Lecture Notes for CS 140
Winter 2012
John Ousterhout
struct lock { int locked; struct queue q; }; void lock_acquire(struct lock *l) { intr_disable(); if (!l->locked) { l->locked = 1; } else { queue_add(&l->q, thread_current()); thread_block(); } intr_enable(); } void lock_release(struct lock *l) { intr_disable(); if (queue_empty(&l->q) { l->locked = 0; } else { thread_unblock(queue_remove(&l->q)); } intr_enable(); }
struct lock { int locked; }; void lock_acquire(struct lock *l) { while (swap(&l->locked, 1)) { /* Do nothing */ } } void lock_release(struct lock *l) { l->locked = 0; }
struct lock { int locked; struct queue q; }; void lock_acquire(struct lock *l) { if (swap(&l->locked, 1) != 0) { queue_add(&l->q, thread_current()); thread_block(); } } void lock_release(struct lock *l) { if (queue_empty(&l->q) { l->locked = 0; } else { thread_unblock(queue_remove(&l->q)); } }
struct lock { int locked; struct queue q; int sync; /* Normally 0. */ }; void lock_acquire(struct lock *l) { while (swap(&l->sync, 1) != 0) { /* Do nothing */ } if (!l->locked) { l->locked = 1; l->sync = 0; } else { queue_add(&l->q, thread_current()); l->sync = 0; thread_block(); } } void lock_release(struct lock *l) { while (swap(&l->sync, 1) != 0) { /* Do nothing */ } if (queue_empty(&l->q) { l->locked = 0; } else { thread_unblock(queue_remove(&l->q)); } l->sync = 0; }
struct lock { int locked; struct queue q; int sync; /* Normally 0. */ }; void lock_acquire(struct lock *l) { intr_disable(); while (swap(&l->sync, 1) != 0) { /* Do nothing */ } if (!l->locked) { l->locked = 1; l->sync = 0; } else { queue_add(&l->q, thread_current()); l->sync = 0; thread_block(); } intr_enable(); } void lock_release(struct lock *l) { intr_disable(); while (swap(&l->sync, 1) != 0) { /* Do nothing */ } if (queue_empty(&l->q) { l->locked = 0; } else { thread_unblock(queue_remove(&l->q)); } l->sync = 0; intr_enable(); }