amount of data that
can be fit into the memory of nodes and the size of the largest
problem that can be solved by the nodes often do not match.
The hybrid sketch idea is motivated by this mismatch and it is
basically a sequentially concatenated sketching scheme where
we first perform uniform sampling with dimension m′ and
then sketch the sampled data using another sketching method,

preferably with better convergence properties (say, Gaussian)
with dimension m. Worker nodes load m′ rows of the data
matrix A into their memory and then perform sketching,
reducing the number of rows from m′ to m. In addition, we
note that if m′ = m, hybrid sketch reduces to sampling and
if m′ = n, then it reduces to Gaussian sketch. The hybrid
sketching scheme does not take privacy into account as worker
nodes are assumed to have access to the data matrix.

For the experiments involving very large scale datasets,
we have used Sparse Johnson-Lindenstrauss Transform (SJLT)
[28] as the second sketching method in the hybrid sketch due
to its low computational complexity.

B. Airline Dataset

We have conducted experiments with the publicly available
Airline dataset [40]. This dataset contains information on
domestic USA flights between the years 1987-2008. We are
interested in predicting whether there is going to be a departure
delay or not, based on information about the flights. More
precisely, we are interested in predicting whether DepDelay
> 15 minutes using the attributes Month, DayofMonth,
DayofWeek, CRSDepTime, CRSElapsedTime, Dest,
Origin, and Distance. Most of these attributes are cat-
egorical and we have used dummy coding to convert these
categorical attributes into binary representations. The size of
the input matrix A, after converting categorical features into
binary representations, becomes (1.21× 108)× 774.

We have solved the linear least squares problem on the
entire airline dataset: minimizex‖Ax − b‖22 using q workers
on AWS Lambda. The output b for the plots a and b in Figure
5 is a vector of binary variables indicating delay. The output
b for the plots c and d in Figure 5 is artificially generated via
b = Axtruth+ ε where xtruth is the underlying solution and ε
is random Gaussian noise distributed as N (0, 0.01I). Figure 5
shows that sampling followed by SJLT leads to a lower error.

We note that the convergence rate gets better for higher
values of m and m′. Based on the run times given in the
caption of Figure 5, we see that the run times are slightly
worse if SJLT is involved. Decreasing m′ will help reduce
this processing time at the expense of error performance.

The monetary cost incurred for this experiment on AWS
Lambda is calculated as follows. Pricing for AWS Lambda (at
the time of writing) is $0.0000166667 for every GB-second.
We have used q = 100 serverless nodes each with 3GB
of memory. The longest run of the experiments in Figure 5
takes 107.6 seconds. This corresponds to a monetary cost
of $0.00538 per serverless node and $0.538 for the entire
experiment.

C. Image Dataset: Extended MNIST

The experiments of this subsection are performed on the
image dataset EMNIST (extended MNIST) [41]. We have used
the ”bymerge” split of EMNIST, which has 700K training and
115K test images. The dimensions of the images are 28× 28
and there are 47 classes in total (letters and digits). Some
capital letter classes have been merged with small letter classes
(like C and c), and thus there are 47 classes and not 62.

DISTRIBUTED SKETCHING FOR RANDOMIZED OPTIMIZATION 14

0 20 40 60 80 100
number of outputs averaged

1.500

1.505

1.510

1.515

1.520

1.525

co
st

1e7
uniform sampling
sampling + SJLT

a) m′ = 5m = 5× 105

0 20 40 60 80 100
number of outputs averaged

1.50050

1.50075

1.50100

1.50125

1.50150

co
st

1e7
uniform sampling
sampling + SJLT

b) m′ = 2m = 2× 106

0 20 40 60 80 100
number of outputs averaged

1210000

1220000

1230000

1240000

co
st

uniform sampling
sampling + SJLT

c) m′ = 5m = 5× 105

0 20 40 60 80 100
number of outputs averaged

1210000

1210500

1211000

1211500

1212000

1212500

co
st

uniform sampling
sampling + SJLT

d) m′ = 2m = 2× 106

Fig. 5. AWS Lambda experiments on the entire airline dataset (n = 1.21×
108) with q = 100 workers. The run times for each plot are as follows (given
in this order: sampling, sampling followed by SJLT): a: 37.5, 43.9 seconds,
b: 48.3, 60.1 seconds, c: 39.8, 52.9 seconds, d: 78.8, 107.6 seconds. Here,
cost refers to the training objective ‖Ax− b‖22.

0 20 40 60 80 100
number of outputs averaged

10−2

10−1

ap
pr

ox
im

at
io

n
er

ro
r uniform sampling

SJLT

a) Approximation error

0 20 40 60 80 100
number of outputs averaged

0.42

0.44

0.46

0.48

0.50

ac
cu

ra
cy

uniform sampling
SJLT

b) Test accuracy

Fig. 6. Approximation error and test set classification accuracy plots for the
EMNIST-bymerge dataset where q = 100, m = 2000, s = 20. The run
times on AWS Lambda for uniform sampling and SJLT are 41.5 and 66.9
seconds, respectively.

Figure 6 shows the approximation error and test accuracy
plots when we fit a least squares model on the EMNIST-
bymerge dataset using the distributed randomized regression
algorithm. Because this is a multi-class classification problem,
we have one-hot encoded the labels. Figure 6 demonstrates that
SJLT is able to drive the cost down more and leads to a better
classification accuracy than uniform sampling.

D. Performance on Large Scale Synthetic Datasets

We now present the results of the experiments carried out
on randomly generated large scale data to illustrate scalability
of the methods. Plots in Figure 7 show the approximation error
as a function of time, where the problem dimensions are as
follows: A ∈ R107×103

for plot a and A ∈ R(2×107)×(2×103)

for plot b. These data matrices take up 75 GB and 298
GB, respectively. The data used in these experiments were
randomly generated from the student’s t-distribution with
degrees of freedom of 1.5 for plot a and 1.7 for plot b. The
output vector b was computed according to b = Axtruth + ε
where ε ∈ Rn is i.i.d. noise distributed as N (0, 0.1In). Other

38 40 42 44 46
time (sec)

10−1

100

ap
pr

ox
im

at
io

n
er

ro
r uniform sampling

sampling + SJLT

a) A ∈ R107×103

70 75 80
time (sec)

10−1

100

101

ap
pr

ox
im

at
io

n
er

ro
r uniform sampling

sampling + SJLT

b) A ∈ R(2×107)×(2×103)

Fig. 7. Approximation error vs time for AWS Lambda experiments on
randomly generated large scale datasets (q = 200 AWS Lambda functions
have been used).

0 50 100 150 200 250
number of outputs averaged

10−1

100

101

102

ap
pr

ox
im

at
io

n
er

ro
r uniform sampling

Gaussian
sampling + Gaussian

a) Random data

0 20 40 60 80 100
number of outputs averaged

10−1

100

ap
pr

ox
im

at
io

n
er

ro
r uniform sampling

Gaussian
sampling + Gaussian

b) Airline data

Fig. 8. Averaging for least norm problems. Plot (a): The parameters are
n = 50, d = 1000, m = 200, m′ = 500. Plot (b): Least norm averaging
applied to a subset of the airline dataset. The parameters are n = 2000,
d = 11588, m = 4000, m′ = 8000. For this plot, the features include the
pairwise interactions in addition to the original features.

parameters used in the experiments are m = 104,m′ = 105

for plot a, and m = 8 × 103,m′ = 8 × 104 for plot b. We
observe that both plots in Figure 7 reveal similar trends where
the hybrid approach leads to a lower approximation error but
takes longer due to the additional processing required for SJLT.

E. Numerical Results for Least Norm Problems

Figure 8 shows the approximation error as a function of
the number of averaged outputs in solving the least norm
problem for two different datasets. This section numerically
verifies the theoretical result for least norm problems using
the right sketch method given in Section II-D. Note that the
theoretical properties of this method are given in Theorem
2.13. The dataset for Figure 8(a) is randomly generated with
dimensions A ∈ R50×1000. We observe that Gaussian sketch
outperforms uniform sampling in terms of the approximation
error. Furthermore, Figure 8(a) verifies that if we apply the
hybrid approach of sampling first and then applying Gaussian
sketch, then its performance falls between the extreme ends of
only sampling and only using Gaussian sketch. Moreover, Fig-
ure 8(b) shows the results for the same experiment on a subset
of the airline dataset where we have included the pairwise
interactions as features which makes this an underdetermined
linear system. Originally, we had 774 features for this dataset
and if we include all xixj terms as features, we would have
a total of 299925 features, most of which are zero for all
samples. We have excluded the all-zero columns from this
extended matrix to obtain the final dimensions 2000× 11588.

DISTRIBUTED SKETCHING FOR RANDOMIZED OPTIMIZATION 15

50 100 150 200
time (sec)

10−8

10−5

10−2

101

104

co
st

 a
pp

ro
xi

m
at

io
n

unif (q= 2)
unif&sjlt (q= 2)
unif (q= 16)
unif&sjlt (q= 16)

Fig. 9. Cost approximation (f(xt)−f(x∗))/f(x∗) vs time for the distributed
IHS algorithm running on AWS Lambda to fit the linear least squares model on
randomly generated data. Unif is short for uniform sampling and unif&sjlt is
short for hybrid sketch where uniform sampling is followed by SJLT. Problem
parameters are as follows: n = 250000, d = 500, m = 6000, m′ = 20000,
and q as specified in the legend.

F. Distributed Iterative Hessian Sketch
We have evaluated the performance of the distributed IHS

algorithm on AWS Lambda. In the implementation, each
serverless function is responsible for solving one sketched
problem per iteration. Worker nodes wait idly once they finish
their computation for that iteration until the next iterate xt+1

becomes available. The master node is implemented as another
AWS Lambda function and is responsible for collecting and
averaging the worker outputs and broadcasting the next iterate
xt+1.

Figure 9 shows the scaled difference between the cost for the
t’th iterate and the optimal cost (i.e. (f(xt)− f(x∗))/f(x∗))
against wall-clock time for the distributed IHS algorithm given
in Algorithm 2. Due to the relatively small size of the problem,
we have each worker compute the exact gradient without
requiring an additional communication round per iteration to
form the full gradient. We note that, for problems where it
is not feasible for workers to form the full gradient due to
limited memory, one can include an additional communication
round where each worker sends their local gradient to the
master node, and the master node forms the full gradient and
distributes it to the worker nodes.

G. Inequality Constrained Optimization
Figure 10 compares the error performance of sketches with

and without bias correction for the distributed Newton sketch
algorithm when it is used to solve the log-barrier penalized
problem given in (37). For each sketch, we have plotted the
performance for λ2 = λ1 and the bias corrected version λ2 =
λ∗2 (see Theorem 4.5). The bias corrected versions are shown
as the dotted lines. In these experiments, we have set σ to the
minimum of the singular values of DA as we have observed
that setting σ to the minimum of the singular values of DA
performed better than setting it to their mean.

Even though the bias correction formula is derived for
Gaussian sketch, we observe that it improves the performance
of SJLT as well. We see that Gaussian sketch and SJLT
perform the best out of the 4 sketches we have experimented
with. We note that computational complexity of sketching for
SJLT is lower than it is for Gaussian sketch, and hence the
natural choice would be to use SJLT in this case.

0 5 10 15 20 25
iteration

10−2

co
st

 a
pp

ro
xi

m
at

io
n

unif
gaus
sjlt
unif&sjlt
unif+
gaus+
sjlt+
unif&sjlt+

Fig. 10. Plot shows cost approximation of the iterate xt (i.e., (f(xt) −
f(x∗))/f(x∗)) against iteration number t for various sketches in solving the
log-barrier version of an inequality constrained optimization problem given in
(37). Abbreviations used in the plot are as follows. Unif: Uniform sampling,
gaus: Gaussian sketch, unif&sjlt: Hybrid sketch where uniform sampling is
followed by SJLT. The abbreviations followed by +’s in the legend refer to
the bias corrected versions. Problem parameters are as follows: n = 500,
d = 200, λ1 = 1000, m = 50, m′ = 8m = 400, q = 10, λ = 0.01,
s = 10.

VIII. DISCUSSION

In this work, we study averaging sketched solutions for
linear least squares problems and averaging for randomized
second order optimization algorithms. We discuss distributed
sketching methods from the perspectives of convergence, bias,
privacy, and distributed computing. Our results and numerical
experiments suggest that distributed sketching methods offer a
competitive straggler-resilient solution for solving large scale
problems.

We have shown that for problems involving regularization,
averaging requires a more detailed analysis compared to
problems without regularization. When the regularization term
is not scaled properly, the resulting estimators are biased, and
averaging a large number of independent sketched solutions
does not converge to the true solution. We have provided
closed-form formulas for scaling the regularization coefficient
to obtain unbiased estimators that guarantee convergence to
the optimum.

APPENDIX A
BOUNDS FOR OTHER SKETCHING MATRICES

In this section, we consider randomized Hadamard sketch,
uniform sampling, and leverage score sampling for solving
the unregularized linear least squares problem minx f(x) =
‖Ax− b‖22. For each of these sketching methods, we present
upper bounds on the bias of the corresponding single sketch
estimator. Then, we combine these in Theorem A.6, which
provides high probability upper bounds for the error of the
averaged estimator.

Lemma A.1 expresses the expected objective value differ-
ence in terms of the bias and variance of the single sketch
estimator.

Lemma A.1: For any i.i.d. sketching matrices Sk, k =
1, . . . , q, the expected objective value difference for the av-
eraged estimator x̄ can be decomposed as

E[f(x̄)]− f(x∗) =

=
1

q
E
[
‖Ax̂−Ax∗‖22

]
+
q − 1

q
‖E[Ax̂]−Ax∗‖22, (40)

DISTRIBUTED SKETCHING FOR RANDOMIZED OPTIMIZATION 16

where x̂ is the single sketch estimator.
Lemma A.2 establishes an upper bound on the norm of

the bias for any i.i.d. sketching matrix. The results in the
remainder of this section will build on this lemma.

Lemma A.2: Let the SVD of A be denoted as A = UΣV T .
Let z := UTSTSb⊥ and Q := (UTSTSU)−1 where b⊥ :=
b − Ax∗. Define the event E as (1 − ε)Id � Q � (1 + ε)Id.
Then, for any sketch matrix S with E[STS] = In, the bias
of the single sketch estimator, conditioned on E, is upper
bounded as

‖E[Ax̂|E]−Ax∗‖2 ≤
√

4εE[‖z‖22|E] . (41)

The event E is a high probability event and it is equivalent
to the subspace embedding property (e.g. [2]). We will analyze
the unconditioned error later in Theorem A.6.

We note that Lemma A.1 and A.2 apply to all of the
sketching matrices considered in this work. We now give
specific bounds for the bias of the single sketch estimator
separately for each of randomized Hadamard sketch, uniform
sampling, and leverage score sampling.

Randomized Hadamard sketch: This method has the
advantage of low computational complexity due to the Fast
Hadamard Transform, which can be computed in O(n log n),
whereas applying the Gaussian sketch takes O(mn) time for
length n vectors. Lemma A.3 states the upper bound for the
bias for randomized Hadamard sketch.

Lemma A.3: For randomized Hadamard sketch, the bias is
upper bounded as

‖E[Ax̂|E]−Ax∗‖2 ≤
√

4ε
d

m
f(x∗). (42)

Uniform sampling: We note that the bias of the uniform
sampling estimator is different when it is computed with or
without replacement. The reason for this is that the rows of the
sketching matrix S for uniform sampling are independent in
the case of sampling with replacement, which breaks down
in the case of sampling without replacement. Lemma A.4
provides bounds for both cases.

Lemma A.4: For uniform sampling, the bias can be upper
bounded as

‖E[Ax̂|E]−Ax∗‖2 ≤
√

4ε
µd

m
f(x∗) (43)

‖E[Ax̂|E]−Ax∗‖2 ≤
√

4ε
µd

m

n−m
n− 1

f(x∗), (44)

for sampling with and without replacement, respectively,
where ũi ∈ Rd denotes the i’th row of U .

Leverage score sampling: Recall that the row leverage
scores of a matrix A = UΣV T are computed via `i = ‖ũi‖22
for i = 1, . . . , n where ũi ∈ Rd denotes the i’th row of U .
Since leverage score sampling looks at the data to help guide
its sampling strategy, it achieves a lower error compared to
uniform sampling which treats all the samples equally. Lemma
A.5 gives the upper bound for the bias of the leverage score
sampling estimator.

Lemma A.5: For leverage score sampling, the bias can be
upper bounded as

‖E[Ax̂|E]−Ax∗‖2 ≤
√

4ε
d

m
f(x∗). (45)

The results given in Lemma A.3, A.4, and A.5 can be
combined with Lemma A.1. In particular, the error of the
averaged estimator contains the squared bias term which is
scaled with (q − 1)/q. For a distributed computing system
with a large number of worker nodes q, the contribution of
the bias term is very close to 1 while the variance term will
vanish as it is scaled with 1/q.

We now leverage our analysis of the bias upper bounds to
establish upper bounds on the error of the averaged estimator.
Theorem A.6 gives high probability error bounds for different
sketch types when the sketch size is set accordingly.

Theorem A.6: Suppose that the sketch size is selected as

m &
d+ log(n)

ε2
log(qd/δ) for randomized Hadamard sketch,

m &
µd

ε2
log(qd/δ) for uniform sampling,

m &
d

ε2
log(qd/δ) for leverage score sampling,

for some ε ∈ (0, 1
4] and δ > 0. Here µ is the row coherence

defined in Section I-C, that is, µ = n/dmaxi ‖ũi‖22. Then,
the relative optimality gap of the averaged estimator obeys
the following upper bounds:

P
(f(x̄)

f(x∗)
≤ 1 + γ

)
≥

1− δ − d

γm

((1 + ε)2

q
+ 4ε

)
for randomized Hadamard sketch,

1− δ − µd

γm

((1 + ε)2

q
+ 4ε

)
for uniform sampling with replacement,

1− δ − µd

γm

n−m
n− 1

((1 + ε)2

q
+ 4ε

)
for uniform sampling without replacement,

1− δ − d

γm

((1 + ε)2

q
+ 4ε

)
for leverage score sampling,

for any γ > 0.
Remarkably, the optimality ratio of the distributed sketching

estimator converges to 1 as q or m gets large. This is different
from the results of [2], which do not imply convergence to 1
as q → ∞ due to an additional bias term. We note that the
relative error of the uniform sampling sketch has a dependence
on the row coherence unlike the randomized Hadamard and
leverage score sampling sketch.

The main idea for the proof of Theorem A.6 involves using
the decomposition given in Lemma A.1 along with the upper
bounds for E[‖UTSTSb⊥‖22|E]. Then, we use Markov’s in-
equality to find a high probability bound for the approximation
quality of the averaged estimator, conditioned on the events

DISTRIBUTED SKETCHING FOR RANDOMIZED OPTIMIZATION 17

Ek, k = 1, . . . , q defined as (1 − ε)Id � (UTSTk SkU)−1 �
(1 + ε)Id. This inequality is a direct result of the subspace
embedding property and holds with high probability. The last
component of the proof deals with removing the conditioning
on the events Ek to find the upper bound for the relative error
f(x̄)/f(x∗).

APPENDIX B
PROOFS

This section contains the proofs for the lemmas and theo-
rems stated in the paper.

A. Proofs of Theorems and Lemmas in Section II

Proof of Theorem 2.2: Since the Gaussian sketch esti-
mator is unbiased (i.e., E[x̂k] = x∗), Lemma A.1 reduces to
E[f(x̄)] − f(x∗) = 1

q E[‖Ax̂1 − Ax∗]‖22. By Lemma 2.1, the
error of the averaged solution conditioned on the events that
Ek = ATSTk SkA � 0, ∀k = 1, . . . , q can exactly be written
as

E[‖A(x̄− x∗)‖22|E1 ∩ · · · ∩ Eq] =
1

q

d

m− d− 1
f(x∗).

Using Markov’s inequality, it follows that

P (‖A(x̄− x∗)‖22 ≥ a|E1 ∩ · · · ∩ Eq) ≤
1

qa

d

m− d− 1
f(x∗).

The LHS can be lower bounded as
P (‖A(x̄− x∗)‖22 ≥ a ∩ (

⋂q
k=1Ek))

P (
⋂q
k=1Ek)

≥
P (‖A(x̄− x∗)‖22 ≥ a) + P (

⋂q
k=1Ek)− 1

P (
⋂q
k=1Ek)

(46)

=
P (‖A(x̄− x∗)‖22 ≥ a) + P (E1)q − 1

P (E1)q
, (47)

where we have used the identity P (A∩B) ≥ P (A)+P (B)−1
in (46) and the independence of the events Ek in (47). It
follows

P (‖A(x̄− x∗)‖22 ≤ a) ≥ P (E1)q
(

1− 1

qa

d

m− d− 1
f(x∗)

)
.

Setting a = f(x∗) εq and plugging in P (E1) = 1, which holds
for m ≥ d, we obtain

P

(
‖A(x̄− x∗)‖22

f(x∗)
≤ ε

q

)
≥
(

1− d/ε

m− d− 1

)
.

Lemma B.1: For the Gaussian sketching matrix S and
the matrix U whose columns are orthonormal, the smallest
singular value of the product SU is bounded as:

P (σmin(SU) ≤ 1−
√
d/m− δ) ≤ exp(−mδ2/2). (48)

This result follows from the concentration of Lipshitz func-
tions of Gaussian random variables.

Proof of Lemma 2.7: We start by invoking a result on
the concentration of Stieltjes transforms, namely Lemma 6 of
[33]. This implies that

P
(
| tr(UTSTSU − εiI)−1 − E[tr(UTSTSU − εiI)−1]| > t

)
≤ 4 exp

(
−t2ε2/(16m)

)
(49)

where i =
√
−1. The matrix UTSTSU can be written as a

sum of rank-1 matrices as follows:

UTSTSU =

m∑
i=1

(s̃Ti U)T (s̃Ti U) (50)

where s̃Ti ∈ R1×n is the i’th row of S. The vectors
(s̃Ti U)T are independent as required by Lemma 6 of [33].
Next, we will bound the difference between the trace terms
tr((UTSTSU)−1) and tr((UTSTSU − εiI)−1). First, we let
the SVD decomposition of SU be Ũ Σ̃Ṽ T . Then, we have the
following relations:

SU = Ũ Σ̃Ṽ T

UTSTSU = Ṽ Σ̃2Ṽ T

(UTSTSU)−1 = Ṽ Σ̃−2Ṽ T

UTSTSU − εiI = Ṽ diag(σ̃2
j − εi)Ṽ T

(UTSTSU − εiI)−1 = Ṽ diag

(
1

σ̃2
j − εi

)
Ṽ T (51)

where the notation diag(σ̃2
j) refers to a diagonal matrix with

diagonal entries equal to σ̃2
1 , σ̃

2
2 , The difference between

the trace terms can be bounded as follows:∣∣tr((UTSTSU)−1)− tr((UTSTSU − εiI)−1)
∣∣ =

=

∣∣∣∣∣tr
(
Ṽ diag

(
1

σ̃2
j

− 1

σ̃2
j − εi

)
Ṽ T

)∣∣∣∣∣
=

∣∣∣∣∣∣
d∑
j=1

(
1

σ̃2
j

− 1

σ̃2
j − εi

)∣∣∣∣∣∣ =

∣∣∣∣∣∣
d∑
j=1

(
−εi

σ̃2
j (σ̃2

j − εi)

)∣∣∣∣∣∣
≤

d∑
j=1

∣∣∣∣∣ −εi
σ̃2
j (σ̃2

j − εi)

∣∣∣∣∣ =

d∑
j=1

ε

σ̃2
j |σ̃2

j − εi|

≤
d∑
j=1

ε

σ̃4
j

≤
d∑
j=1

ε

σ̃2
jσ

2
min(SU)

=
ε

σ2
min(SU)

d∑
j=1

1

σ̃2
j

=
ε

σ2
min(SU)

tr
(
(UTSTSU)−1

)
.

(52)

Equivalently, we have(
1− ε

σ2
min(SU)

)
tr((UTSTSU)−1)

≤ tr((UTSTSU − εiI)−1)

≤
(
1 +

ε

σ2
min(SU)

)
tr((UTSTSU)−1) . (53)

The relations in (49) and (53) together imply the following
concentration result:

P
(
| tr((UTSTSU)−1)− E[tr((UTSTSU)−1)]| ≤ t

+
ε

σ2
min(SU)

(
tr((UTSTSU)−1) + E[tr((UTSTSU)−1)]

))
≥ 1− 4 exp

(
−t2ε2/(16m)

)
. (54)

DISTRIBUTED SKETCHING FOR RANDOMIZED OPTIMIZATION 18

We know that E[tr((UTSTSU)−1)] = md
m−d−1 . Using the

upper bound tr((UTSTSU)−1) ≤ dσ−2
min(SU) yields

P
(
| tr((UTSTSU)−1)− E[tr((UTSTSU)−1)]| ≤

t+
ε

σ2
min(SU)

(d

σ2
min(SU)

+
md

m− d− 1

))
≥ 1− 4 exp

(
−t2ε2/(16m)

)
. (55)

The concentration inequality in (55) and the concentration
of the minimum singular value P (1

σmin(SU) ≤
1

1−
√
d/m−δ

) ≥
1− exp(−mδ2/2) from Lemma B.1 together imply that

P
(
| tr((UTSTSU)−1)− E[tr((UTSTSU)−1)]| ≤

t+
ε

(1−
√
d/m− δ)2

(d

(1−
√
d/m− δ)2

+
md

m− d− 1

))
≥ 1− 4 exp

(
−t2ε2/(16m)

)
− exp(−mδ2/2). (56)

We now simplify this bound by observing that

d

(1−
√
d/m− δ)2

=

=
d

(1 + d
m − 2

√
d
m) + δ2 − 2δ(1−

√
d
m)

=
md

m+ d− 2
√
md+ δ2m− 2δm(1−

√
d
m)

≥ md

m− d(2
√
α− 1)

≥ md

m− d− 1
(57)

where we used m ≥ αd for the first inequality. We have also
used the following simple inequality

2δm(1−
√
d/m) ≥ 2δm(1− 1√

2
) ≥ δm ≥ δ2m. (58)

For the fourth line to be true, we need m − 2d
√
α + d ≤

m−d−1. This is satisfied if 1 ≤ 2d(
√
α−1) or α ≥ (1

2d+1)2.
We note that this is already implied by our assumption that
m & d. Using the above observation, we simplify the bound
as follows:

P
(
| tr((UTSTSU)−1)− E[tr((UTSTSU)−1)]| ≤

t+
2dε

(1−
√
d/m− δ)4

)
≥ 1− 4 exp

(
−t2ε2/(16m)

)
− exp(−mδ2/2). (59)

Scaling ε← ε
(1−
√
d/m−δ)4

2d gives

P
(
| tr((UTSTSU)−1)− E[tr((UTSTSU)−1)]| ≤ t+ ε

)
≥ 1− 4e−

t2ε2(1−
√
d/m−δ)8

64md2 − e−mδ
2/2. (60)

Setting t = ε and then ε← ε/2 give us the final result:

P
(
| tr((UTSTSU)−1)− E[tr((UTSTSU)−1)]| ≤ ε

)
≥ 1− 4e−

ε4(1−
√
d/m−δ)8

210md2 − e−mδ
2/2. (61)

Proof of Theorem 2.4: Let us consider the single sketch
estimator x̂. The relative error of x̂ can be expressed as

f(x̂)− f(x∗) = ‖A(x̂− x∗)‖22
= ‖A(ATSTSA)−1ATSTSb⊥‖22
= ‖A(SA)†Sb⊥‖22 (62)

where the superscript † indicates the pseudo-inverse. We will
rewrite the error expression as:

f(x̂)− f(x∗) =

∥∥∥∥‖b⊥‖2√
m

A(SA)†
√
m

‖b⊥‖2
Sb⊥

∥∥∥∥2

2

(63)

and define z :=
√
m

‖b⊥‖2Sb
⊥ and M := ‖b⊥‖2√

m
A(SA)†. This

simplifies the previous expression

f(x̂)− f(x∗) = ‖Mz‖22 = zTMTMz. (64)

Lemma 2.5 implies

P
(
f(x̂)− f(x∗)− ESb⊥ [f(x̂)− f(x∗)]

> 2‖MTM‖F
√
ε+ 2‖MTM‖2ε

∣∣∣SU) ≤ e−ε. (65)

The terms ‖MTM‖F and ‖MTM‖2 reduce to the following
expressions:

‖MTM‖F =
f(x∗)

m

√
tr((UTSTSU)−2) ≤ f(x∗)

m

√
d

σ2
min(SU)

(66)

‖MTM‖2 =
f(x∗)

m

1

σ2
min(SU)

. (67)

Plugging these in (65) and taking the expectation of both sides
with respect to SU give us

P
(
f(x̂)− f(x∗) >

f(x∗)

m
tr((UTSTSU)−1)

+ 2
f(x∗)

mσ2
min(SU)

(
√
εd+ ε)

)
≤ e−ε. (68)

Next, we combine (68) with Lemma 2.7 and the concentration
of the minimum singular value from Lemma B.1 to obtain

P
(
f(x̂)− f(x∗) >

f(x∗)

m
E[tr((UTSTSU)−1)]

+ 2
f(x∗)

m(1−
√
d/m− s)2

(
√
εd+ ε) +

f(x∗)

m
γ
)

≤ e−ε + 4e−
γ4(1−

√
d/m−δ)8

210md2 + e−mδ
2/2 + e−ms

2/2. (69)

Assuming that
√
εd > ε, we can write:

P
(
f(x̂)− f(x∗) >

f(x∗)

m
E[tr((UTSTSU)−1)]

+
4f(x∗)

√
εd

m(1−
√
d/m− s)2

+
f(x∗)

m
γ
)

≤ e−ε + 4e−
γ4(1−

√
d/m−δ)8

210md2 + e−mδ
2/2 + e−ms

2/2. (70)

DISTRIBUTED SKETCHING FOR RANDOMIZED OPTIMIZATION 19

Making the change of variable ε← ε2/d yields:

P
(
f(x̂)− f(x∗) >

f(x∗)

m
E[tr((UTSTSU)−1)]

+
4f(x∗)ε

m(1−
√
d/m− s)2

+
f(x∗)

m
γ
)

≤ e−ε
2/d + 4e−

γ4(1−
√
d/m−δ)8

210md2 + e−mδ
2/2 + e−ms

2/2. (71)

Scaling ε← ε
(1−
√
d/m−s)2

4 yields:

P
(
f(x̂)− f(x∗) >

f(x∗)

m
E[tr((UTSTSU)−1)]

+
f(x∗)(ε+ γ)

m

)
≤ e−

ε2(1−
√
d/m−s)4

16d + 4e−
γ4(1−

√
d/m−δ)8

210md2

+ e−mδ
2/2 + e−ms

2/2 . (72)

Letting γ = ε and s = δ, and then scaling ε← εm/2 lead to

P
(f(x̂)

f(x∗)
>

m− 1

m− d− 1
+ ε
)

≤ e−
ε2m2(1−

√
d/m−δ)4

64d + 4e−
ε4m4(1−

√
d/m−δ)8

214md2 + 2e−mδ
2/2.
(73)

Let us also set δ = ε:

P
(f(x̂)

f(x∗)
>

m− 1

m− d− 1
+ ε
)

≤ e−
ε2m2(1−

√
d/m−ε)4

64d + 4e−
ε4m4(1−

√
d/m−ε)8

214md2 + 2e−mε
2/2 .

(74)

Under our assumption that m & d, the above probability is
bounded by

P
(f(x̂)

f(x∗)
>

m− 1

m− d− 1
+ ε
)
≤ C1e

−C2ε
4m . (75)

We now move on to find a lower bound. We note that
Lemma 2.5 can be used as follows to find a lower bound

P
(
zT (−G)z − E[zT (−G)z] > 2‖(−G)‖F

√
ε+ 2‖(−G)‖2ε

)
= P

(
zTGz < E[zTGz]− 2‖G‖F

√
ε− 2‖G‖2ε

)
≤ e−ε .

(76)

Therefore, we have the following lower bound for the error:

P
(
f(x̂)− f(x∗) < ESb⊥ [f(x̂)− f(x∗)]− 2‖MTM‖F

√
ε

− 2‖MTM‖2ε
∣∣∣SU) ≤ e−ε. (77)

Using the upper bound for ‖MTM‖F and the exact expression
for ‖MTM‖2, and taking the expectation with respect to SU ,
we obtain the following

P
(
f(x̂)− f(x∗) <

f(x∗)

m
tr((UTSTSU)−1)

− 2
f(x∗)

mσ2
min(SU)

(
√
εd+ ε)

)
≤ e−ε. (78)

Applying the same steps as before, we arrive at the following
bound:

P
(f(x̂)

f(x∗)
<

m− 1

m− d− 1
− ε
)
≤ C1e

−C2ε
4m. (79)

Proof of Theorem 2.8: Consider the averaged estimator
x̄ = 1

q

∑q
k=1 x̂k:

f(x̄)− f(x∗) = ‖A(x̄− x∗)‖22 =

∥∥∥∥∥1

q

q∑
k=1

A(SkA)†Skb
⊥

∥∥∥∥∥
2

2

=

∥∥∥∥∥1

q

q∑
k=1

Mkzk

∥∥∥∥∥
2

2

(80)

where we defined

Mk :=
‖b⊥‖2√
m

A(SkA)†, zk :=

√
m

‖b⊥‖2
Skb
⊥. (81)

We note that the entries of the vector z are distributed as i.i.d.
standard normal. We can manipulate the error expression as
follows

q∑
k=1

Mkzk =
[
M1 . . . Mq

] z1

...
zq

 = Mz (82)

and then

f(x̄)− f(x∗) =
1

q2
‖Mz‖22 = zT

(1

q2
MTM

)
z. (83)

We will now find an equivalent expression for ‖ 1
q2M

TM‖2F =
1
q4 ‖M

TM‖2F :

‖MTM‖2F =

= tr(MTMMTM) = tr(MMTMMT)

= tr

(
q∑

k=1

MkM
T
k

q∑
l=1

MlM
T
l

)

=
f2(x∗)

m2

q∑
k=1

q∑
l=1

tr
(

(SkU)†
T

(SkU)†(SlU)†
T

(SlU)†
)

=
f2(x∗)

m2

(q∑
k=1

tr((UTSTk SkU)−2)

+
∑
k 6=l

tr
(

(SkU)†
T

(SkU)†(SlU)†
T

(SlU)†
))

≤ f2(x∗)

m2

(q∑
k=1

d

σ4
min(SkU)

+
∑
k 6=l

√
tr
(

(SkU)†
T

(SkU)†
)√

tr
(

(SlU)†
T

(SlU)†
))

=
f2(x∗)

m2

(q∑
k=1

d

σ4
min(SkU)

+
∑
k 6=l

√
tr
(
(UTSTk SkU)−1

)√
tr
(
(UTSTl SlU)−1

))
≤ f2(x∗)

m2

(q∑
k=1

d

σ4
min(SkU)

+
∑
k 6=l

d

σmin(SkU)σmin(SlU)

)
(84)

where we have used the Cauchy-Schwarz inequality to bound
the trace of the matrix product.

DISTRIBUTED SKETCHING FOR RANDOMIZED OPTIMIZATION 20

Next, we look at ‖ 1
q2M

TM‖2 = 1
q2 ‖M

TM‖2:

‖MTM‖2 = ‖M‖22 = ‖MMT ‖2 =

∥∥∥∥∥
q∑

k=1

MkM
T
k

∥∥∥∥∥
2

=
‖b⊥‖22
m

∥∥∥∥∥
q∑

k=1

(SkU)†
T

(SkU)†

∥∥∥∥∥
2

≤ ‖b
⊥‖22
m

q∑
k=1

‖(SkU)†
T

(SkU)†‖2

=
‖b⊥‖22
m

q∑
k=1

1

σ2
min(SkU)

. (85)

By Lemma 2.5, we have

P
(
f(x̄)− f(x∗)− ESkb⊥ [f(x̄)− f(x∗)]

>
2

q2
‖MTM‖F

√
ε+

2

q2
‖MTM‖2ε

∣∣∣SUk) ≤ e−ε.
(86)

We can take expectation of both sides with respect to SUk,
k = 1, . . . , q to remove the conditioning. The expectation term
inside the probability is equal to

ESkb⊥ [f(x̄)− f(x∗)] = tr(
1

q2
MTM) =

1

q2
tr(MMT)

=
f(x∗)

mq2

q∑
k=1

tr((UTSTk SkU)−1).

(87)

Hence, we have

P
(
f(x̄)− f(x∗)− f(x∗)

mq2

q∑
k=1

tr((UTSTk SkU)−1)

>
2

q2
‖MTM‖F

√
ε+

2

q2
‖MTM‖2ε

)
≤ e−ε .

(88)

We now use the concentration bound of the trace term in
Lemma 2.7 to obtain

P
(
f(x̄)− f(x∗)− f(x∗)

mq2

q∑
k=1

E[tr((UTSTk SkU)−1)]

>
2

q2
‖MTM‖F

√
ε+

2

q2
‖MTM‖2ε+

f(x∗)

mq2
qγ
)

≤ e−ε + 1−
(
1− 4e−

γ4(1−
√
d/m−δ)8

210md2 − e−mδ
2/2
)q

(89)

where we have used the independence of Sk’s. Using the upper
bounds for ‖MTM‖F and ‖MTM‖2, we make the following
observation. If the minimum singular values of all of SkU ,
k = 1, . . . , q satisfy σmin(SkU) > 1 −

√
d/m − s, which

occurs with probability at least (1− e−ms2/2)q from Lemma
B.1, then the following holds

‖MTM‖F
√
ε+ ‖MTM‖2ε

≤ f(x∗)

m

(√
qd

(1−
√
d/m− s)4

+
(q2 − q)d

(1−
√
d/m− s)2

√
ε

+
qε

(1−
√
d/m− s)2

)
≤ f(x∗)

m

q(
√
εd+ ε)

(1−
√
d/m− s)2

≤ f(x∗)

m

2q
√
εd

(1−
√
d/m− s)2

(90)

where we used 1−
√
d/m−s < 1 and ε ≤

√
εd for the last two

inequalities. Combining this observation with the probability
bound, we arrive at

P
(
f(x̄)− f(x∗)− f(x∗)

mq2

q∑
k=1

E[tr((UTSTk SkU)−1)]

>
2

q2

f(x∗)

m

2q
√
εd

(1−
√
d/m− s)2

+
f(x∗)

mq2
qγ
)

≤ e−ε + 1−
(
1− 4e−

γ4(1−
√
d/m−δ)8

210md2 − e−mδ
2/2
)q

+ 1− (1− e−ms
2/2)q. (91)

Simplifying the expressions and making the change ε← ε2/d
lead to

P
(
f(x̄)− f(x∗)− f(x∗)

q

d

m− d− 1

>
4f(x∗)

mq

ε

(1−
√
d/m− s)2

+
f(x∗)

mq
γ
)

≤ e−ε
2/d + 2−

(
1− 4e−

γ4(1−
√
d/m−δ)8

210md2 − e−mδ
2/2
)q

− (1− e−ms
2/2)q. (92)

Next, we let ε← ε
(1−
√
d/m−s)2

4 and obtain

P
(
f(x̄)− f(x∗)− f(x∗)

q

d

m− d− 1
>
f(x∗)

mq
(ε+ γ)

)
≤ e−

ε2(1−
√
d/m−s)4

16d + 2

− (1− e−ms
2/2)q −

(
1− 4e−

γ4(1−
√
d/m−δ)8

210md2 − e−mδ
2/2
)q
.

(93)

We now set γ = ε and scale ε← εmq2 :

P
(f(x̄)

f(x∗)
> 1 +

1

q

d

m− d− 1
+ ε
)
≤ e−

ε2m2q2(1−
√
d/m−s)4

64d

+ 2− (1− e−ms
2/2)q

−
(
1− 4e−

ε4m4q4(1−
√
d/m−δ)8

214md2 − e−mδ
2/2
)q
. (94)

Let us use the assumption m & d to further simplify:

P
(f(x̄)

f(x∗)
> 1 +

1

q

d

m− d− 1
+ ε
)

≤ C1e
−C2(qε)2m + 2− (1− e−ms

2/2)q

−
(
1− 4e−

ε4m4q4(1−
√
d/m−δ)8

214md2 − e−mδ
2/2
)q
. (95)

DISTRIBUTED SKETCHING FOR RANDOMIZED OPTIMIZATION 21

We can use Bernoulli’s inequality (1 − e−ms
2/2)q ≥ 1 −

qe−ms
2/2 and arrive at:

P
(f(x̄)

f(x∗)
> 1 +

1

q

d

m− d− 1
+ ε
)

≤ C1e
−C2(qε)2m + C3qe

−C4(qε)4m(1−
√
d/m−s)8 + 2qe−ms

2/2

(96)

where we also set δ = s. Picking s = qε yields:

P
(f(x̄)

f(x∗)
> 1 +

1

q

d

m− d− 1
+ ε
)
≤ C1e

−C2(qε)2m

+ C3qe
−C4(qε)4m(1−

√
d/m−qε)8 + 2qe−m(qε)2/2 . (97)

Finally, we obtain the following simpler expression for the
bound:

P
(f(x̄)

f(x∗)
> 1 +

1

q

d

m− d− 1
+ ε
)
≤ qC1e

−C2(qε)4m (98)

where we redefine the constants C1, C2.
Lower bound can be obtained by applying the same steps:

P
(f(x̄)

f(x∗)
< 1 +

1

q

d

m− d− 1
− ε
)
≤ qC1e

−C2(qε)4m. (99)

Proof of Theorem 2.11: i) For unbiased estimators: We
begin by invoking Lemma A.1 which gives us

E[‖A(x̄− x∗)‖22] =
1

q
E[‖A(x̂1 − x∗)‖22] (100)

since we assume that x̂k’s are unbiased, i.e., E[x̂k] = x∗ for
k = 1, . . . , q.

This shows that the error of the averaged estimator is equal
to the error of the single sketch estimator scaled by 1

q . Hence,
we can leverage the lower bound result for the single sketch
estimator. We now give the details of how to find the lower
bound for the single sketch estimator which was first shown
in [31].

The Fisher information matrix for estimating x∗ from Sb
can be constructed as follows:

I(Sb;x∗) = ESb[∇x∗ log g(Sb;x∗)∇x∗ log g(Sb;x∗)T]
(101)

where g(Sb;x∗) is the probability density function of Sb
conditioned on SA, i.e., g(Sb;x∗) is the multivariate Gaus-
sian distribution with N (SAx∗, 1

m‖b
⊥‖22Im). We recall the

definition that b⊥ := b−Ax∗.
The gradient of the logarithm of the probability density

function with respect to x∗ is

∇x∗ log g(Sb;x∗) =
m

‖b⊥‖22
(SA)T (Sb− SAx∗) . (102)

Plugging this in (101) yields

I(Sb;x∗) =

=
m2

‖b⊥‖42
ESb

[
(SA)T (Sb− SAx∗)(Sb− SAx∗)TSA

]
=

m2

‖b⊥‖42
(SA)T

(‖b⊥‖22
m

Im
)
SA

=
m

‖b⊥‖22
ATSTSA . (103)

We note that the expectation of the error conditioned on SA
is equivalent to

E[‖A(x̂− x∗)‖22|SA] = E[tr(A(x̂− x∗)(x̂− x∗)TAT)|SA]

= tr
(
AE[(x̂− x∗)(x̂− x∗)T |SA]AT

)
≥ ‖b

⊥‖22
m

tr(A(ATSTSA)−1AT) ,

(104)

where the last line follows from the Cramér lower bound [42]
given by

E[(x̂− x∗)(x̂− x∗)T |SA] � I−1(Sb;x∗) . (105)

Taking the expectation of both sides with respect to SA yields

E[‖A(x̂− x∗)‖22] ≥ f(x∗)
d

m− d− 1
. (106)

Hence, we arrive at

E[‖A(x̄− x∗)‖22] ≥ f(x∗)

q

d

m− d− 1
. (107)

ii) For any estimator: We again invoke Lemma A.1, which
gives us

E[‖A(x̄− x∗)‖22] =

=
1

q
E[‖A(x̂1 − x∗)‖22] +

q − 1

q
‖E[Ax̂1]−Ax∗‖22

≥ f(x∗)

q

d

m
+
q − 1

q
‖E[Ax̂1]−Ax∗‖22

≥ f(x∗)

q

d

m
(108)

where the first inequality follows from Lemma 2.10.

B. Proofs of Theorems and Lemmas in Section III

Proof of Theorem 3.2: The update rule for distributed
IHS is given as

xt+1 = xt − µ
1

q

q∑
k=1

(ATSTt,kSt,kA)−1AT (Axt − b). (109)

Let us decompose b as b = Ax∗+b⊥ and note that AT b⊥ = 0
which gives us:

xt+1 = xt − µ
1

q

q∑
k=1

(ATSTt,kSt,kA)−1ATAet, (110)

where et := wt − w∗. Subtracting x∗ from both sides, we
obtain an equation in terms of the error vector et only:

et+1 = et − µ
1

q

q∑
k=1

(ATSTt,kSt,kA)−1ATAet

=

(
I − µ1

q

q∑
k=1

(ATSTt,kSt,kA)−1ATA

)
et.

Let us multiply both sides by A from the left and define
Qt,k := A(ATSTt,kSt,kA)−1AT and we will have the follow-
ing equation:

eAt+1 =

(
I − µ1

q

q∑
k=1

Qt,k

)
eAt .

DISTRIBUTED SKETCHING FOR RANDOMIZED OPTIMIZATION 22

We now analyze the expectation of `2 norm of eAt+1:

E[‖eAt+1‖22] = E

∥∥∥∥∥1

q

q∑
k=1

(I − µQt,k)eAt

∥∥∥∥∥
2

2

=

1

q2
E

[
q∑

k=1

q∑
l=1

〈(I − µQt,k)eAt , (I − µQt,l)eAt 〉

]

=
1

q2

q∑
k=1

q∑
l=1

E
[
〈(I − µQt,k)eAt , (I − µQt,l)eAt 〉

]
. (111)

The contribution for k 6= l in the double summation of (111)
is equal to zero because for k 6= l, we have

E
[
〈(I − µQt,k)eAt , (I − µQt,l)eAt 〉

]
=

= 〈E[(I − µQt,k)eAt],E[(I − µQt,l)eAt]〉
= 〈E[(I − µQt,k)eAt],E[(I − µQt,k)eAt]〉

=
∥∥E[(I − µQt,k)eAt]

∥∥2

2
.

The term in the last line above is zero for µ = 1
θ1

:

E[(I − µQt,k)eAt] = E[(I − µA(ATSTt,kSt,kA)−1AT)eAt]

= (I − µθ1A(ATA)−1AT)eAt

= (I − µθ1UU
T)eAt

= (I − UUT)eAt = 0

where we used A = UΣV T . For the rest of the proof,
we assume that we set µ = 1/θ1. Now that we know the
contribution from terms with k 6= l is zero, the expansion in
(111) can be rewritten as

E[‖eAt+1‖22] =
1

q2

q∑
k=1

E
[
〈(I − µQt,k)eAt , (I − µQt,k)eAt 〉

]
=

1

q2

q∑
k=1

E[‖(I − µQt,k)eAt ‖22]

=
1

q
E[‖(I − µQt,1)eAt ‖22]

=
1

q

(
‖eAt ‖22 + µ2 E[‖Qt,1eAt ‖22]− 2µ(eAt)T E[Qt,1]eAt

)
=

1

q

(
µ2 E[‖Qt,1eAt ‖22]− ‖eAt ‖22

)
=

1

q

(
µ2(eAt)T E[QTt,1Qt,1]eAt − ‖eAt ‖22

)
.

The term E[QTt,1Qt,1] can be simplified using SVD de-
composition A = UΣV T . This gives us Qt,k =
U(UTSTt,kSt,kU)−1UT and furthermore we have:

E[QTt,1Qt,1] =

= E[U(UTSTt,1St,1U)−1UTU(UTSTt,1St,1U)−1UT]

= E[U(UTSTt,1St,1U)−1(UTSTt,1St,1U)−1UT]

= U E[(UTSTt,1St,1U)−2]UT

= θ2UU
T .

Plugging this in, we obtain:

E[‖eAt+1‖22] =
1

q

(
θ2µ

2(eAt)TUUT eAt − ‖eAt ‖22
)

=
1

q

(
θ2µ

2‖eAt ‖22 − ‖eAt ‖22
)

=
θ2µ

2 − 1

q
‖eAt ‖22

=
1

q

(
θ2

θ2
1

− 1

)
‖eAt ‖22 .

Proof of Corollary 3.3: Taking the expectation with
respect to the sketching matrices St,k, k = 1, . . . , q of both
sides of the equation given in Theorem 3.2, we obtain

E[‖eAt+1‖22] =
1

q

(
θ2

θ2
1

− 1

)
E[‖eAt ‖22] .

This gives us the relationship between the initial error (when
we initialize x0 to be the zero vector) and the expected error
in iteration t:

E[‖eAt ‖22] =
1

qt

(
θ2

θ2
1

− 1

)t
‖Ax∗‖22.

It follows that the expected error reaches ε-accuracy with
respect to the initial error at iteration T where:

1

qT

(
θ2

θ2
1

− 1

)T
= ε

qT
(
θ2

θ2
1

− 1

)−T
=

1

ε

T

(
log(q)− log

(
θ2

θ2
1

− 1

))
= log(1/ε)

T =
log(1/ε)

log(q)− log
(
θ2
θ21
− 1
) .

Each iteration requires communicating a d-dimensional vec-
tor for every worker, and we have q workers and the algorithm
runs for T iterations, hence the communication load is Tqd.

The computational load per worker node at each iteration
is as follows:
• Sketching A: mnd multiplications
• Computing H̃t,k: md2 multiplications
• Computing gt: O(nd) operations
• Solving H̃−1

t,k gt: O(d3) operations.

Lemma B.2 ([4]): For the Gaussian sketch matrix S ∈
Rm×n with i.i.d. entries distributed as N (0, 1/

√
m) where

m ≥ d, and for U ∈ Rn×d with UTU = Id, the following are
true:

E[(UTSTSU)−1] = θ1Id,

E[(UTSTSU)−2] = θ2Id, (112)

where θ1 and θ2 are defined as

θ1 :=
m

m− d− 1
,

θ2 :=
m2(m− 1)

(m− d)(m− d− 1)(m− d− 3)
. (113)

DISTRIBUTED SKETCHING FOR RANDOMIZED OPTIMIZATION 23

Proof of Theorem 3.5: The optimal update direction is
given by

∆∗t = ((H
1/2
t)TH

1/2
t)−1gt = H−1

t gt

and the estimate update direction due to a single sketch is
given by

∆̂t,k = αs((H
1/2
t)TSTt,kSt,kH

1/2
t)−1gt.

where αs ∈ R is the step size scaling factor to be determined.
Letting St,k be a Gaussian sketch, the bias can be written as

E[H
1/2
t (∆̂t,k −∆∗t)] =

= E[αsH
1/2
t ((H

1/2
t)TSTt,kSt,kH

1/2
t)−1gt −H1/2

t H−1
t gt]

= αsH
1/2
t E[((H

1/2
t)TSTt,kSt,kH

1/2
t)−1]gt −H1/2

t H−1
t gt

= αsθ1H
1/2
t ((H

1/2
t)TH

1/2
t)−1gt −H1/2

t H−1
t gt

= (αsθ1 − 1)H
1/2
t H−1

t gt .

In the third line, we plug in the mean of
((H

1/2
t)TSTt,kSt,kH

1/2
t)−1 which is distributed as inverse

Wishart distribution (see Lemma B.2). This calculation shows
that the single sketch estimator gives an unbiased update
direction for αs = 1/θ1.

The variance analysis is as follows:

E[‖H1/2
t (∆̂t,k −∆∗t)‖22] =

= E[∆̂T
t,kHt∆̂t,k + ∆∗t

THt∆
∗
t − 2∆∗t

THt∆̂t,k]

= α2
sg
T
t E[((H

1/2
t)TSTt,kSt,kH

1/2
t)−1Ht

((H
1/2
t)TSTt,kSt,kH

1/2
t)−1]gt + (1− 2αsθ1) gTt H

−1
t gt.

Plugging H
1/2
t = UΣV T into the first term and assuming

H
1/2
t has full column rank, the expectation term becomes

E[((H
1/2
t)TSTt,kSt,kH

1/2
t)−1Ht((H

1/2
t)TSTt,kSt,kH

1/2
t)−1] =

= V Σ−1 E[(UTSTt,kSt,kU)−2]Σ−1V T

= V Σ−1(θ2Id)Σ
−1V T

= θ2V Σ−2V T ,

where the third line follows due to Lemma B.2. Because
H−1
t = V Σ−2V T , the variance becomes:

E[‖H1/2
t (∆̂t,k −∆∗t)‖22] =

=
(
α2
sθ2 + 1− 2αsθ1

)
gTt V Σ−2V T gt

=
(
α2
sθ2 + 1− 2αsθ1

)
‖Σ−1V T gt‖22 .

It follows that the variance is minimized when αs is chosen
as αs = θ1/θ2.

C. Proofs of Theorems and Lemmas in Section IV

Proof of Lemma 4.2: In the following, we assume that
we are in the regime where n approaches infinity.

The expectation term E[(UTSTSU+λ2I)−1] is equal to the
identity matrix times a scalar (i.e. cId) because it is signed per-
mutation invariant, which we show as follows. Let P ∈ Rd×d
be a permutation matrix and D ∈ Rd×d be an invertible
diagonal sign matrix (−1 and +1’s on the diagonals). A matrix

M is signed permutation invariant if (DP)M(DP)T = M .
We note that the signed permutation matrix is orthogonal:
(DP)T (DP) = PTDTDP = PTP = Id, which we later
use in the sequel.

(DP)ES [(UTSTSU + λ2I)−1](DP)T =

= ES [(DP)(UTSTSU + λ2I)−1(DP)T]

= ES [((DP)TUTSTSU(DP) + λ2I)−1]

= ESUPD[ES [((DP)TUTSTSU(DP) + λ2I)−1|SUPD]]

= ESUPD[((DP)TUTSTSU(DP) + λ2I)−1]

= ESU ′ [(U ′
T
STSU ′ + λ2I)−1]

where we made the variable change U ′ = UDP and note that
U ′ has orthonormal columns because DP is an orthogonal
transformation. SUPD and SU have the same distribution
because PD is an orthogonal transformation and S is a
Gaussian matrix. This shows that E[(UTSTSU + λ2I)−1] is
signed permutation invariant.

Now that we established that E[(UTSTSU + λ2I)−1]
is equal to the identity matrix times a scalar, we move
on to find the value of the scalar. We use the identity
EDP [(DP)Q(DP)T] = trQ

d Id for Q ∈ Rd×d where the
diagonal entries of D are sampled from the Rademacher
distribution and P is sampled uniformly from the set of all
possible permutation matrices. We already established that
E[(UTSTSU + λ2I)−1] is equal to (DP)ES [(UTSTSU +
λ2I)−1](DP)T for any signed permutation matrix of the form
DP . It follows that

E[(UTSTSU + λ2I)−1] =

= (DP)ES [(UTSTSU + λ2I)−1](DP)T

=
1

|R|
∑
DP∈R

(DP)ES [(UTSTSU + λ2I)−1](DP)T

= EDP [(DP)ES [(UTSTSU + λ2I)−1](DP)T]

=
1

d
tr(ES [(UTSTSU + λ2I)−1])Id

where we define R to be the set of all possible signed
permutation matrices DP in going from line 1 to line 2.

By Lemma 4.1, the trace term is equal to d× θ3(d/m, λ2),
which concludes the proof.

Proof of Theorem 4.3: Closed form expressions for the
optimal solution and the output of the k’th worker are as
follows:

x∗ = (ATA+ λ1Id)
−1AT b,

x̂k = (ATSTk SkA+ λ2Id)
−1ATSTk Skb.

Equivalently, x∗ can be written as:

x∗ = arg min

∥∥∥∥[A√
λ1Id

]
x−

[
b
0d

]∥∥∥∥2

2

.

This allows us to decompose
[
b
0d

]
as[

b
0d

]
=

[
A√
λ1Id

]
x∗ + b⊥

DISTRIBUTED SKETCHING FOR RANDOMIZED OPTIMIZATION 24

where b⊥ =

[
b⊥1
b⊥2

]
with b⊥1 ∈ Rn and b⊥2 ∈ Rd.

From the above equation we obtain b⊥2 = −
√
λ1x

∗ and[
AT

√
λ1Id

]
b⊥ = AT b⊥1 +

√
λ1b
⊥
2 = 0.

The bias of x̂k is given by (omitting the subscript k in Sk
for simplicity)

E[A(x̂k − x∗)] =

= E[A(ATSTSA+ λ2Id)
−1ATSTSb−Ax∗]

= E[U(UTSTSU + λ2Σ−2)−1UTSTS(Ax∗ + b⊥1)]−Ax∗

= E[−λ2U(UTSTSU + λ2Σ−2)−1Σ−1V Tx∗]

+ E[U(UTSTSU + λ2Σ−2)−1UTSTSb⊥1] .

By the assumption Σ = σId, the bias becomes

E[A(x̂k − x∗)] =

= E[−λ2σ
−1U(UTSTSU + λ2σ

−2Id)
−1V Tx∗]

+ E[U(UTSTSU + λ2σ
−2Id)

−1UTSTSb⊥1] . (114)

The first expectation term of (114) can be evaluated using
Lemma 4.2 (as n goes to infinity):

E[−λ2σ
−1U(UTSTSU + λ2Id)

−1V Tx∗] =

= −λ2σ
−1θ3(d/m, λ2σ

−2)UV Tx∗. (115)

To find the second expectation term in (114), let us
first consider the full SVD of A given by A =[
U U⊥

] [Σ
0(n−d)×d

]
V T where U ∈ Rn×d and U⊥ ∈

Rn×(n−d). The matrix
[
U U⊥

]
is an orthogonal matrix,

which implies UUT + U⊥(U⊥)T = Id. If we insert UUT +
U⊥(U⊥)T = Id between S and b⊥1 , the second term of (114)
becomes

E[U(UTSTSU + λ2σ
−2Id)

−1UTSTSb⊥1] =

= E[U(UTSTSU + λ2σ
−2Id)

−1UTSTSUUT b⊥1]

+ E[U(UTSTSU + λ2σ
−2Id)

−1UTSTSU⊥(U⊥)T b⊥1]

= E[U(UTSTSU + λ2σ
−2Id)

−1UTSTSUUT b⊥1]

= U(Id − λ2σ
−2 E[(UTSTSU + λ2σ

−2Id)
−1])UT b⊥1

= (1− λ2σ
−2θ3(d/m, λ2σ

−2))UUT b⊥1 .

In these derivations, we have used the identity
ES [U(UTSTSU + λ2σ

−2Id)
−1UTSTSU⊥(U⊥)T b⊥1] =

ESU [ES [U(UTSTSU+λ2σ
−2Id)

−1UTSTSU⊥(U⊥)T b⊥1 |SU]],
which is equal to 0. This follows from ES [SU⊥|SU] = 0 as
U and U⊥ are orthogonal. The last line follows from Lemma
4.2, as n goes to infinity.

We note that UT b⊥1 = λ1Σ−1V Tx∗ and for Σ = σId, this
becomes UT b⊥1 = λ1σ

−1V Tx∗. Bringing the pieces together,
we have the bias equal to (as n goes to infinity):

E[A(x̂k − x∗)] = −λ2σ
−1θ3(d/m, λ2σ

−2)UV Tx∗

+ λ1σ
−1(1− λ2σ

−2θ3(d/m, λ2σ
−2))UV Tx∗

= σ−1(λ1 − λ2θ3(d/m, λ2σ
−2)(1 + λ1σ

−2))UV Tx∗.

If there is a value of λ2 > 0 that satisfies λ1 −
λ2θ3(d/m, λ2σ

−2)(1 + λ1σ
−2) = 0, then that value of λ2

makes x̂k an unbiased estimator. Equivalently,

− λ2σ
−2 +

d

m
− 1 +

√
(−λ2σ−2 +

d

m
− 1)2 + 4λ2σ−2

d

m
=

= 2
d

mσ2

λ1

1 + λ1σ−2
, (116)

where we note that the LHS is a monotonically increasing
function of λ2 in the regime λ2 ≥ 0 and it attains its minimum
in this regime at λ2 = 0. Analyzing this equation using these
observations, for the cases of m > d and m ≤ d separately,
we find that for the case of m ≤ d, we need the following to
be satisfied for zero bias:

2
d

mσ2

λ1

1 + λ1/σ2
≥ 2

(
d

m
− 1

)
, or more simply,

λ1 ≥ σ2

(
d

m
− 1

)
,

whereas there is no additional condition on λ1 for the case of
m > d.

The value of λ2 that will lead to zero bias can be computed
by solving the equation (116) where the expression for the
inverse of the left-hand side is given by LHS−1(y) =
yσ−2d/m−d/m+1

y−1−σ−2 . We evaluate the inverse at y = λ1/(1 +

λ1/σ
2) and obtain the following expression for λ∗2:

λ∗2 = λ1 −
d

m

λ1

1 + λ1/σ2
.

Proof of Theorem 4.5: In the following, we omit the
subscripts in St,k for simplicity. Using the SVD decomposition
of H1/2

t = UΣV T , the bias can be written as

E[H
1/2
t (∆̂t,k −∆∗t)] =

= U E[(UTSTSU + λ2Σ−2)−1]Σ−1V T gt

− U(Id + λ1Σ−2)−1Σ−1V T gt .

By the assumption that Σ = σId, the bias term can be
simplified as

E[H
1/2
t (∆̂t,k −∆∗t)] =

= σ−1U E[(UTSTSU + λ2σ
−2Id)

−1]V T gt

− σ−1(1 + λ1σ
−2)−1UV T gt.

By Lemma 4.2, as n goes to infinity, we have

E[H
1/2
t (∆̂t,k −∆∗t)] =

= σ−1

(
θ3(d/m, λ2σ

−2)− 1

1 + λ1σ−2

)
UV T gt

=
−λ2

σ2 + d
m − 1 +

√
(−λ2

σ2 + d
m − 1)2 + 4λ2

σ2
d
m

2λ2σ−1d/m
UV T gt

− σ−1

1 + λ1σ−2
UV T gt.

DISTRIBUTED SKETCHING FOR RANDOMIZED OPTIMIZATION 25

The bias becomes zero for the value of λ2 that satisfies the
following equation:√(

−σ−2 +
1

λ2

(
d

m
− 1

))2

+ 4σ−2
d

mλ2
− σ−2

+
1

λ2

(
d

m
− 1

)
= 2σ−2 d

m

1

1 + λ1σ−2
. (117)

In the regime where λ2 ≥ 0, the LHS of (117) is always
non-negative and is monotonically decreasing in λ2. The LHS
approaches zero as λ2 →∞. We now consider the following
cases:
• Case 1: m ≤ d. Because d/m − 1 ≥ 0, as λ2 → 0, the

LHS goes to infinity. Since the LHS can take any values
between 0 and ∞, there is an appropriate λ∗2 value that
makes the bias zero for any λ1.

• Case 2: m > d. In this case, d/m−1 < 0. The maximum
of LHS in this case is reached as λ2 → 0 and it is equal
to 2σ−2 d

m−d . As long as 2σ−2 d
m

1
1+λ1σ−2 ≤ 2σ−2 d

m−d
is true, then we can drive the bias down to zero. More
simply, this corresponds to λ1σ

−2 ≥ −d/m, which is
always true. Therefore in the case of m > d as well,
there is a λ∗2 value for any value of λ1 that will drive the
bias down to zero.

To sum up, for any given value for the regularization pa-
rameter λ1, it is possible to find a λ∗2 value to make the
sketched update direction unbiased. The optimal value for λ2

is given by LHS−1(2σ−2 d
m

1
1+λ1σ−2) where LHS−1(y) =

4σ−2y−1d/m+2(d/m−1)
y+2σ−2 , which simplifies to the following ex-

pression:

λ∗2 =

(
λ1 +

d

m
σ2

)(
1− d/m

1 + λ1σ−2 + d/m

)
.

D. Proofs of Theorems and Lemmas in Section V
The proof of the privacy result mainly follows due to

Theorem B.3 (stated below for completeness) which is a result
from [37].

Proof of Theorem 5.2: For some ε, δ and matrix Ac, if
there exist values for m such that the smallest singular value
of Ac satisfies σmin(Ac) ≥ w, then using Theorem B.3, we
find that the sketch size m has to satisfy the following for
(ε, δ)-differential privacy:

m ≤ 1

8 ln(4/δ)

((
σ2

min

B2
− 1

)
1

1
ε + 1

ln(4/δ)

− 2 ln(4/δ)

)2

=
1

8β

((
σ2

min

B2
− 1

)
εβ

ε+ β
− 2β

)2

, (118)

where we have set δ = 4/eβ in the second line. For the
first line to follow from Theorem B.3, we also need the
condition σ2

min

B2 ≥ 3 + 2βε to be satisfied. Note that the rows of
Ac have bounded `2-norm of B0

√
d+ 1. We now substitute

B = B0

√
d+ 1 and σmin = σ0

√
n to obtain the simplified

condition
n

d+ 1
≥
(

3 + 2
β

ε

)
B2

0

σ2
0

,

where B0 and σ0 are constants. Assuming this condition is
satisfied, then we pick the sketch size m as (118) which can
also be simplified:

m = O

(
β

n2

(d+ 1)2

ε2

(ε+ β)2

)
.

Note that the above arguments are for the privacy of a
single sketch (i.e., SkAc). In the distributed setting where the
adversary can attack all of the sketched data S1Ac, . . . , SqAc,
we can consider all of the sketched data to be a single sketch
with size mq. Based on this argument, we can pick the sketch
size as

m = O

(
β

q

n2

(d+ 1)2

ε2

(ε+ β)2

)
.

Theorem B.3 (Differential privacy for random projections
[37]): Fix ε > 0 and δ ∈ (0, 1/e). Fix B > 0. Fix a positive
integer m and let w be such that

w2 = B2

(
1 +

1 + ε
ln(4/δ)

ε

(
2
√

2m ln(4/δ) + 2 ln(4/δ)
))

.

(119)

Let A be an (n× d)-matrix with d < m and where each row
of A has bounded `2-norm of B. Given that σmin(A) ≥ w, the
algorithm that picks an (m×n)-matrix R whose entries are iid
samples from the normal distribution N (0, 1) and publishes
the projection RA is (ε, δ)-differentially private.

E. Proofs of Theorems and Lemmas in Section A

Proof of Lemma A.1: The expectation of the difference
between the costs f(x̄) and f(x∗) is given by

E[f(x̄)]− f(x∗) = E[‖A(x̄− x∗) +Ax∗ − b‖22]− f(x∗)

= E[‖A(x̄− x∗)‖22 + ‖Ax∗ − b‖22]− f(x∗)

= E[‖A(x̄− x∗)‖22] , (120)

where we have used the orthogonality property of the optimal
least squares solution x∗ given by the normal equations
AT (Ax∗ − b) = 0. Next, we have

E[‖A(x̄− x∗)‖22] =

= E

∥∥∥∥∥1

q

q∑
k=1

(Ax̂k −Ax∗)

∥∥∥∥∥
2

2

=

1

q2
E

[
q∑

k=1

q∑
l=1

〈Ax̂k −Ax∗, Ax̂l −Ax∗〉

]

=
1

q2

q∑
k=1

E
[
‖Ax̂k −Ax∗‖22

]
+

1

q2

∑
k 6=l ,1≤k,l≤q

E [〈Ax̂k −Ax∗, Ax̂l −Ax∗〉]

=
1

q
E
[
‖Ax̂−Ax∗‖22

]
+
q − 1

q
‖E[Ax̂]−Ax∗‖22 .

DISTRIBUTED SKETCHING FOR RANDOMIZED OPTIMIZATION 26

Proof of Lemma A.2: The bias of the single sketch
estimator can be expanded as follows:

‖E[Ax̂]−Ax∗‖2 =

= ‖E[A(ATSTSA)−1ATSTS(Ax∗ + b⊥)]−Ax∗‖2
= ‖U E[(UTSTSU)−1UTSTSb⊥‖2
= ‖E[(UTSTSU)−1UTSTSb⊥‖2
= ‖E[Qz]‖2,

where we define Q := (UTSTSU)−1 and z := UTSTSb⊥.
The term ‖E[Qz]‖22 can be upper bounded as follows when
conditioned on the event E:

‖E[Qz]‖22 = E[Qz]T E[Qz] = ES [Qz]T ES′ [Q′z′]
= ESk ES′k [zTQQ′z′]

=
1

2
ES ES′ [(z + z′)TQQ′(z + z′)− zTQQ′z − z′TQQ′z′]

≤ 1

2
ES ES′ [‖z + z′‖22(1 + ε)2 − (‖z‖22 + ‖z′‖22)(1− ε)2]

= ES ES′ [
(
‖z‖222ε+ ‖z′‖222ε+ zT z′(1 + ε)2

)
]

= 4εE[‖z‖22] + (1 + ε)2‖E[z]‖22 ,

where the inequality follows from the inequality (1− ε)Id �
Q � (1 + ε)Id and some simple bounds for the minimum and
maximum eigenvalues of the product of two positive definite
matrices. Furthermore, the expectation of z is equal to zero
because E[z] = E[UTSTSb⊥] = UT E[STS]b⊥ = UT b⊥ =
0. Hence we obtain the claimed bound ‖E[Ax̂|E]−Ax∗‖2 ≤√

4εE[‖z‖22|E].

Proof of Lemma A.3: For the randomized Hadamard
sketch (ROS), the term E[‖z‖22] can be expanded as follows.
We will assume that all the expectations are conditioned on the
event E, which we defined earlier as (1−ε)Id � Q � (1+ε)Id.

E[‖z‖22] = E

b⊥T 1

m

m∑
i=1

sis
T
i UU

T 1

m

m∑
j=1

sjs
T
j b
⊥

= E

 1

m2

m∑
i=1

m∑
j=1

b⊥
T
sis

T
i UU

T sjs
T
j b
⊥

=

1

m2

∑
1≤i=j≤m

b⊥
T E

[
sis

T
i UU

T sjs
T
j

]
b⊥

+
1

m2

∑
i6=j, 1≤i,j≤m

b⊥
T E[sis

T
i]UUT E[sjs

T
j]b⊥

=
m

m2
b⊥

T E
[
s1s

T
1 UU

T s1s
T
1

]
b⊥

+
1

m2

∑
i6=j, 1≤i,j≤m

b⊥
T
InUU

T Inb
⊥

=
1

m
b⊥

T E
[
s1s

T
1 UU

T s1s
T
1

]
b⊥,

where we have used the independence of si and sj , i 6= j.
This is true because of the assumption that the matrix P

corresponds to sampling with replacement.

b⊥
T E

[
s1s

T
1 UU

T s1s
T
1

]
b⊥ =

= E[(sT1 UU
T s1)(sT1 b

⊥b⊥
T
s1)]

= E[(sT1 UU
T s1)(b⊥

T
s1)2]

=
1

n

n∑
i=1

E[(hTi DUU
TDhi)(b

⊥TDhi)
2],

where the row vector hTi corresponds to the i’th row of the
Hadamard matrix H . We also note that the expectation in the
last line is with respect to the randomness of D.

Let us define r to be the column vector containing the
diagonal entries of the diagonal matrix D, that is, r :=
[D11, D22, . . . , Dnn]T . Then, the vector Dhi is equivalent to
diag(hi)r where diag(hi) is the diagonal matrix with the
entries of hi on its diagonal.

1

n

n∑
i=1

E[(hTi DUU
TDhi)(b

⊥TDhi)
2] =

=
1

n

n∑
i=1

E[(rT diag(hi)UU
T diag(hi)r)(b

⊥T diag(hi)r)
2]

=
1

n

n∑
i=1

E[b⊥
T

diag(hi)r(r
TPr)rT diag(hi)b

⊥]

=
1

n

n∑
i=1

b⊥
T

diag(hi)E[r(rTPr)rT] diag(hi)b
⊥,

where we have defined P := diag(hi)UU
T diag(hi). It

follows that E[r(rTPr)rT] = 2P−2 diag(P)+tr(P)In. Here,
diag(P) is used to refer to the diagonal matrix with the diag-
onal entries of P as its diagonal. The trace of P can be easily
computed using the cyclic property of matrix trace as tr(P) =
tr(diag(hi)UU

T diag(hi)) = tr(UT diag(hi) diag(hi)U) =
tr(UTU) = tr(Id) = d. Next, we note that the term diag(P)
can be simplified as diag(P)jj = ‖ũj‖22 where ũTj is the j’th
row of U . This leads to

b⊥
T

diag(P)b⊥ =

n∑
j=1

(b⊥j)2‖ũj‖22

≥
n∑
j=1

(b⊥j)2 min
i
‖ũi‖22 = ‖b⊥‖22 min

i
‖ũi‖22 .

Going back to E[‖z‖22], we have

E[‖z‖22] =

=
1

mn
b⊥

T
ndiag(hi) (2P − 2 diag(P) + tr(P)In) diag(hi)b

⊥

=
d

m
‖b⊥‖22 −

2

m
b⊥

T
diag(P)b⊥

≤ d

m
‖b⊥‖22 −

2

m
‖b⊥‖22 min

i
‖ũi‖22

=
1

m
‖b⊥‖22(d− 2 min

i
‖ũi‖22)

=
d

m

(
1− 2 mini ‖ũi‖22

d

)
f(x∗).

DISTRIBUTED SKETCHING FOR RANDOMIZED OPTIMIZATION 27

Proof of Lemma A.4: We will assume that all the
expectations are conditioned on the event E, which we defined
earlier as (1 − ε)Id � Q � (1 + ε)Id. For uniform sampling
with replacement, we have

E[‖z‖22] =
1

m2
E

b⊥T m∑
i=1

sis
T
i UU

T
m∑
j=1

sjs
T
j b
⊥

=

1

m2
E

 m∑
i=1

m∑
j=1

b⊥
T
sis

T
i UU

T sjs
T
j b
⊥

=

1

m2

∑
1≤i=j≤m

b⊥
T E[sis

T
i UU

T sjs
T
j]b⊥

+
1

m2

∑
i6=j, 1≤i,j≤m

b⊥
T E[sis

T
i]UUT E[sjs

T
j]b⊥

=
1

m
b⊥

T E[s1s
T
1 UU

T s1s
T
1]b⊥

+
1

m2

∑
i 6=j, 1≤i,j≤m

b⊥
T
InUU

T Inb
⊥

=
1

m
b⊥

T E[s1s
T
1 UU

T s1s
T
1]b⊥

=
1

m
b⊥

T
n2 1

n

n∑
i=1

eie
T
i UU

T eie
T
i b
⊥

=
n

m

n∑
i=1

b⊥i
2‖ũi‖22

≤ n

m

n∑
i=1

b⊥i
2

max
j
‖ũj‖22 =

µd

m
f(x∗) .

Next, for uniform sampling without replacement, the rows
si and sj are not independent which can be seen by noting
that given si, we know that sj will have its nonzero entry
at a different place than si. Hence, differently from uniform
sampling with replacement, the following term will not be
zero:

1

m2

∑
i 6=j, 1≤i,j≤m

b⊥
T E[sis

T
i UU

T sjs
T
j]b⊥ =

=
m2 −m
m2

b⊥
T E[s1s

T
1 UU

T s2s
T
2]b⊥

=
m− 1

m
b⊥

T
n2 1

n2 − n
∑

i6=j,1≤i,j≤n

eie
T
i UU

T eje
T
j b
⊥

=
m− 1

m

n

n− 1
b⊥

T ∑
i 6=j,1≤i,j≤n

eiũ
T
i ũje

T
j b
⊥

=
m− 1

m

n

n− 1
b⊥

T
(UUT − diag(‖ũi‖22)b⊥

= −m− 1

m

n

n− 1

n∑
i=1

b⊥i
2‖ũi‖22 .

It follows that for uniform sampling without replacement, we

obtain

E[‖z‖22] =

(
n

m
− m− 1

m

n

n− 1

) n∑
i=1

b⊥i
2‖ũi‖22

=
n

m

n−m
n− 1

n∑
i=1

b⊥i
2‖ũi‖22

≤ n

m

n−m
n− 1

f(x∗) max
i
‖ũi‖22

=
µd

m

n−m
n− 1

f(x∗) .

Proof of Lemma A.5: We consider leverage score sam-
pling with replacement. The rows si, sj i 6= j are independent
because sampling is with replacement. We will assume that
all the expectations are conditioned on the event E, which we
defined earlier as (1 − ε)Id � Q � (1 + ε)Id. For leverage
score sampling, the term E[‖z‖22] is upper bounded as follows:

E[‖z‖22] =
1

m2
E

b⊥T m∑
i=1

sis
T
i UU

T
m∑
j=1

sjs
T
j b
⊥

=

1

m2
E

 m∑
i=1

m∑
j=1

b⊥
T
sis

T
i UU

T sjs
T
j b
⊥

=

1

m2

∑
1≤i=j≤m

b⊥
T E[sis

T
i UU

T sjs
T
j]b⊥

+
1

m2

∑
i 6=j, 1≤i,j≤m

b⊥
T E[sis

T
i]UUT E[sjs

T
j]b⊥

=
1

m
b⊥

T
n∑
i=1

`i
d

d

`i
eie

T
i UU

T d

`i
eie

T
i b
⊥

+
m2 −m
m2

b⊥
T
InUU

T Inb
⊥

=
1

m
b⊥

T
n∑
i=1

d

`i
`ieie

T
i b
⊥

=
d

m
‖b⊥‖22 =

d

m
f(x∗) .

Proof of Theorem A.6: We will begin by using the results
from Table 5 of [2] for selecting the sketch size:

m = O
(d+ log(n)

ε2
log(d/δ)

)
for rand. Hadamard sketch

m = O
(µd
ε2

log(d/δ)
)

for uniform sampling

m = O
(d
ε2

log(d/δ)
)

for leverage score sampling (121)

where µ is the row coherence of U as defined before. When
the sketch sizes are selected according to the formulas above,
the subspace embedding property given by

‖UTSTSU − Id‖2 ≤ ε (122)

is satisfied with probability at least 1 − δ. Note that the
subspace embedding property can be rewritten as

(1− ε)Id � UTSTSU � (1 + ε)Id . (123)

DISTRIBUTED SKETCHING FOR RANDOMIZED OPTIMIZATION 28

This implies the following relation for the inverse matrix
(UTSTSU)−1:

1

1 + ε
Id � (UTSTSU)−1 � 1

1− ε
Id . (124)

Observe that 1− ε ≤ 1
1+ε for any ε > 0 and that 1

1−ε ≤ 1+2ε
for 0 ≤ ε ≤ 0.5. Assuming that 0 ≤ ε ≤ 0.5, we have

(1− 2ε)Id � (UTSTSU)−1 � (1 + 2ε)Id . (125)

We can rescale ε← ε/2 so that

(1− ε)Id � (UTSTSU)−1 � (1 + ε)Id (126)

and the effect of this rescaling will be hidden in the O notation
for the sketch size formulas.

We will define the events Ek, k = 1, . . . , q as (1− ε)Id �
(UTSTk SkU)−1 � (1 + ε)Id and it follows that when the
sketch sizes are selected according to (121), we will have

P (Ek) ≥ 1− δ , k = 1, . . . , q . (127)

Now, we find a simpler expression for the error of the single-
sketch estimator:

Ax̂−Ax∗ = A(ATSTSA)−1ATSTST b−Ax∗

= A(ATSTSA)−1ATSTST (b⊥ +Ax∗)−Ax∗

= A(ATSTSA)−1ATSTST b⊥

= U(UTSTSU)−1UTSTSb⊥

= UQz (128)

where we defined Q := (UTSTSU)−1, and z := UTSTSb⊥.
The variance term is equal to

E[‖Ax̂−Ax∗‖22] = E[‖UQz‖22] = E[‖Qz‖22] . (129)

Conditioned on the event E, we can bound the expectation
E[‖Qz‖22|E] as follows:

E[‖Qz‖22|E] = E[zTQTQz|E]

≤ E[(1 + ε)2‖z‖22|E]

= (1 + ε)2 E[‖z‖22|E] (130)

where we have used QTQ � (1+ε)2Id, which follows from all
eigenvalues of Q being less than (1 + ε) when conditioned on
the event E. Next, from Lemma A.1, we obtain the following
bound for the expected error

E[f(x̄)− f(x∗)|E1, . . . , Eq] =

=
1

q
E
[
‖Ax̂−Ax∗‖22|E

]
+
q − 1

q
‖E[Ax̂−Ax∗|E]‖22

≤ 1

q
(1 + ε2)E[‖z‖22|E] +

q − 1

q
4εE[‖z‖22|E] . (131)

Using Markov’s inequality gives us the following probability
bound:

P (f(x̄)− f(x∗) ≥ γ|E1, . . . , Eq)

≤ 1

γ
E[f(x̄)− f(x∗)|E1, . . . , Eq]

≤ 1

γq

(
(1 + ε)2 + 4ε(q − 1)

)
E[‖z‖22|E] . (132)

The unconditioned probability can be computed as

P (f(x̄)− f(x∗) ≥ γ) =

= P (f(x̄)− f(x∗) ≥ γ|E1, . . . , Eq)P (∩qk=1Ek)

+ P (f(x̄)− f(x∗) ≥ γ| ∪qk=1 E
C
k)P (∪qk=1E

C
k)

≤ 1

γq

(
(1 + ε)2 + 4ε(q − 1)

)
E[‖z‖22|E] + qδ (133)

where we have used P (∪qk=1E
C
k) ≤ qδ and P (∩qk=1Ek) ≤ 1.

We can obtain a bound for the relative error as follows:

P
(f(x̄)

f(x∗)
≥ 1 +

γ

f(x∗)

)
≤ 1

γq

(
(1 + ε)2 + 4ε(q − 1)

)
E[‖z‖22|E] + qδ . (134)

Scaling γ ← γf(x∗) leads to

P
(f(x̄)

f(x∗)
≤ 1 + γ

)
≥ 1− qδ − 1

γf(x∗)q

(
(1 + ε)2 + 4ε(q − 1)

)
E[‖z‖22|E] .

(135)

We now plug the bounds for E[‖z‖22|E] from Lemma A.3,
A.4, A.5 in the above bound and obtain the following lower
bounds for P

(
f(x̄)
f(x∗) ≤ 1 + γ

)
:

• Randomized Hadamard sketch:

1− qδ − d

qγm

(
(1 + ε)2 + 4ε(q − 1)

)
. (136)

• Uniform sampling with replacement:

1− qδ − µd

qγm

(
(1 + ε)2 + 4ε(q − 1)

)
. (137)

• Uniform sampling without replacement:

1− qδ − µd

qγm

n−m
n− 1

(
(1 + ε)2 + 4ε(q − 1)

)
. (138)

• Leverage score sampling:

1− qδ − d

qγm

(
(1 + ε)2 + 4ε(q − 1)

)
. (139)

APPENDIX C
ADDITIONAL NUMERICAL RESULTS

In this section, we present additional experimental results.

A. Scalability of the Serverless Implementation

Figure 11 shows the cost against time when we solve the
problem given in (37) for large scale data on AWS Lambda
using the distributed Newton sketch algorithm. The setting in
this experiment is such that each worker node has access to a
different subset of data, and there is no additional sketching
applied. The dataset used is randomly generated and the goal
here is to demonstrate the scalability of the algorithm and the
serverless implementation. The size of the data matrix A is 44
GB.

DISTRIBUTED SKETCHING FOR RANDOMIZED OPTIMIZATION 29

50 100 150
time (sec)

10−13

10−10

10−7

10−4

10−1

co
st

 a
pp

ro
xi

m
at

io
n

Fig. 11. Cost approximation vs time when we solve the problem given in
(37) for a large scale randomly generated dataset (44 GB sized) on AWS
Lambda. Circles correspond to times that the iterates xt are computed.
Problem parameters are as follows: n = 200000, d = 30000, λ1 = 1,
m = 2000, q = 100, λ = 10.

In the serverless computing implementation, we reuse the
serverless functions during the course of the algorithm, mean-
ing that the same q = 100 functions are used for every
iteration. We note that every iteration requires two rounds
of communication with the master node. The first round
is for the communication of the local gradients, and the
second round is for the approximate update directions. The
master node, also a serverless function, is also reused across
iterations. Figure 11 illustrates that each iteration takes a
different amount of time and iteration times can be as short as
5 seconds. The reason for some iterations taking longer times
is what is referred to as the straggler problem, which is a
phenomenon commonly encountered in distributed computing.
More precisely, the iteration time is determined by the slowest
of the q = 100 nodes and nodes often slow down for a variety
of reasons causing stragglers. A possible solution to the issue
of straggling nodes is to use error correcting codes to insert
redundancy to computation and hence to avoid waiting for
the outputs of all of the worker nodes [43], [44]. We identify
that implementing straggler mitigation for solving large scale
problems via approximate second order optimization methods
such as distributed Newton sketch is a promising direction.

B. Experiments on UCI Datasets

In the case of large datasets and limited computing resources
of worker nodes such as memory and lifetime, most of
the standard sketches are computationally too expensive as
discussed in the main body of the paper. This is the reason why
we limited the scope of the large scale experiments to uniform
sampling, SJLT, and hybrid sketch. In this section we present
some additional experimental results on smaller datasets to
empirically verify the theoretical results of the paper.

We present results on two UCI datasets in Figure 12
comparing the performances of the sketches we discussed in
the paper.

Figure 12 shows that Gaussian and ROS sketches lead to
unbiased estimators in the experiments because the corre-
sponding curves appear linear in the log-log scale plots. These
experiment results suggest that the upper bound that we have
found for the bias of the ROS sketch may not be tight. We
see that the estimates for uniform sampling and leverage score
sampling are biased. The observation that the Gaussian sketch

100 101 102 103

number of averaged outputs

10−3

10−2

10−1

100

ap
pr

ox
im

at
io

n
er

ro
r

Gaussian
Uniform
ROS
Leverage score

a) echocardiogram

100 101 102 103

number of averaged outputs

10−3

10−2

10−1

100

ap
pr

ox
im

at
io

n
er

ro
r

Gaussian
Uniform
ROS
Leverage score

b) oocytes merluccius nucleus

Fig. 12. Approximation error against the number of averaged outputs in log-
log scale for various sketching methods on two UCI datasets. All of the curves
have been averaged over 25 independent trials and the vertical error bars show
the standard error. The parameters are as follows. Plot a: n = 131, d = 10,
m = 20. Plot b: n = 1022, d = 41, m = 100.

estimator is unbiased in the experiments is perfectly consistent
with our theoretical findings. Furthermore, we observe that the
approximation error is the highest in uniform sampling, which
is also in agreement with the theoretical upper bounds that we
have presented.

ACKNOWLEDGMENTS

This work was partially supported by the National Sci-
ence Foundation (NSF) under grants ECCS- 2037304, DMS-
2134248, NSF CAREER Award CCF-2236829, the U.S. Army
Research Office Early Career Award W911NF-21-1-0242,
Stanford Precourt Institute, and the ACCESS – AI Chip Center
for Emerging Smart Systems, sponsored by InnoHK funding,
Hong Kong SAR.

REFERENCES

[1] P. Drineas, M. W. Mahoney, S. Muthukrishnan, and T. Sarlós, “Faster
least squares approximation,” Numerische mathematik, vol. 117, no. 2,
pp. 219–249, 2011.

[2] S. Wang, A. Gittens, and M. W. Mahoney, “Sketched ridge regression:
Optimization perspective, statistical perspective, and model averaging,”
J. Mach. Learn. Res., vol. 18, no. 1, pp. 8039–8088, Jan. 2017.

[3] M. Pilanci and M. J. Wainwright, “Iterative hessian sketch: Fast and
accurate solution approximation for constrained least-squares,” The
Journal of Machine Learning Research, vol. 17, no. 1, pp. 1842–1879,
2016.

[4] J. Lacotte and M. Pilanci, “Faster least squares optimization,” arXiv
preprint, arXiv:1911.02675, 2019.

[5] M. W. Mahoney, “Randomized algorithms for matrices and data,”
Foundations and Trends® in Machine Learning, vol. 3, no. 2, pp. 123–
224, 2011.

[6] M. Pilanci and M. J. Wainwright, “Randomized sketches of convex
programs with sharp guarantees,” IEEE Transactions on Information
Theory, vol. 61, no. 9, pp. 5096–5115, 2015.

[7] ——, “Newton sketch: A near linear-time optimization algorithm with
linear-quadratic convergence,” SIAM Journal on Optimization, vol. 27,
no. 1, pp. 205–245, 2017.

[8] C.-C. Wang, K. L. Tan, C.-T. Chen, Y.-H. Lin, S. S. Keerthi, D. Mahajan,
S. Sundararajan, and C.-J. Lin, “Distributed newton methods for deep
neural networks,” Neural Comput., vol. 30, no. 6, p. 1673–1724, Jun.
2018. [Online]. Available: https://doi.org/10.1162/neco a 01088

[9] D. Bertsekas and J. Tsitsiklis, Parallel and Distributed Computation:
Numerical Methods. Prentice-Hall, 1989.

[10] F. Niu, B. Recht, C. Re, and S. J. Wright, “Hogwild! a lock-free
approach to parallelizing stochastic gradient descent,” in Proceedings
of the 24th International Conference on Neural Information Processing
Systems, ser. NIPS’11. Red Hook, NY, USA: Curran Associates Inc.,
2011, p. 693–701.

https://doi.org/10.1162/neco_a_01088

DISTRIBUTED SKETCHING FOR RANDOMIZED OPTIMIZATION 30

[11] E. Jonas, Q. Pu, S. Venkataraman, I. Stoica, and B. Recht, “Occupy
the cloud: Distributed computing for the 99%,” in Proceedings of the
2017 Symposium on Cloud Computing, ser. SoCC ’17. New York,
NY, USA: Association for Computing Machinery, 2017, p. 445–451.
[Online]. Available: https://doi.org/10.1145/3127479.3128601

[12] J. Carreira, P. Fonseca, A. Tumanov, A. Zhang, , and R. Katz, “A case
for serverless machine learning,” Workshop on Systems for ML and Open
Source Software at NeurIPS 2018, 2018.

[13] V. Gupta, S. Phade, T. Courtade, and K. Ramchandran, “Utility-based
resource allocation and pricing for serverless computing,” 2020.
[Online]. Available: https://arxiv.org/abs/2008.07793

[14] S. Zhou, J. Lafferty, and L. Wasserman, “Compressed and privacy-
sensitive sparse regression,” IEEE Transactions on Information Theory,
vol. 55, no. 2, pp. 846–866, Feb 2009.

[15] M. Showkatbakhsh, C. Karakus, and S. Diggavi, “Privacy-utility trade-
off of linear regression under random projections and additive noise,”
in 2018 IEEE International Symposium on Information Theory (ISIT),
June 2018, pp. 186–190.

[16] S. Zhou, J. Lafferty, and L. Wasserman, “Compressed regression,” in
Neural Information Processing Systems, December 2007.

[17] J. Blocki, A. Blum, A. Datta, and O. Sheffet, “The johnson-lindenstrauss
transform itself preserves differential privacy,” in 2012 IEEE 53rd
Annual Symposium on Foundations of Computer Science, 2012, pp. 410–
419.

[18] S. S. Vempala, The random projection method. American Mathematical
Soc., 2005, vol. 65.

[19] D. P. Woodruff et al., “Sketching as a tool for numerical linear algebra,”
Foundations and Trends® in Theoretical Computer Science, vol. 10, no.
1–2, pp. 1–157, 2014.

[20] P. Drineas and M. W. Mahoney, “RandNLA: randomized numerical
linear algebra,” Communications of the ACM, vol. 59, no. 6, pp. 80–
90, 2016.

[21] H. Avron, P. Maymounkov, and S. Toledo, “Blendenpik: Supercharging
lapack’s least-squares solver,” SIAM Journal on Scientific Computing,
vol. 32, no. 3, pp. 1217–1236, 2010.

[22] V. Rokhlin, A. Szlam, and M. Tygert, “A randomized algorithm for
principal component analysis,” SIAM Journal on Matrix Analysis and
Applications, vol. 31, no. 3, pp. 1100–1124, 2009.

[23] S. Wang, F. Roosta, P. Xu, and M. W. Mahoney, “Giant: Globally
improved approximate newton method for distributed optimization,”
in Advances in Neural Information Processing Systems 31. Curran
Associates, Inc., 2018, pp. 2332–2342.

[24] T. Sarlos, “Improved approximation algorithms for large matrices
via random projections,” in Foundations of Computer Science, 2006.
FOCS’06. 47th Annual IEEE Symposium on. IEEE, 2006, pp. 143–
152.

[25] N. Ailon and B. Chazelle, “Approximate nearest neighbors and the fast
Johnson-Lindenstrauss transform,” in Proceedings of the thirty-eighth
annual ACM symposium on Theory of computing. ACM, 2006, pp.
557–563.

[26] M. W. Mahoney, “Lecture notes on randomized linear algebra,” CoRR,
vol. abs/1608.04481, 2016. [Online]. Available: http://arxiv.org/abs/
1608.04481

[27] P. Drineas, M. Magdon-Ismail, M. Mahoney, and D. Woodruff, “Fast
approximation of matrix coherence and statistical leverage,” Journal of
Machine Learning Research, vol. 13, no. 1, pp. 3475–3506, 2012.

[28] J. Nelson and H. L. Nguyên, “Osnap: Faster numerical linear algebra
algorithms via sparser subspace embeddings,” in Foundations of Com-
puter Science (FOCS), 2013 IEEE 54th Annual Symposium on. IEEE,
2013, pp. 117–126.

[29] G. Letac and H. Massam, “All invariant moments of the wishart
distribution,” Scandinavian Journal of Statistics, vol. 31, no. 2, pp. 295–
318, 2004.

[30] D. C. Ahfock, W. J. Astle, and S. Richardson, “Statistical properties
of sketching algorithms,” Biometrika, vol. 108, no. 2, pp. 283–297, 07
2020. [Online]. Available: https://doi.org/10.1093/biomet/asaa062

[31] S. Sridhar, M. Pilanci, and A. Özgür, “Lower bounds and a near-optimal
shrinkage estimator for least squares using random projections,” IEEE
Journal on Selected Areas in Information Theory, vol. 1, no. 3, pp.
660–668, 2020.

[32] S. Boucheron, G. Lugosi, and P. Massart, Concentration Inequalities -
A Nonasymptotic Theory of Independence. Oxford University Press,
2013.

[33] N. E. Karoui, “Concentration of measure and spectra of random ma-
trices: Applications to correlation matrices, elliptical distributions and
beyond,” The Annals of Applied Probability, vol. 19, no. 6, pp. 2362–
2405, 2009.

[34] M. Derezinski, B. Bartan, M. Pilanci, and M. W. Mahoney,
“Debiasing distributed second order optimization with surrogate
sketching and scaled regularization,” in Advances in Neural Information
Processing Systems, vol. 33. Curran Associates, Inc., 2020, pp.
6684–6695. [Online]. Available: https://proceedings.neurips.cc/paper/
2020/file/4a46fbfca3f1465a27b210f4bdfe6ab3-Paper.pdf

[35] S. Liu and E. Dobriban, “Ridge regression: Structure, cross-validation,
and sketching,” in 8th International Conference on Learning Represen-
tations, ICLR 2020, 2020.

[36] C. Dwork, K. Kenthapadi, F. McSherry, I. Mironov, and M. Naor,
“Our data, ourselves: Privacy via distributed noise generation,” in
Proceedings of the 24th Annual International Conference on The Theory
and Applications of Cryptographic Techniques, ser. EUROCRYPT’06.
Berlin, Heidelberg: Springer-Verlag, 2006, p. 486–503. [Online].
Available: https://doi.org/10.1007/11761679 29

[37] O. Sheffet, “Private approximations of the 2nd-moment matrix using
existing techniques in linear regression,” CoRR, vol. abs/1507.00056,
2015. [Online]. Available: http://arxiv.org/abs/1507.00056

[38] Z. Huang, S. Mitra, and N. Vaidya, “Differentially private distributed
optimization,” in Proceedings of the 2015 International Conference
on Distributed Computing and Networking, ser. ICDCN ’15. New
York, NY, USA: Association for Computing Machinery, 2015. [Online].
Available: https://doi.org/10.1145/2684464.2684480

[39] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge
university press, 2004.

[40] B. of Transportation Statistics, “Airline on-time statistics and delay
causes, http://stat-computing.org/dataexpo/2009/,” 2018.

[41] G. Cohen, S. Afshar, J. Tapson, and A. van Schaik, “Emnist: Extending
mnist to handwritten letters,” in 2017 International Joint Conference on
Neural Networks (IJCNN), 2017, pp. 2921–2926.

[42] A. A. Borovkov, Mathematical statistics. Australia: Gordon and Breach
Science Publishers, 1998.

[43] K. Lee, M. Lam, R. Pedarsani, D. Papailiopoulos, and K. Ramchandran,
“Speeding up distributed machine learning using codes,” IEEE Trans-
actions on Information Theory, vol. 64, no. 3, pp. 1514–1529, March
2018.

[44] B. Bartan and M. Pilanci, “Straggler resilient serverless computing
based on polar codes,” in 2019 57th Annual Allerton Conference on
Communication, Control, and Computing (Allerton), 2019, pp. 276–283.

Burak Bartan Burak Bartan is a PhD student at Electrical Engineering
Department at Stanford University. He received an MS degree in Electrical
Engineering from Stanford University in 2018 and a BS degree in Electrical
and Electronics Engineering from Bilkent University in 2016. His academic
interests include machine learning, optimization, signal processing, distributed
computing, and randomized algorithms.

Mert Pilanci Mert Pilanci is an assistant professor of Electrical Engineering
at Stanford University. He received his Ph.D. in Electrical Engineering and
Computer Science from UC Berkeley in 2016. Prior to joining Stanford, he
was an assistant professor of Electrical Engineering and Computer Science at
the University of Michigan, Ann Arbor from 2017-2018. He was a Math+X
postdoctoral fellow at Stanford University in 2017. His research interests are
in machine learning, convex optimization, neural networks and information
theory.

https://doi.org/10.1145/3127479.3128601
https://arxiv.org/abs/2008.07793
http://arxiv.org/abs/1608.04481
http://arxiv.org/abs/1608.04481
https://doi.org/10.1093/biomet/asaa062
https://proceedings.neurips.cc/paper/2020/file/4a46fbfca3f1465a27b210f4bdfe6ab3-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/4a46fbfca3f1465a27b210f4bdfe6ab3-Paper.pdf
https://doi.org/10.1007/11761679_29
http://arxiv.org/abs/1507.00056
https://doi.org/10.1145/2684464.2684480

	Introduction
	Cloud Computing
	Notation
	Related Work
	Overview of Our Contributions
	Preliminaries on Sketching Matrices
	Paper Organization

	Distributed Sketching for Quadratic Optimization problems
	Closed Form Expressions for the Expected Error of Gaussian Sketch
	Exponential Concentration of the Gaussian Sketch Estimator
	Error Lower Bounds via Fisher Information
	Distributed Sketching for Least-Norm Problems

	Distributed Sketching for Iterative Algorithms
	Distributed Iterative Hessian Sketch
	Distributed Newton Sketch

	Bias Correction for Regularized Problems
	Bias Correction for Regularized Least Squares
	Distributed Newton Sketch for Regularized Problems

	Privacy Preserving Properties
	Applications of Distributed Sketching
	Logistic Regression
	Inequality Constrained Optimization
	Fine Tuning of Pre-Trained Neural Networks

	Numerical Results
	Hybrid Sketch
	Airline Dataset
	Image Dataset: Extended MNIST
	Performance on Large Scale Synthetic Datasets
	Numerical Results for Least Norm Problems
	Distributed Iterative Hessian Sketch
	Inequality Constrained Optimization

	Discussion
	Appendix A: Bounds for Other Sketching Matrices
	Appendix B: Proofs
	Proofs of Theorems and Lemmas in Section II
	Proofs of Theorems and Lemmas in Section III
	Proofs of Theorems and Lemmas in Section IV
	Proofs of Theorems and Lemmas in Section V
	Proofs of Theorems and Lemmas in Section A

	Appendix C: Additional Numerical Results
	Scalability of the Serverless Implementation
	Experiments on UCI Datasets

	References
	Biographies
	Burak Bartan
	Mert Pilanci

